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CONSTRUCTION OF MEASURE BY MASS
DISTRIBUTION

Abstract

In this note we show that a measure can be constructed on an arbi-
trary set by iterated arbitrary mass distribution over arbitrary subsets
of the set.

A Borel outer measure on Rn is an outer measure µ on Rn whose σ-
algebra M of µ-measurable subsets of Rn contains the Borel σ-algebra BRn .
The restriction of a Borel outer measure µ on Rn to the σ-algebraM is then a
measure on this σ-algebra which contains all the Borel sets in Rn. K. Falconer
[3] describes a method of constructing a Borel outer measure on Rn by repeated
mass distributions. (What is called a measure in [3] is an outer measure in our
terminology.) The process of mass distribution may be described as follows.

Let E be a bounded Borel set in Rn. Let E0 = {E}. For k = 1, 2, . . ., let
Ek be a collection of disjoint Borel subsets of E such that each member U of
Ek is contained in one of the members of Ek−1 and contains a finite number
of members of Ek+1 and the maximum diameter of the members of Ek tends
to 0 as k → ∞. It is not required that a member of Ek is equal to the union
of the members of Ek+1 it contains. Let us assign a mass µ(E) ∈ (0,∞) to
the set E. Subdivide this mass between the members U1, . . . , Um of E1 in
such a way that

∑m
i=1 µ(Ui) = µ(E). For each set U in E1, subdivide the

mass µ(U) between the members U1, . . . , Un of E2 contained in U in such a
way that

∑n
j=1 µ(Uj) = µ(U). We repeat this subdivision of mass indefinitely.

Consider the sequence (Ek : k ∈ Z+), where Z+ = {0, 1, 2, . . .}, of collections
of Borel subsets of E. For each k ∈ Z+, let Ek be the union of the members of
Ek. Then (Ek : k ∈ Z+) is a decreasing sequence and (Rn \Ek : k ∈ Z+) is an
increasing sequence. We set µ(Rn \ Ek) = 0 for every k ∈ Z+. The collection
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E of all sets in Ek and Rn \Ek for all k ∈ Z+ is a covering class for Rn in the
sense that there exists a sequence in E the union of whose members is equal
to Rn. Let P(Rn) be the collection of all subsets of Rn. If we define a set
function µ on P(Rn) by setting for every A ∈ P(Rn)

µ(A) = inf
{∑

i∈N µ(Ui) : A ⊂
⋃

i∈N Ui and Ui ∈ E
}
,

then µ is a Borel outer measure on Rn and the support of the measure µ on
the σ-algebra M is contained in

⋂
k∈Z+

Ek.

A net N of subsets of Rn is a subcollection of P(Rn) with the property
that if V1, V2 ∈ N then either V1 ∩ V2 = ∅ or else V1 ⊂ V2 or V2 ⊂ V1. In
Falconer’s construction of a measure on BRn by mass distribution described
above, the mass is distributed over a net of subsets of Rn.

A covering class V of subsets of Rn is a subcollection of P(Rn) such that
∅ ∈ V and there exists {Vi : i ∈ N} ⊂ V such that

⋃
n∈N Vn = Rn.

A premeasure γ on Rn is a nonnegative extended real-valued set function
on a covering class V of subsets of Rn such that γ(∅) = 0. Given a premeasure
γ defined on a covering class V of subsets of Rn, a set function µ on P(Rn)
defined by setting for every E ∈ P(Rn)

µ(E) = inf
{∑

i∈N γ(Vi) : (Vi : i ∈ N) ⊂ V,
⋃

i∈N Vi ⊃ E
}
,

is an outer measure on Rn. Restriction of µ to the σ-algebra M of µ-
measurable subsets of Rn, that is, E ∈ P(Rn) satisfying the Carathéodory
condition

µ(A) = µ(E ∩A) = µ(Ec ∩A) for every A ∈ P(Rn),

is the a measure generated by the premeasure γ. In general, the σ-algebraM
may not contain the covering class V on which the premeasure γ is based. If
the covering class V is a semialgebra of subsets of Rn and γ is additive on V
then V ⊂M and if γ is countably additive on the semialgebra V then we have
γ = µ on V.

A net measure is a measure generated by a premeasure whose covering class
is a net. Thus Falconer’s measure on BRn constructed by mass distribution is
a net measure on Rn.

