J. Yeh, Department of Mathematics, University of California, Irvine, CA 92697, U.S.A. email: jyeh@math.uci.edu

CONSTRUCTION OF MEASURE BY MASS DISTRIBUTION

Abstract

In this note we show that a measure can be constructed on an arbitrary set by iterated arbitrary mass distribution over arbitrary subsets of the set.

A Borel outer measure on \mathbb{R}^n is an outer measure μ on \mathbb{R}^n whose σ algebra \mathcal{M} of μ -measurable subsets of \mathbb{R}^n contains the Borel σ -algebra $\mathcal{B}_{\mathbb{R}^n}$. The restriction of a Borel outer measure μ on \mathbb{R}^n to the σ -algebra \mathcal{M} is then a measure on this σ -algebra which contains all the Borel sets in \mathbb{R}^n . K. Falconer [3] describes a method of constructing a Borel outer measure on \mathbb{R}^n by repeated mass distributions. (What is called a measure in [3] is an outer measure in our terminology.) The process of mass distribution may be described as follows.

Let E be a bounded Borel set in \mathbb{R}^n . Let $\mathcal{E}_0 = \{E\}$. For $k = 1, 2, \ldots$, let \mathcal{E}_k be a collection of disjoint Borel subsets of E such that each member U of \mathcal{E}_k is contained in one of the members of \mathcal{E}_{k-1} and contains a finite number of members of \mathcal{E}_{k+1} and the maximum diameter of the members of \mathcal{E}_k tends to 0 as $k \to \infty$. It is not required that a member of \mathcal{E}_k is equal to the union of the members of \mathcal{E}_{k+1} it contains. Let us assign a mass $\mu(E) \in (0,\infty)$ to the set E. Subdivide this mass between the members U_1, \ldots, U_m of \mathcal{E}_1 in such a way that $\sum_{i=1}^m \mu(U_i) = \mu(E)$. For each set U in \mathcal{E}_1 , subdivide the mass $\mu(U)$ between the members U_1, \ldots, U_n of \mathcal{E}_2 contained in U in such a way that $\sum_{i=1}^n \mu(U_i) = \mu(U)$. We repeat this subdivision of mass indefinitely. Consider the sequence $(\mathcal{E}_k : k \in \mathbb{Z}_+)$, where $\mathbb{Z}_+ = \{0, 1, 2, \ldots\}$, of collections of Borel subsets of E. For each $k \in \mathbb{Z}_+$, let E_k be the union of the members of \mathcal{E}_k . Then $(E_k : k \in \mathbb{Z}_+)$ is a decreasing sequence and $(\mathbb{R}^n \setminus E_k : k \in \mathbb{Z}_+)$ is an increasing sequence. We set $\mu(\mathbb{R}^n \setminus E_k) = 0$ for every $k \in \mathbb{Z}_+$. The collection

Mathematical Reviews subject classification: Primary: 28A99

Key words: net measure, mass distribution

Received by the editors May 5, 2009

Communicated by: Brian S. Thomson

 \mathcal{E} of all sets in \mathcal{E}_k and $\mathbb{R}^n \setminus E_k$ for all $k \in \mathbb{Z}_+$ is a covering class for \mathbb{R}^n in the sense that there exists a sequence in \mathcal{E} the union of whose members is equal to \mathbb{R}^n . Let $\mathcal{P}(\mathbb{R}^n)$ be the collection of all subsets of \mathbb{R}^n . If we define a set function μ on $\mathcal{P}(\mathbb{R}^n)$ by setting for every $A \in \mathcal{P}(\mathbb{R}^n)$

$$\mu(A) = \inf \left\{ \sum_{i \in \mathbb{N}} \mu(U_i) : A \subset \bigcup_{i \in \mathbb{N}} U_i \text{ and } U_i \in \mathcal{E} \right\},\$$

then μ is a Borel outer measure on \mathbb{R}^n and the support of the measure μ on the σ -algebra \mathcal{M} is contained in $\bigcap_{k \in \mathbb{Z}_+} \overline{E_k}$.

