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EXTENSION OF SUBMULTIPLICATIVITY
AND SUPERMULTIPLICATIVITY OF

ORLICZ FUNCTIONS

Abstract

Results concerning extension of submultiplicativity and supermul-
tiplicativity for Orlicz functions are proved. A typical result is the
following: If the Orlicz function ϕ is submultiplicative at infinity, then
an Orlicz function ψ, which is submultiplicative on R+, equivalent to
ϕ at infinity and satisfying ψ(u)/u → 0 as u → 0 exists if and only if
the conjugate function ϕ∗ satisfies the ∆2-condition at infinity. Some
complementary results and (counter-)examples are also included.

1 Introduction

The Orlicz functions are parameters generating Orlicz spaces, which are gen-
eralizations of the well known Lp spaces. An Lp space is generated by the
power function ϕ(u) = up for u ≥ 0 , which is both submultiplicative and
supermultiplicative on [0,∞) for any 0 < p <∞. Submultiplicative as well as
supermultiplicative functions have found interesting applications in the study
of many different problems (see e.g. [8], [10], [4], [5]). Note that there is a
strict connection between convex and concave functions. Concave functions
play a fundamental role in interpolation theory. They parameterize the in-
terpolation methods. For example, the submultiplicative concave function
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f(x) = ln(e2 + x) on [0,∞) was used by Zafran [14] to produce an inter-
polation Banach algebra, which gives a negative solution of the dichotomy
problem for homogeneous algebras. Moreover, the submultiplicative function
f(x) = log2(1 + x) was used by Odell and Schlumprecht in their remarkable
paper [11] when they solve the distortion problem for Hilbert spaces. This
shows surprisingly deep application of submultiplicative functions to the con-
struction of new Banach spaces. We note that in the book [8], as well as many
other works, submultiplicative and supermultiplicative functions are investi-
gated and applied.

The present paper is in a sense a continuation of the paper [7], where
the following extension theorems were proved, answering a question posed by
Krasnoselskii and Rutickii [8], p. 30.

Theorem A. ([7], Th. 2). Let ϕ be an Orlicz function, which is submulti-
plicative at infinity. If the conjugate function ϕ∗ satisfies the ∆2-condition at
infinity, then we can find an Orlicz function ψ which is submultiplicative on
R+, equivalent to ϕ at infinity and satisfying ψ(u)/u→ 0 as u→ 0+.

Theorem B. ([7], Th. 3). Let ϕ be an Orlicz function, which is submul-
tiplicative at zero. Then an Orlicz function ψ, which is submultiplicative on
R+, equivalent to ϕ at zero and satisfying that ψ(u)/u→∞ as u→∞ exists
if and only if ϕ satisfies the ∆2-condition at zero.

In this paper we will prove that Theorem A is in fact sharp in the sense
that the implication there can be replaced by an equivalence (see Theorem 1).
We also prove some corresponding extension results when the Orlicz function
ϕ is supermultiplicative at infinity (Theorem 1) or supermultiplicative at zero
(Theorem 2). These results are proved in Section 3. Some complementary
results, remarks and (counter-)examples can be found in Section 4.

2 Notation, Definitions and Remarks

We collect now some necessary notation, definitions and remarks.
By ϕ we denote an Orlicz function; i.e., a function from R+ = [0,+∞) into
R+, which is convex and vanishing only at zero. By ϕ∗ we denote the function
conjugate to ϕ, which is defined for u ≥ 0 by ϕ∗(u) = sup

{
uv−ϕ(v) : v ≥ 0

}
.

It is well known that ϕ∗ vanishes only at zero if and only if ϕ(u)/u → 0 as
u → 0+ and ϕ∗ has finite values if and only if ϕ(u)/u → ∞ as u → ∞. An
Orlicz function ϕ such that ϕ(u)/u → 0 as u → 0+ and ϕ(u)/u → ∞ as
u→∞ is called an N -function (see [8]).
We say that an Orlicz function ϕ satisfies the ∆2-condition at zero (at infinity)
if there are positive constants K and u0 such that ϕ(2u) ≤ Kϕ(u) holds for
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all u ∈ [0, u0] (u ∈ [u0,∞)). If the above inequality on ϕ holds for all u ∈ R+,
then we say that ϕ satisfies the ∆2-condition on R+.
We say that an Orlicz function ϕ is submultiplicative (supermultiplicative) at
zero, at infinity if there exist positive constants L and u0 such that

ϕ(uv) ≤ Lϕ(u)ϕ(v)
(
respectively ϕ(uv) ≥ Lϕ(u)ϕ(v)

)
holds for all u, v in [0, u0] or [u0,∞), respectively. If the above inequality holds
for all u, v ∈ R+, then we say that ϕ is submultiplicative (supermultiplicative)
on R+.