Net measures are a useful tool in the study of Hausdorff measures. A. S.
Besicovitch [1] constructed net measures comparable to a Hausdorff measure
Hs on Rn to show that any closed set of infinite Hs-measure contains subsets
of positive and finite Hs-measure. For a treatise of comparable net measures
we refer to K. Falconer [2].
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In this article we show that a measure can be constructed on an arbitrary
set X by mass distribution on a sequence (Dk : k ∈ Z+) of successive decom-
positions of X into arbitrary subsets. We show that the collection of subsets
of X resulting from the decompositions (Dk : k ∈ Z+) together with ∅ con-
stitute a semialgebra of subsets of X and an arbitrary mass distribution over
these sets is a countably additive set function on the semialgebra. This set
function is then extended to be a measure on the σ-algebra generated by the
semialgebra.

A collection S of subsets of a set X is called a semialgebra if it satisfies
the following conditions:

1◦ ∅, X ∈ S,
2◦ if E,F ∈ S, then E ∩ F ∈ S,
3◦ if E ∈ S, then Ec is a finite disjoint union of members of S.

It follows that a finite union of members of S is always equal to a finite dis-
joint union of members of S. The collection of all finite unions of members
of a semialgebra S is equal to the algebra α(S) generated by S, that is, the
smallest algebra of subsets of X containing S.
Let µ be a nonnegative extended real-valued set function on a semialgebra S
of subsets of a set X with µ(∅) = 0. We say that µ is finitely additive on S
if for every finite disjoint collection {E1, . . . , En} of members of S such that⋃n

i=1Ei ∈ S we have µ
(⋃n

i=1Ei

)
=
∑n

i=1 µ(Ei). We say that µ is count-
ably additive on S if for every countable disjoint collection {En : n ∈ N} of
members of S such that

⋃
n∈N En ∈ S we have µ

(⋃
n∈N En

)
=
∑

n∈N µ(En).
For A ∈ α(S) given as a finite disjoint union of member E1, . . . , En of

S, let us define µ(A) =
∑n

i=1 µ(Ei). Then µ is finitely additive on α(S) if
and only if µ is finitely additive on S and µ is countably additive on α(S) if
and only if µ is countably additive on S. According to the Hopf Extension
Theorem, if a nonnegative extended real-valued set function µ on an algebra
A of subsets of a set X with µ(∅) = 0 is countably additive on A then µ is
extendible to a measure on the σ-algebra σ(A) generated by A, that is, the
smallest σ-algebra of subsets of X containing A. Moreover the extension of µ
to a measure on σ(S) = σ(α(S)) is unique when µ is σ-finite on S. For proofs
of these statements regarding an extension of a set function on a semialgebra
S to a measure on the σ-algebra σ(S) = σ(α(S)) we refer to [4].

Definition 1. Let X be a non-empty set. Let (Dk : k ∈ Z+) be a sequence of
decompositions of X into arbitrary subsets of X and let γ be a set function on⋃

k∈Z+
Dk. We call

(⋃
k∈Z+

Dk, γ
)

a mass distribution on X if (Dk : k ∈ Z+)
and γ satisfy the following conditions;
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1◦ For each k ∈ Z+, Dk is a finite disjoint collection of non-empty subsets
of X whose union is equal to X.
2◦ For each k ∈ Z+, Dk+1 is a refinement of Dk, that is, every member of
Dk is a union of some members of Dk+1

3◦ D0 = {X}.
4◦ γ(X) ∈ (0,∞).
5◦ γ(E) ∈ [0,∞) for every E ∈

⋃
k∈Z+

Dk.
6◦ γ(E) =

∑p
i=1 γ(Ei) for every E ∈ Dk such that E =

⋃p
i=1Ei where

{E1, . . . , Ep} ⊂ Dk+1.

Lemma 2. Let
(⋃

k∈Z+
Dk, γ

)
be a mass distribution on a non-empty set X.

Let S = {∅} ∪
⋃

k∈Z+
Dk and let γ(∅) = 0. Then we have:

(a) S is a semialgebra of subsets of X.
(b) If E,F ∈ S then either E ∩ F = ∅ or else E ⊂ F or F ⊂ E.
(c) γ is a countably additive set function on the semialgebra S.