A net \mathcal{N} of subsets of \mathbb{R}^n is a subcollection of $\mathcal{P}(\mathbb{R}^n)$ with the property that if $V_1, V_2 \in \mathcal{N}$ then either $V_1 \cap V_2 = \emptyset$ or else $V_1 \subset V_2$ or $V_2 \subset V_1$. In Falconer's construction of a measure on $\mathcal{B}_{\mathbb{R}^n}$ by mass distribution described above, the mass is distributed over a net of subsets of \mathbb{R}^n .

A covering class \mathcal{V} of subsets of \mathbb{R}^n is a subcollection of $\mathcal{P}(\mathbb{R}^n)$ such that $\emptyset \in \mathcal{V}$ and there exists $\{V_i : i \in \mathbb{N}\} \subset \mathcal{V}$ such that $\bigcup_{n \in \mathbb{N}} V_n = \mathbb{R}^n$.

A premeasure γ on \mathbb{R}^n is a nonnegative extended real-valued set function on a covering class \mathcal{V} of subsets of \mathbb{R}^n such that $\gamma(\emptyset) = 0$. Given a premeasure γ defined on a covering class \mathcal{V} of subsets of \mathbb{R}^n , a set function μ on $\mathcal{P}(\mathbb{R}^n)$ defined by setting for every $E \in \mathcal{P}(\mathbb{R}^n)$

$$\mu(E) = \inf \left\{ \sum_{i \in \mathbb{N}} \gamma(V_i) : (V_i : i \in \mathbb{N}) \subset \mathcal{V}, \bigcup_{i \in \mathbb{N}} V_i \supset E \right\},\$$

is an outer measure on \mathbb{R}^n . Restriction of μ to the σ -algebra \mathcal{M} of μ measurable subsets of \mathbb{R}^n , that is, $E \in \mathcal{P}(\mathbb{R}^n)$ satisfying the Carathéodory condition

$$\mu(A) = \mu(E \cap A) = \mu(E^c \cap A) \quad \text{for every } A \in \mathcal{P}(\mathbb{R}^n)$$

is the a measure generated by the premeasure γ . In general, the σ -algebra \mathcal{M} may not contain the covering class \mathcal{V} on which the premeasure γ is based. If the covering class \mathcal{V} is a semialgebra of subsets of \mathbb{R}^n and γ is additive on \mathcal{V} then $\mathcal{V} \subset \mathcal{M}$ and if γ is countably additive on the semialgebra \mathcal{V} then we have $\gamma = \mu$ on \mathcal{V} .

A net measure is a measure generated by a premeasure whose covering class is a net. Thus Falconer's measure on $\mathcal{B}_{\mathbb{R}^n}$ constructed by mass distribution is a net measure on \mathbb{R}^n .

Net measures are a useful tool in the study of Hausdorff measures. A. S. Besicovitch [1] constructed net measures comparable to a Hausdorff measure \mathcal{H}^s on \mathbb{R}^n to show that any closed set of infinite \mathcal{H}^s -measure contains subsets of positive and finite \mathcal{H}^s -measure. For a treatise of comparable net measures we refer to K. Falconer [2].

In this article we show that a measure can be constructed on an arbitrary set X by mass distribution on a sequence $(\mathcal{D}_k : k \in \mathbb{Z}_+)$ of successive decompositions of X into arbitrary subsets. We show that the collection of subsets of X resulting from the decompositions $(\mathcal{D}_k : k \in \mathbb{Z}_+)$ together with \emptyset constitute a semialgebra of subsets of X and an arbitrary mass distribution over these sets is a countably additive set function on the semialgebra. This set function is then extended to be a measure on the σ -algebra generated by the semialgebra.

A collection \mathcal{S} of subsets of a set X is called a semialgebra if it satisfies the following conditions:

- $1^{\circ} \quad \emptyset, X \in \mathcal{S},$
- 2° if $E, F \in \mathcal{S}$, then $E \cap F \in \mathcal{S}$,

 3° if $E \in \mathcal{S}$, then E^{c} is a finite disjoint union of members of \mathcal{S} .

It follows that a finite union of members of S is always equal to a finite disjoint union of members of S. The collection of all finite unions of members of a semialgebra S is equal to the algebra $\alpha(S)$ generated by S, that is, the smallest algebra of subsets of X containing S.