It is easy to see that submultiplicativity at infinity implies the ∆2-condition
at infinity, supermultiplicativity at zero implies the ∆2-condition at zero, and
that submultiplicativity as well as supermultiplicativity on R+ imply the ∆2-
condition on R+. Our Example 3 shows, in particular, that none of the above
implications hold in the reversed direction.

Remark 1. The condition that ϕ is supermultiplicative at infinity (submul-
tiplicative at zero) does not guarantee that ϕ satisfies the ∆2-condition at
infinity (∆2-condition at zero). See Example 1.

We say that two Orlicz functions ϕ and ψ are equivalent at zero (at infin-
ity) if there are positive constants C1, C2 and u0 such that the inequalities
ϕ(C1u) ≤ ψ(u) ≤ ϕ(C2u) hold for all u ∈ [0, u0] (for all u ∈ [u0,∞)). If the
above inequalities on ϕ and ψ hold for all u ∈ R+, then we say that ϕ and ψ
are equivalent on R+.

Remark 2. If two Orlicz functions ϕ and ψ satisfy ϕ(u) ≤ ψ(Cu) for all
u ≥ u0, then ψ∗(u/C) ≤ ϕ∗(u) for all u ≥ u∗, where u∗ is sufficiently large
or u∗ = 0 if u0 = 0 (see [8, p. 16] or [10, p. 49] or [12, p. 15]). Similarly, if
ϕ(u) ≤ ψ(Cu) for all 0 < u ≤ u0, then ψ∗(u/C) ≤ ϕ∗(u) for all 0 < u ≤ u∗

with u∗ sufficiently small. In particular, two Orlicz functions ϕ and ψ are
equivalent at infinity (at zero or on R+) if and only if, their conjugate functions
ϕ∗ and ψ∗ are equivalent at infinity (at zero or on R+).

3 Extension Results

Our main tool in the proofs is the following lemma.

Lemma 1. Let ϕ be an Orlicz function and let the function ψ be defined by

ψ(u) =
∫ u

0

1
tϕ
(

1
t

) dt . (1)
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(a) Then ψ is also an Orlicz function. Moreover, ϕ satisfies the ∆2-condition
at zero (at infinity) [ on R+] if and only if ψ satisfies the ∆2-condition at
infinity (at zero) [ on R+].

(b) The function ϕ is submultiplicative at infinity (on R+) if and only if the
function ψ is supermultiplicative at zero (on R+). The function ϕ is su-
permultiplicative at zero (on R+) if and only if the function ψ is submul-
tiplicative at infinity (on R+).

Moreover, also for the remaining two cases (submultiplicativity at zero and
supermultiplicativity at infinity) the equivalences in (b) hold if we add the
assumption that ϕ (or ψ) satisfies the corresponding ∆2-condition.

Proof. (a) Since 1
tϕ( 1

t )
is an increasing function on (0,∞) it follows that ψ

is an Orlicz function. Moreover, for all u > 0

1
2ϕ
(

2
u

) ≤ ψ(u) ≤ 1
ϕ
(

1
u

) (2)

and
ψ(u) +

1
ϕ
(

1
u

) ≤ ψ(2u) ≤ ψ(u) +
1

2ϕ
(

1
2u

) . (3)

If ϕ satisfies the ∆2-condition at infinity, i.e., if there are K > 0 and u0 > 0
such that ϕ(2v) ≤ Kϕ(v) for all v ≥ u0, then, for all u ∈

(
0, u0

2

]
,

ϕ
( 2
u

)
≤ Kϕ

( 1
u

)
≤ K2ϕ

( 1
2u

)
.

Thus

ψ(2u) ≤ ψ(u) +
1

2ϕ
(

1
2u

) ≤ ψ(u) +
K2

2
1

ϕ
(

2
u

)
≤ ψ(u) +

K2

2

∫ u

u
2

1
tϕ
(

1
t

) dt ≤ (K2

2
+ 1
)
ψ(u)

for all u ∈ (0, u0/2]; i.e., ψ satisfies the ∆2-condition at zero.
Assume now that ψ satisfies the ∆2-condition at zero; i.e., there is K > 1 and
u0 > 0 such that ψ(2v) ≤ Kψ(v) for all v ∈ (0, u0]. Then, for all u ≥ 2/u0,

ψ
( 1
u

)
+

1
ϕ(u)

≤ ψ
( 2
u

)
≤ Kψ

( 1
u

)
.