Proof. 1. Let us show that S is a semialgebra of subsets of X. Clearly
∅, X ∈ S. Let us show that S is closed under intersections. Let E,F ∈ S.
If at least one of the two sets is the empty set then their intersection is the
empty set which is a member of S. Suppose neither of the two sets E and
F is the empty set. Then E,F ∈

⋃
k∈Z+

Dk so that E ∈ Dm and F ∈ Dn

for some m,n ∈ Z+. We may assume without loss of generality that m ≤ n.
If m = n then E,F ∈ Dm so that either E = F so that E ∩ F = E ∈ S
or E ∩ F = ∅ ∈ S. Now consider the case m < n. In this case F ∈ Dn is
contained in a member of Dm. If our E ∈ Dm is the member of Dm containing
F then E ∩ F = F ∈ S. If E does not contain F then F is contained in
another member of Dm which is disjoint from E so that E ∩ F = ∅ ∈ S. This
shows proves that S is closed under intersections. We have shown also that if
E,F ∈ S then either E ∩ F = ∅ or else E ⊂ F or F ⊂ E.

Let us show that for every E ∈ S the complement Ec is a finite disjoint
union of members of S. Let E ∈ S. If E = ∅ then Ec = X ∈ S so that Ec is
trivially a finite disjoint union of members of S. If E 6= ∅ then E ∈

⋃
k∈Z+

Dk

so that E ∈ Dk for some k ∈ Z+. Then since Dk is a finite disjoint collection
of sets the union of all of which is equal to X, Ec is equal to the union of
all the members of Dk other than E. Then Ec is a finite disjoint union of
members of S. Thus we have verified (a) and (b).

2. Let us show that γ is countably additive on S, that is, if (En : n ∈ N)
is a disjoint sequence in S such that

⋃
n∈N En ∈ S then

∑
n∈N γ(En) =

γ
(⋃

n∈N En

)
. Since γ(∅) = 0, it suffices to consider the case (En : n ∈ N) ⊂⋃

k∈Z+
Dk. Now γ(X) ∈ (0,∞). Let J = [0, γ(X)), an interval in R with
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length `(J) = γ(X). Let J be the collection of all left-closed and right-open
subintervals of J . We construct below that a mapping ϕ of

⋃
k∈Z+

Dk into J
satisfying the following conditions:

1◦ ϕ is one-to-one,
2◦ if E1, E2 ∈

⋃
k∈Z+

Dk and E1 ⊃ E2 then ϕ(E1) ⊃ ϕ(E2),
3◦ if E1, E2 ∈

⋃
k∈Z+

Dk and E1 ∩ E2 = ∅ then ϕ(E1) ∩ ϕ(E2) = ∅,
4◦ `

(
ϕ(E)

)
= γ(E) for E ∈

⋃
k∈Z+

Dk.

Consider D1 = {E1,1, . . . , E1,p0}, a finite disjoint collection of non-empty
subsets of X such that

⋃p0
j=1E1,j = X and

∑p0
j=1 γ(E1,j) = γ(X). Decompose

J into p0 disjoint left-closed and right-open subintervals of J , {J1,1, . . . , J1,p0}
with `(J1,j) = γ(E1,j) for j = 1, . . . , p0 so that

p0∑
j=1

`(J1,j) =
p0∑

j=1

γ(E1,j) = γ(X) = `(J).

We define a mapping ϕ of D1 into J

ϕ(E1,j) = J1,j for j = 1, . . . , p0.

Next consider D2, a refinement of D1. Thus each E1,i in D1 is decomposed
into a subcollection {E1,i,1, . . . , E1,i,p1,i

} of D2. By the definition of γ we have∑p1,i

j=1 γ(E1,i,j) = γ(E1,i). Decompose J1,i = ϕ(E1,i) into p1,i disjoint left-
closed and right-open intervals {J1,i,1, . . . , J1,i,p1,i} with `(J1,i,j) = γ(E1,i,j)
for j = 1, . . . , p1,i. Then we have

p1,i∑
j=1

`(J1,i,j) =
p1,i∑
j=1

γ(E1,i,j) = γ(E1,i) = `(J1,i).

We define we extend the definition of ϕ to D2 by setting

ϕ(E1,i,j) = J1,i,j for j = 1, . . . , p1,i.

We extend the definition of ϕ to D3 in the same manner and so on for Dk for
k ∈ Z+. The mapping ϕ thus defined on

⋃
k∈Z+

Dk satisfies conditions 1◦ to
4◦.