Let μ be a nonnegative extended real-valued set function on a semialgebra \mathcal{S} of subsets of a set X with $\mu(\emptyset) = 0$. We say that μ is finitely additive on \mathcal{S} if for every finite disjoint collection $\{E_1, \ldots, E_n\}$ of members of \mathcal{S} such that $\bigcup_{i=1}^n E_i \in \mathcal{S}$ we have $\mu(\bigcup_{i=1}^n E_i) = \sum_{i=1}^n \mu(E_i)$. We say that μ is countably additive on \mathcal{S} if for every countable disjoint collection $\{E_n : n \in \mathbb{N}\}$ of members of \mathcal{S} such that $\bigcup_{n \in \mathbb{N}} E_n \in \mathcal{S}$ we have $\mu(\bigcup_{n \in \mathbb{N}} E_n) = \sum_{n \in \mathbb{N}} \mu(E_n)$.

For $A \in \alpha(S)$ given as a finite disjoint union of member E_1, \ldots, E_n of S, let us define $\mu(A) = \sum_{i=1}^n \mu(E_i)$. Then μ is finitely additive on $\alpha(S)$ if and only if μ is finitely additive on S and μ is countably additive on $\alpha(S)$ if and only if μ is countably additive on S. According to the Hopf Extension Theorem, if a nonnegative extended real-valued set function μ on an algebra \mathcal{A} of subsets of a set X with $\mu(\emptyset) = 0$ is countably additive on \mathcal{A} then μ is extendible to a measure on the σ -algebra $\sigma(\mathcal{A})$ generated by \mathcal{A} , that is, the smallest σ -algebra of subsets of X containing \mathcal{A} . Moreover the extension of μ to a measure on $\sigma(S) = \sigma(\alpha(S))$ is unique when μ is σ -finite on S. For proofs of these statements regarding an extension of a set function on a semialgebra S to a measure on the σ -algebra $\sigma(S) = \sigma(\alpha(S))$ we refer to [4].

Definition 1. Let X be a non-empty set. Let $(\mathcal{D}_k : k \in \mathbb{Z}_+)$ be a sequence of decompositions of X into arbitrary subsets of X and let γ be a set function on $\bigcup_{k \in \mathbb{Z}_+} \mathcal{D}_k$. We call $(\bigcup_{k \in \mathbb{Z}_+} \mathcal{D}_k, \gamma)$ a mass distribution on X if $(\mathcal{D}_k : k \in \mathbb{Z}_+)$ and γ satisfy the following conditions;

1° For each $k \in \mathbb{Z}_+$, \mathcal{D}_k is a finite disjoint collection of non-empty subsets of X whose union is equal to X.

2° For each $k \in \mathbb{Z}_+$, \mathcal{D}_{k+1} is a refinement of \mathcal{D}_k , that is, every member of \mathcal{D}_k is a union of some members of \mathcal{D}_{k+1}

- $3^{\circ} \quad \mathcal{D}_0 = \{X\}.$
- $4^{\circ} \quad \gamma(X) \in (0, \infty).$
- 5° $\gamma(E) \in [0, \infty)$ for every $E \in \bigcup_{k \in \mathbb{Z}_+} \mathcal{D}_k$.

 6° $\gamma(E) = \sum_{i=1}^{p} \gamma(E_i)$ for every $E \in \mathcal{D}_k$ such that $E = \bigcup_{i=1}^{p} E_i$ where $\{E_1, \ldots, E_p\} \subset \mathcal{D}_{k+1}$.

Lemma 2. Let $\left(\bigcup_{k\in\mathbb{Z}_+} \mathcal{D}_k, \gamma\right)$ be a mass distribution on a non-empty set X. Let $\mathcal{S} = \{\emptyset\} \cup \bigcup_{k\in\mathbb{Z}_+} \mathcal{D}_k$ and let $\gamma(\emptyset) = 0$. Then we have:

(a) S is a semialgebra of subsets of X.

(b) If $E, F \in S$ then either $E \cap F = \emptyset$ or else $E \subset F$ or $F \subset E$.

(c) γ is a countably additive set function on the semialgebra S.