Therefore
ϕ(2u) ≤ 1

ψ
(

1
2u

) ≤ K

ψ
(

1
u

) ≤ K

K − 1
ϕ(u)
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for all u ≥ 2/u0; i.e., ϕ satisfies the ∆2-condition at infinity. We can prove
the second case in a similar fashion.

(b) If ϕ is submultiplicative at infinity, then ϕ satisfies the ∆2-condition
at infinity. By using (2), for u, v > 0 small enough, we obtain

ψ(u)ψ(v) ≤ L

ϕ
(

1
uv

) ≤ KL

ϕ
(

2
uv

) ≤ 2KLψ(uv) ,

which means that ψ is supermultiplicative at zero.
On the other hand, if ψ is supermultiplicative at zero, then ψ satisfies the
∆2-condition at zero. Thus, by again using (2), we find that for u and v
sufficiently large

ϕ(uv) ≤ 1
Lψ
(

1
u

)
ψ
(

1
v

) ≤ 4
L
ϕ(2u)ϕ(2v) ≤ 4K2

L
ϕ(u)ϕ(v) ,

so that ϕ is submultiplicative at infinity. The other cases can be proved
similarly.

Now we state the announced more precise version of Theorem A together
with the supermultiplicative version.

Theorem 1.

(a) Let ϕ be an Orlicz function which is submultiplicative at infinity. The
following conditions are equivalent.

(i) There exists an Orlicz function ψ, which is submultiplicative on R+,
equivalent to ϕ at infinity and satisfying that ψ(u)/u→ 0 as u→ 0+.

(ii) ϕ∗ satisfies the ∆2-condition at infinity.

(b) Let ϕ be an Orlicz function which is supermultiplicative at infinity. The
following conditions are equivalent.

(i) There exists an Orlicz function Ψ which is supermultiplicative on R+

and equivalent to ϕ at infinity.

(ii) ϕ satisfies the ∆2-condition at infinity.

Proof. (a) The implication (ii)⇒ (i) is nothing else but Theorem A. Assume
now that (i) holds. In particular, this means that there exists a constant L > 0
such that ψ(uv) ≤ Lψ(u)ψ(v) for all u, v > 0 . Moreover, since ψ(u)/u→ 0
as u→ 0, there exists a ∈ (0, 1) such that ψ(a)/a < 1/(2L). Therefore

ψ(av) ≤ Lψ(a)ψ(v) ≤ a

2L
Lψ(v) =

a

2
ψ(v) .
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Hence,

ψ∗(2u) = sup
v>0

{
2uv − ψ(v)

}
≤ sup

v>0

{
2uv − 2

a
ψ(av)

}
=

2
a

sup
v>0

{
uav − ψ(av)

}
=

2
a
ψ∗(u) .

This means that ψ∗ satisfies the ∆2-condition on R+. Moreover, by the as-
sumption, ϕ is equivalent to ψ at infinity which gives, by Remark 2, that ϕ∗ is
equivalent to ψ∗ at infinity. Therefore, ϕ∗ satisfies the ∆2-condition at infinity.

(b) (i) ⇒ (ii) The function Ψ is supermultiplicative on R+ and therefore
it satisfies the ∆2-condition on R+. Moreover, ϕ as a function equivalent to
Ψ at infinity satisfies the ∆2-condition at infinity.
(ii)⇒ (i) Assume that ϕ is supermultiplicative at infinity and satisfies the ∆2-
condition at infinity. Let ψ be defined as in Lemma 1. According to this lemma
we know that ψ is submultiplicative at zero and satisfies the ∆2-condition at
zero. In view of Theorem B, these two properties of ψ imply the existence of
an Orlicz function Φ which is equivalent to ψ at zero and submultiplicative on
R+ (and also Φ(u)/u→∞ as u→∞). However, again according to Lemma 1,
the submultiplicativity of Φ on R+ is equivalent to the supermultiplicativity
on R of the function Ψ defined by

Ψ(u) =
∫ u

a

1
tΦ
(

1
t

) dt .
It only remains to prove that Ψ is equivalent to ϕ at infinity.
We know that Φ is equivalent to ψ at zero; i.e., there are positive constants
C1, C2 and u0 such that Φ(C1u) ≤ ψ(u) ≤ Φ(C2u) for all u ∈ (0, u0] . By
using inequalities (2) to both functions ψ and Ψ we obtain, for u large enough,

Ψ(u) ≤ 1
Φ
(

1
u

) ≤ 1
ψ
(

1
C2u

) ≤ 2ϕ(2C2u)

and
Ψ(u) ≥ 1

2Φ
(

2
u

) ≥ 1
ψ
(

2
C1u

) ≥ 2ϕ
(C1u

2

)
,

which means that Ψ is equivalent to ϕ at infinity. Note also that Ψ(u)/u→∞
as u→∞ iff ϕ(u)/u→∞ as u→∞.