Let us show the countable additivity of the set function γ on the semi-
algebra S. Let (En : n ∈ N) be a disjoint sequence in

⋃
k∈Z+

Dk such that⋃
n∈N En ∈

⋃
k∈Z+

Dk. Then
(
ϕ(En) : n ∈ N

)
is a disjoint sequence in J and
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ϕ
(⋃

n∈N En

)
∈ J . Let (R,M

L
, µ

L
) be the Lebesgue measure space on R. By

the fact that J ⊂M
L

and the fact that µ
L

(J) = `(J) for J ∈ J , we have

γ
( ⋃

n∈N
En

)
= `
(
ϕ
( ⋃

n∈N
En

))
= µ

L

(
ϕ
( ⋃

n∈N
En

))
= µ

L

( ⋃
n∈N

ϕ(En)
)

=
∑
n∈N

µ
L

(
ϕ(En)

)
=
∑
n∈N

`
(
ϕ(En)

)
=
∑
n∈N

γ(En).

This proves the countable additivity of γ on the semialgebra S.

Theorem 3. Let
(⋃

k∈Z+
Dk, γ

)
be a mass distribution on a non-empty set

X. Let S = {∅} ∪
⋃

k∈Z+
Dk and let γ(∅) = 0. Then there exists a measure

space (X,σ(S), µ) such that µ = γ on S.

Proof. By Lemma 2, γ is a nonnegative real-valued countably additive set
function on the semialgebra S of subsets of X with γ(∅) = 0. Thus γ has
a unique extension to a measure µ on σ(S). (See Theorem 21.10, [4] for
instance.)

As an example of constructing a measure on an arbitrary set by mass
distributions let us consider the space of infinite sequences of finitely many
objects. Let A = {a1, . . . , am}. Let X be the collection of all infinite sequences
of elements of A given by(

anj : n ∈ N
)

where nj = 1, . . . ,m for n ∈ N. (1)

For k ∈ N consider the k-term sequences of elements of A given by(
an1 , . . . , ank

)
where nj = 1, . . . ,m for n = 1, . . . , k. (2)

There are mk such sequences. Let E
[
an1 , . . . , ank

]
be the collection of all

elements of X whose first k entries are
(
an1 , . . . , ank

)
, that is,

E
[
an1 , . . . , ank

]
=
{

(sn : n ∈ N) ∈ X : (s1, . . . , sk) =
(
an1 , . . . , ank

)}
. (3)

For k ∈ N let

Dk =
{
E
[
an1 , . . . , ank

]
;nj = 1, . . . ,m for n = 1, . . . , k

}
(4)
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and let
D0 = {X}. (5)

Then for each k ∈ Z+, Dk is a collection of mk disjoint non-empty subset of
X. Moreover every member E

[
an1 , . . . , ank

]
of Dk is the union of m members

of Dk+1, that is,

E
[
an1 , . . . , ank

]
= E

[
an1 , . . . , ank

, a1

]
∪ · · · ∪ E

[
an1 , . . . , ank

, am

]
. (6)

Thus our (Dk : k ∈ Z+) satisfies conditions 1◦, 2◦ and 3◦ of Definition 1.
Let us define a set function γ on the semialgebra S = {∅} ∪

⋃
k∈Z+

Dk as
follows. Let p1, . . . , pm be arbitrary positive numbers satisfying the condition∑m

i=1 pi = 1. Let γ(∅) = 0, γ(X) = 1 and for E
[
an1 , . . . , ank

]
∈ Dk let

γ
(
E
[
an1 , . . . , ank

])
= pn1 · · · pnk

.

Then for a decomposition of E
[
an1 , . . . , ank

]
into m members of Dk+1 as given

by (6) we have

γ
(
E
[
an1 , . . . , ank

])
= pn1 · · · pnk

·
m∑

i=1

pi =
m∑

i=1

γ
(
E
[
an1 , . . . , ank

, ai

])
.

This shows that γ satisfies conditions 4◦, 5◦ and 6◦ of Definition 1. Thus by
Theorem 3 the set function γ can be extended uniquely to be a measure µ on
the σ-algebra σ(S) generated by the semialgebra S = {∅} ∪

⋃
k∈Z+

Dk with
µ(X) = 1.
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