Proof. 1. Let us show that S is a semialgebra of subsets of X. Clearly $\emptyset, X \in S$. Let us show that S is closed under intersections. Let $E, F \in S$. If at least one of the two sets is the empty set then their intersection is the empty set which is a member of S. Suppose neither of the two sets E and F is the empty set. Then $E, F \in \bigcup_{k \in \mathbb{Z}_+} \mathcal{D}_k$ so that $E \in \mathcal{D}_m$ and $F \in \mathcal{D}_n$ for some $m, n \in \mathbb{Z}_+$. We may assume without loss of generality that $m \leq n$. If m = n then $E, F \in \mathcal{D}_m$ so that either E = F so that $E \cap F = E \in S$ or $E \cap F = \emptyset \in S$. Now consider the case m < n. In this case $F \in \mathcal{D}_n$ is contained in a member of \mathcal{D}_m . If our $E \in \mathcal{D}_m$ is the member of \mathcal{D}_m containing F then $E \cap F = F \in S$. If E does not contain F then F is contained in another member of \mathcal{D}_m which is disjoint from E so that $E \cap F = \emptyset \in S$. This shows proves that S is closed under intersections. We have shown also that if $E, F \in S$ then either $E \cap F = \emptyset$ or else $E \subset F$ or $F \subset E$.

Let us show that for every $E \in S$ the complement E^c is a finite disjoint union of members of S. Let $E \in S$. If $E = \emptyset$ then $E^c = X \in S$ so that E^c is trivially a finite disjoint union of members of S. If $E \neq \emptyset$ then $E \in \bigcup_{k \in \mathbb{Z}_+} \mathcal{D}_k$ so that $E \in \mathcal{D}_k$ for some $k \in \mathbb{Z}_+$. Then since \mathcal{D}_k is a finite disjoint collection of sets the union of all of which is equal to X, E^c is equal to the union of all the members of \mathcal{D}_k other than E. Then E^c is a finite disjoint union of members of S. Thus we have verified (a) and (b).

2. Let us show that γ is countably additive on S, that is, if $(E_n : n \in \mathbb{N})$ is a disjoint sequence in S such that $\bigcup_{n \in \mathbb{N}} E_n \in S$ then $\sum_{n \in \mathbb{N}} \gamma(E_n) = \gamma(\bigcup_{n \in \mathbb{N}} E_n)$. Since $\gamma(\emptyset) = 0$, it suffices to consider the case $(E_n : n \in \mathbb{N}) \subset \bigcup_{k \in \mathbb{Z}_+} \mathcal{D}_k$. Now $\gamma(X) \in (0, \infty)$. Let $J = [0, \gamma(X))$, an interval in \mathbb{R} with

length $\ell(J) = \gamma(X)$. Let \mathcal{J} be the collection of all left-closed and right-open subintervals of J. We construct below that a mapping φ of $\bigcup_{k \in \mathbb{Z}_+} \mathcal{D}_k$ into \mathcal{J} satisfying the following conditions:

- 1° φ is one-to-one,
- 2° if $E_1, E_2 \in \bigcup_{k \in \mathbb{Z}_+} \mathcal{D}_k$ and $E_1 \supset E_2$ then $\varphi(E_1) \supset \varphi(E_2)$,
- 3° if $E_1, E_2 \in \bigcup_{k \in \mathbb{Z}_+}^{N \subset \omega_+} \mathcal{D}_k$ and $E_1 \cap E_2 = \emptyset$ then $\varphi(E_1) \cap \varphi(E_2) = \emptyset$,
- 4° $\ell(\varphi(E)) = \gamma(E) \text{ for } E \in \bigcup_{k \in \mathbb{Z}_+} \mathcal{D}_k.$

Consider $\mathcal{D}_1 = \{E_{1,1}, \ldots, E_{1,p_0}\}$, a finite disjoint collection of non-empty subsets of X such that $\bigcup_{j=1}^{p_0} E_{1,j} = X$ and $\sum_{j=1}^{p_0} \gamma(E_{1,j}) = \gamma(X)$. Decompose J into p_0 disjoint left-closed and right-open subintervals of J, $\{J_{1,1}, \ldots, J_{1,p_0}\}$ with $\ell(J_{1,j}) = \gamma(E_{1,j})$ for $j = 1, \ldots, p_0$ so that

$$\sum_{j=1}^{p_0} \ell(J_{1,j}) = \sum_{j=1}^{p_0} \gamma(E_{1,j}) = \gamma(X) = \ell(J).$$

We define a mapping φ of \mathcal{D}_1 into \mathcal{J}

$$\varphi(E_{1,j}) = J_{1,j}$$
 for $j = 1, \dots, p_0$.