We also have the following result for the case when ϕ is a supermultiplica-
tive function at zero.
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Theorem 2. Let ϕ be an Orlicz function, which is supermultiplicative at zero.
Then:

(a) There exists an Orlicz function ψ1, which is supermultiplicative on R+

and equivalent to ϕ at zero.

(b) The following conditions are equivalent:.

(i) There exists an Orlicz function ψ2, which is supermultiplicative on
R+, equivalent to ϕ at zero and satisfying ψ2(u)/u→∞ as u→∞.

(ii) ϕ∗ satisfies the ∆2-condition at zero.

Proof. (a) If ϕ is an Orlicz function which is supermultiplicative at zero,
then ψ defined as in Lemma 1 is an Orlicz function which is submultiplicative
at infinity. Now, according to Remark 2 in [7], there exists an Orlicz func-
tion Φ, which is equivalent to ψ at infinity and submultiplicative on R+. By
Lemma 1 the function

ψ1(u) =
∫ u

0

1
tΦ
(

1
t

) , dt
is supermultiplicative on R+ and, exactly as in the proof of Theorem 1 (b), we
can find that the function ψ1 is equivalent to ϕ at zero. The proof is complete.

(b) Assume that (i) is satisfied. Let a ∈ (0, 1) be such that aψ2(1/a) ≥ 2/L,
where L is a positive constant from the assumption ψ2(uv) ≥ Lψ2(u)ψ2(v) for
all u, v ∈ R+ . Then, for all u > 0, we have

ψ2(au) ≤ 1
Lψ2

(
1
a

)ψ2(u) ≤ a

2
ψ2(u) .

Therefore, as in the proof of Theorem 1 (a), we find that ψ∗2 satisfies the ∆2-
condition on R+. Moreover, since ψ2 is equivalent to ϕ at zero we find that ψ∗2
is equivalent to ϕ∗ at zero (cf. Remark 2) and so ϕ∗ satisfies the ∆2-condition
at zero which means that (ii) holds.
Conversely, suppose that (ii) is valid, i.e., ϕ is submultiplicative at zero and
ϕ∗ satisfies the ∆2-condition at zero. Let ψ be defined as in Lemma 1.
First we prove that ψ∗ satisfies the ∆2-condition at infinity. Without loss
of generality we can assume that the derivative ϕ′ is continuous. (Otherwise
we take the function ϕ1(u) =

∫ u
0
ϕ(t)
t dt, which is an Orlicz function with a

continuous derivative and which is equivalent to ϕ on R+, because ϕ1(u/2) ≤

ϕ(u) ≤ ϕ1(u) for all u > 0.) Then,
uψ′(u)
ψ(u)

=
1

ψ(u)ϕ
(

1
u

) and, by l’Hôpital
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rule,

lim inf
u→∞

1
ϕ( 1

u )

ψ(u)
= lim inf

u→∞

ϕ′
(

1
u

)
ψ′(u)u2

[
ϕ
(

1
u

)]2 = lim inf
u→∞

ϕ′
(

1
u

)
uϕ
(

1
u

) = lim inf
v→0+

vϕ′(v)
ϕ(v)

.

Thus

lim inf
u→∞

uψ′(u)
ψ(u)

= lim inf
v→0+

vϕ′(v)
ϕ(v)

.

Now according to Theorem 4.3 in Krasnoselskii-Rutickii’s book [8] (see also
[12], p. 26), ϕ∗ satisfies the ∆2-condition at zero if and only if the limit on the
right hand side of the above expression is bigger that some number α > 1. (In
the book only a version at infinity is proved but the similar result is obviously
also true at zero.) The above equality shows that then the limit on the left
hand side of the above expression is bigger than some α > 1, and again by
Theorem 4.3 in [8], this means that ψ∗ satisfies the ∆2-condition at infinity.
Therefore ψ is submultiplicative at infinity and ψ∗ satisfies the ∆2-condition at
infinity. By using Theorem A we conclude that there exists an Orlicz function
ψ1, which is submultiplicative on R+, equivalent to ψ at infinity and such that
ψ1(u)/u→ 0 as u→ 0+. Then the function ψ2 defined by

ψ2(u) =
∫ u

0

1
tψ1

(
1
t

) dt
is supermultiplicative on R+, equivalent to ϕ at zero (More precisely, ψ2(u) is
equivalent to 1

ψ1

(
1
u

) for all u > 0 , ψ1 is equivalent to ψ for large u and 1/ψ
(

1
u

)
is equivalent to ϕ(u) for all u > 0.) and satisfies ψ2(u)/u→∞ as u→∞.