Next consider \mathcal{D}_2 , a refinement of \mathcal{D}_1 . Thus each $E_{1,i}$ in \mathcal{D}_1 is decomposed into a subcollection $\{E_{1,i,1}, \ldots, E_{1,i,p_{1,i}}\}$ of \mathcal{D}_2 . By the definition of γ we have $\sum_{j=1}^{p_{1,i}} \gamma(E_{1,i,j}) = \gamma(E_{1,i})$. Decompose $J_{1,i} = \varphi(E_{1,i})$ into $p_{1,i}$ disjoint leftclosed and right-open intervals $\{J_{1,i,1}, \ldots, J_{1,i,p_{1,i}}\}$ with $\ell(J_{1,i,j}) = \gamma(E_{1,i,j})$ for $j = 1, \ldots, p_{1,i}$. Then we have

$$\sum_{j=1}^{p_{1,i}} \ell(J_{1,i,j}) = \sum_{j=1}^{p_{1,i}} \gamma(E_{1,i,j}) = \gamma(E_{1,i}) = \ell(J_{1,i}).$$

We define we extend the definition of φ to \mathcal{D}_2 by setting

$$\varphi(E_{1,i,j}) = J_{1,i,j}$$
 for $j = 1, \dots, p_{1,i}$

We extend the definition of φ to \mathcal{D}_3 in the same manner and so on for \mathcal{D}_k for $k \in \mathbb{Z}_+$. The mapping φ thus defined on $\bigcup_{k \in \mathbb{Z}_+} \mathcal{D}_k$ satisfies conditions 1° to 4°.

Let us show the countable additivity of the set function γ on the semialgebra \mathcal{S} . Let $(E_n : n \in \mathbb{N})$ be a disjoint sequence in $\bigcup_{k \in \mathbb{Z}_+} \mathcal{D}_k$ such that $\bigcup_{n \in \mathbb{N}} E_n \in \bigcup_{k \in \mathbb{Z}_+} \mathcal{D}_k$. Then $(\varphi(E_n) : n \in \mathbb{N})$ is a disjoint sequence in \mathcal{J} and $\varphi(\bigcup_{n\in\mathbb{N}} E_n) \in \mathcal{J}$. Let $(\mathbb{R}, \mathcal{M}_L, \mu_L)$ be the Lebesgue measure space on \mathbb{R} . By the fact that $\mathcal{J} \subset \mathcal{M}_L$ and the fact that $\mu_L(J) = \ell(J)$ for $J \in \mathcal{J}$, we have

$$\gamma\Big(\bigcup_{n\in\mathbb{N}}E_n\Big) = \ell\Big(\varphi\Big(\bigcup_{n\in\mathbb{N}}E_n\Big)\Big) = \mu_L\Big(\varphi\Big(\bigcup_{n\in\mathbb{N}}E_n\Big)\Big)$$
$$= \mu_L\Big(\bigcup_{n\in\mathbb{N}}\varphi(E_n)\Big) = \sum_{n\in\mathbb{N}}\mu_L\big(\varphi(E_n)\big)$$
$$= \sum_{n\in\mathbb{N}}\ell\big(\varphi(E_n)\big) = \sum_{n\in\mathbb{N}}\gamma(E_n).$$

This proves the countable additivity of γ on the semialgebra \mathcal{S} .

Theorem 3. Let $\left(\bigcup_{k\in\mathbb{Z}_+} \mathcal{D}_k, \gamma\right)$ be a mass distribution on a non-empty set X. Let $S = \{\emptyset\} \cup \bigcup_{k\in\mathbb{Z}_+} \mathcal{D}_k$ and let $\gamma(\emptyset) = 0$. Then there exists a measure space $(X, \sigma(S), \mu)$ such that $\mu = \gamma$ on S.

Proof. By Lemma 2, γ is a nonnegative real-valued countably additive set function on the semialgebra \mathcal{S} of subsets of X with $\gamma(\emptyset) = 0$. Thus γ has a unique extension to a measure μ on $\sigma(\mathcal{S})$. (See Theorem 21.10, [4] for instance.)

As an example of constructing a measure on an arbitrary set by mass distributions let us consider the space of infinite sequences of finitely many objects. Let $A = \{a_1, \ldots, a_m\}$. Let X be the collection of all infinite sequences of elements of A given by

$$(a_{n_j}: n \in \mathbb{N})$$
 where $n_j = 1, \dots, m$ for $n \in \mathbb{N}$. (1)

For $k \in \mathbb{N}$ consider the k-term sequences of elements of A given by

$$(a_{n_1}, \dots, a_{n_k})$$
 where $n_j = 1, \dots, m$ for $n = 1, \dots, k$. (2)

There are m^k such sequences. Let $E[a_{n_1}, \ldots, a_{n_k}]$ be the collection of all elements of X whose first k entries are $(a_{n_1}, \ldots, a_{n_k})$, that is,

$$E[a_{n_1}, \dots, a_{n_k}] = \{(s_n : n \in \mathbb{N}) \in X : (s_1, \dots, s_k) = (a_{n_1}, \dots, a_{n_k})\}.$$
 (3)

For $k \in \mathbb{N}$ let

$$\mathcal{D}_{k} = \left\{ E \left[a_{n_{1}}, \dots, a_{n_{k}} \right]; n_{j} = 1, \dots, m \text{ for } n = 1, \dots, k \right\}$$
(4)

and let

$$\mathcal{D}_0 = \{X\}.\tag{5}$$

Then for each $k \in \mathbb{Z}_+$, \mathcal{D}_k is a collection of m^k disjoint non-empty subset of X. Moreover every member $E[a_{n_1}, \ldots, a_{n_k}]$ of \mathcal{D}_k is the union of m members of \mathcal{D}_{k+1} , that is,

$$E[a_{n_1},\ldots,a_{n_k}] = E[a_{n_1},\ldots,a_{n_k},a_1] \cup \cdots \cup E[a_{n_1},\ldots,a_{n_k},a_m].$$
(6)

Thus our $(\mathcal{D}_k : k \in \mathbb{Z}_+)$ satisfies conditions 1°, 2° and 3° of Definition 1.

Let us define a set function γ on the semialgebra $\mathcal{S} = \{\emptyset\} \cup \bigcup_{k \in \mathbb{Z}_+} \mathcal{D}_k$ as follows. Let p_1, \ldots, p_m be arbitrary positive numbers satisfying the condition $\sum_{i=1}^m p_i = 1$. Let $\gamma(\emptyset) = 0$, $\gamma(X) = 1$ and for $E[a_{n_1}, \ldots, a_{n_k}] \in \mathcal{D}_k$ let

$$\gamma(E[a_{n_1},\ldots,a_{n_k}]) = p_{n_1}\cdots p_{n_k}.$$

Then for a decomposition of $E[a_{n_1}, \ldots, a_{n_k}]$ into *m* members of \mathcal{D}_{k+1} as given by (6) we have

$$\gamma(E[a_{n_1},\ldots,a_{n_k}]) = p_{n_1}\cdots p_{n_k}\cdot \sum_{i=1}^m p_i = \sum_{i=1}^m \gamma(E[a_{n_1},\ldots,a_{n_k},a_i]).$$

This shows that γ satisfies conditions 4°, 5° and 6° of Definition 1. Thus by Theorem 3 the set function γ can be extended uniquely to be a measure μ on the σ -algebra $\sigma(S)$ generated by the semialgebra $S = \{\emptyset\} \cup \bigcup_{k \in \mathbb{Z}_+} \mathcal{D}_k$ with $\mu(X) = 1$.

Acknowledgment. The author wishes to thank the referee for the constructive critique of the first draft.

References

- A. S. Besicovitch, On existence of subsets of finite measures of sets of infinite measure, Indagationes Mathematicae 14 (1952), 330–344.
- [2] K. Falconer, *The Geometry of Fractal Sets*, Cambridge University Press, Cambridge, (1985).
- [3] K. Falconer, Fractal Geometry, John Wiley and Sons, New York, (1990).
- [4] J. Yeh, Real Analysis, 2nd ed., World Scientific, New Jersey, (2006).

J. Yeh

508