Remark 3. The proofs of the implication (ii) ⇒ (i) in Theorem 1 (a) and
Theorem 2 (b) show the following property. If ϕ is an N -function, which is
either submultiplicative on R+ or supermultiplicative on R+, then both ϕ and
ϕ∗ satisfy the ∆2-condition on R+.

4 Complementary Results, Remarks and Examples

First we present the following complement of the statements in Remark 1.

Example 1.

(a) [7, Ex. 2] There exists an Orlicz function ϕ such that ϕ(u)/u → 0 as
u → 0+, ϕ is submultiplicative at zero but ϕ does not satisfy the ∆2-
condition at zero.
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(b) There exists an Orlicz function ψ such that ψ(u)/u→∞ as u→∞, ψ is
supermultiplicative at infinity, but ψ does not satisfy the ∆2-condition at
infinity.

In fact, for α > 0 we consider ϕα defined by ϕα(0) = 0 and

ϕα(u) = u1+α ln
(

1 + e−
1
uα

)
for u > 0.

It has been proved in [7] that ϕα has the properties from (a): ϕα(u)/u → 0
as u → 0+, ϕα is submultiplicative on [0, 1] and ϕα does not satisfy the ∆2-
condition at zero. Therefore, according to Lemma 1, the function

ψα(u) =
∫ u

0

1
tϕα

(
1
t

) dt
has the desired properties in (b).

Remark 4. Ando [2, Th. 1] (cf. also [12], pp. 28-29) proved the following
duality property. Let ϕ be an N -function. Then ϕ is submultiplicative at
infinity if and only if ϕ∗ is “almost” supermultiplicative at infinity, i.e., ϕ∗

satisfies ϕ∗(u)ϕ∗(v) ≤ ϕ∗(L′uv) for some L′ > 0 and for large u, v.
Of course, repeating his proof, we can show that in the class of N -functions

the following holds. ϕ is submultiplicative on R+ if and only if ϕ∗ is super-
multiplicative on R+.

In our next example we illustrate the fact that the difference between the
case at infinity and the case on R+ is really essential.

Example 2. The functions

ϕ(u) = (1 + u) ln(1 + u)− u and ϕ(u) = u ln(1 + u)

are examples of N -functions, which are submultiplicative at infinity and ϕ∗

do not satisfy the ∆2-condition at infinity.

In view of Remark 3, it is natural to ask the question if, for any Orlicz
function ϕ such that both ϕ and ϕ∗ satisfy the ∆2-condition on R+ there
exists an Orlicz function ψ which is equivalent to ϕ on R+ and such that ψ
is either submultiplicative on R+ or supermultiplicative on R+. The negative
answer of this question is given in our next example.

Example 3.

(a) There exists an Orlicz function ϕ such that both ϕ and ϕ∗ satisfy the
∆2-condition on R+ and ϕ(u)/u → 0 as u → 0+ but ϕ is not equivalent
to any Orlicz function ψ which is submultiplicative on R+.
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(b) There exists an Orlicz function ψ such that both ψ and ψ∗ satisfy the
∆2-condition on R+ and ψ(u)/u→∞ as u→∞, but ψ is not equivalent
to any Orlicz function Φ which is supermultiplicative on R+.

First we observe that if ϕ is an Orlicz function equivalent to another Orlicz
function ψ, which is submultiplicative on R+, then ϕ is equivalent to ϕ on R+,
where ϕ is defined by ϕ(u) : = supv>0

ϕ(uv)
ϕ(v) . Now, consider the Orlicz function

ϕ(u) = up ln(1 +u) for u ≥ 0, where 1 < p <∞. Then ϕ(u)/u→ 0 as u→ 0+

and both ϕ and ϕ∗ satisfy the ∆2-condition on R+. The function ϕ is not
equivalent to any Orlicz function ψ which is submultiplicative on R+ because
if it were, then ϕ(u) = up max(1, u) would be equivalent to ϕ(u) = up ln(1+u)
on R+ and this gives a contradiction since u is not equivalent to ln(1 + u) at
infinity. This proves our statement in (a).

Concerning the statement in (b), we consider again the Orlicz function
ϕ(u) = up ln(1 + u) for u ≥ 0 and p > 1, and define ψ as in Lemma 1. This
function ψ satisfies all conditions in statement (b).

Remark 5. It is well-known that any Orlicz function ϕ has an integral rep-
resentation ϕ(u) =

∫ u
0
ϕ′(t) dt, where ϕ′ is the right derivative of ϕ and

ϕ(u) ≤ uϕ′(u) ≤ ϕ(2u) for all u ≥ 0 (see [8] or [9], [12]). By using these
estimates, Ando [3, Lemma 1] (cf. also [12], Theorem 11) has proved that
an Orlicz function ϕ is submultiplicative at infinity (on R+) if and only if its
right derivative ϕ′ is submultiplicative at infinity (on R+). Note that in [7,
Proposition 2] it was observed that if an Orlicz function ϕ satisfies the ∆2-
condition at zero, then ϕ is submultiplicative at zero if and only if its right
derivative ϕ′ is submultiplicative at zero. A similar result can also be proved
in the supermultiplicative cases.
An Orlicz function ϕ is supermultiplicative at zero (on R+) if and only if its
right derivative ϕ′ is supermultiplicative at zero (on R+). If ϕ satisfies the
∆2-condition at infinity, then ϕ is supermultiplicative at infinity if and only if
its right derivative ϕ′ is supermultiplicative at infinity.

Let us remark that in [7, Proposition 1 and Lemma 1] there are also proved
some extension results for submultiplicative Orlicz functions. In fact it was
proved that if an Orlicz function ϕ is submultiplicative at infinity, i.e., on
some interval [u1,∞), u1 > 0, then ϕ is submultiplicative on [b,∞) for any
0 < b < u1, and if an Orlicz function ϕ satisfies the ∆2-condition at zero and
is submultiplicative at zero; i.e., on some interval [0, u0], u0 > 0, then ϕ is
submultiplicative on [0, a] for any a > u0.

By using this technique we can also prove the following complement of the
extension results in the supermultiplicativity case:
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Theorem 3. Let ϕ be an Orlicz function.

(a) If ϕ is supermultiplicative at zero, then ϕ is supermultiplicative on the
interval [0, a] for any 0 < a <∞.

(b) If ϕ is supermultiplicative at infinity and ϕ satisfies the ∆2-condition at
infinity, then ϕ is supermultiplicative on the interval [b,∞) for any 0 <
b <∞.

Proof. (a) By assumption, there are positive constants u0 and L such that

ϕ(uv) ≥ Lϕ(u)ϕ(v) for all u, v ∈ [0, u0].

Let 0 < u0 < a <∞ and u, v ∈ [0, a]. We consider the following three cases:.
1◦. u, v ∈ [0, u0]. Then supermultiplicativity holds.
2◦. u, v ∈ [u0, a]. By defining

M = inf
{ ϕ(uv)
ϕ(u)ϕ(v)

: u, v ∈ [uo, a]
}
,

we have 0 < M <∞ and ϕ(uv) ≥Mϕ(u)ϕ(v) for all u, v ∈ [u0, a].
3◦. u ∈ [0, u0] and v ∈ [u0, a]. Then we find that

ϕ(vu) ≥ ϕ(u0u) ≥ Lϕ(u0)ϕ(u) =
Lϕ(u0)
ϕ(a)

ϕ(a)ϕ(u) ≥ Lϕ(u0)
ϕ(a)

ϕ(v)ϕ(u) .

The proof follows now from the estimates 1◦ − 3◦ and the constant K in the
supermultiplicativity estimate can be taken as

K = min
(
M,

Lϕ(u0)
ϕ(a)

)
.

(b) The proof is similar to that of (a). (Note only that supermultiplicativity
at infinity does not imply in general the ∆2-condition at infinity; so we have
assumed it.)

Remark 6. If either both ϕ and ϕ∗ are submultiplicative Orlicz functions at
infinity (at zero or on R+) or ϕ is a submultiplicative as well as a supermul-
tiplicative N -function at infinity (at zero or on R+), then ϕ is equivalent to
ϕp(u) = up, p > 1, at infinity (at zero or on R+, respectively) (see e.g. [13,
Th. 1], [6, Th. 2] or [12, Proposition 12]).
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