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ANOTHER LOOK AT THE PRODUCT
MEASURE PROBLEM

Abstract

Here we give a positive answer to the so-called Product Measure
Problem under the relatively simple hypothesis that the measure in one
of the factors is inner regular and its support with the induced Hausdorff
topology is locally metrizable. No special hypothesis on the other topo-
logical measure space is required. The proof is inspired by the rather
imprecise conjecture that the open sets of a topological space must sat-
isfy some restrictions in order to support any strictly positive σ-finite
measure.

1 Introduction of the Problem.

There is such an extensive literature dealing with topologies and measures,
that we will be only able to touch on those items directly related to the Product
Measure Problem considered here. First we establish sufficient notation to
introduce the problem.

For the time being we let (X,TX ,MX , µX) and (Y,TY ,MY , µY ) denote
nontrivial complete σ-finite topological measure spaces. In particular this
means there are inclusions of the corresponding topologies within the σ-algebras,
i. e. TX ⊂ MX and TY ⊂ MY . We shall say these measures are topologi-
cal. The topology on X will be assumed to be Hausdorff. Let us denote by
σ (D) the σ−algebra generated by a class D of subsets of a given set, then
BX =σ (TX) and BY =σ (TY ) are the Borel σ−algebras generated by these
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topologies. Sometimes the Borel sets refer only to the elements of the σ−ring
generated by the class of all compact subsets. In classical spaces such as Rn,
this and other related definitions coalesce.

In the product space X × Y , we always have

BX ⊗σ BY = σ (BX × BY ) ⊂ σ (TX ⊗τ TY ) = BX ×Y .

It is known (see König [10, page 132]) that for every set Z whose car-
dinal is strictly larger than the cardinal c of the continuum and any two
σ−algebras A1 and A2 in Z, the diagonal ∆Z×Z does not belong to the
product of σ−algebras A1 ⊗σ A2. Thus, if X has a strictly larger cardinal
than c, we have ∆X ×X /∈ BX ⊗σ BX . On the other hand, since (X,TX) is
a Hausdorff space, the diagonal ∆X ×X is closed in the product topological
space (X ×X,TX ⊗τ TX). Thus ∆X ×X ∈ BX ×X . For instance, we may
choose the Stone-Čech compactification X = βN of the natural numbers N
whose cardinal is 2c. This example is particularly remarkable because βN is
separable.

To summarise, BX ⊗σ BY ⊂ BX ×Y and the inclusion can be strict even
for separable compact Hausdorff spaces. However, for different applications,
the main point is to know whether the completion of the product measure is a
topological one. In what follows we examine this problem in the extreme case
in which MX and MY are simply the completions of BX and BY with respect
to µX and µY , respectively. Obviously, an answer to the problem depends on
the definition of product measure and in this paper we will restrict ourselves
to the standard product derived by Carathéodory’s method from an outer
measure generated by the set function µX ⊗ µY (A×B) = µX (A)µY (B),
where A ∈MX , B ∈MY , µX (A) <∞ and µY (B) <∞.

We assume that µX and µY are σ−finite in order to have the product
µX ⊗ µY uniquely defined on the σ−algebra A, the completion of BX ⊗σ BY
or equivalently, on the completion of MX ⊗σ MY .

It might be expected that (X × Y,TX ×Y ,A, µX ⊗ µY ) is again a topolo-
gical measure space and if such were the case, that A would coincide with
MX ×Y . Stated in this way, the conjecture was known as the Product Mea-
sure Problem and it remained open for a long time until Fremlin [3] presented
a counterexample in 1976. Another, albeit simpler counterexample was pre-
sented in 1999 by Gryllakis and Grekas [6]. In an important paper [4], pub-
lished in 1995, Fremlin and Grekas presented a very general sufficient condition
that guarantees a positive answer to the Product Measure Problem:

If X is quasi-dyadic, µX completion regular and µY τ−additive,
then (X × Y,TX ×Y , A, µX ⊗ µY ) is a topological measure space.
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They also treated the problem of whether the product of completion regular
measures is completion regular and considered product measures defined by
integral formulas as well. The terminology and the scope of these results are
too extensive to be described here and the proofs of the main theorems are
rather complicated and difficult. An evolution of the ideas of the subject may
be found in Grekas’ 2002 work, [5].

The main objective in this paper is to present a simple and quite general
sufficient condition under which the Product Measure Problem has a positive
answer. In such a case, BX×Y−measurable functions are µX⊗µY−measurable
almost everywhere and the extended version of the Fubini Theorem applies. To
do this, we need to present certain beautiful links between locally metrizable
Hausdorff topologies and strictly positive measures. We refer the reader to
Bourbaki [1] and [2], Halmos [7] and Hewitt & Ross [8], for the foundation
of the theory we are concerned with. In the main however, we will recall the
concepts and results employed in the current paper.

2 Auxiliary Tools.

Given a nontrivial Hausdorff, σ-finite, complete topological measure space,
to simplify notation we will eliminate subindexes and abbreviate expressions
whenever no confusion should arise. A set E ∈ M is µ−inner regular (or
simply inner regular) if

µ (E) = sup {µ (K) : K ⊂ E, K ∈ K}

where K stands for the class of all compact subsets of X, and outer regular if

µ (E) = inf {µ (W ) : E ⊂W, W ∈ T} .

E is called regular whenever it is simultaneously inner and outer regular. The
measure itself is called inner, outer or regular whenever all elements of M
have the corresponding properties of regularity. A topological measure that is
bounded on the compact sets is called a Borel measure.

Lemma 1. Suppose F is a locally metrizable Hausdorff space and µ is σ-finite
and inner regular in F . Then there exists a sequence of compact, metrizable
and µ−finite sets (Kn) in F , such that µ (F\ ∪n Kn) = 0.

Proof. Since µ is σ−finite, there exists a sequence (En) of disjoint measur-
able sets, each of finite µ−measure, such that F = ∪nEn. Using that µ is
inner regular, we find sequences

(
K∗m,n

)
⊂ K, such that for every n = 1, 2, ...

K∗m,n ⊂ En and µ (En) = µ
(
∪mK∗m,n

)
.
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As local metrizability is hereditary, the sets K∗m,n with the induced topology
are locally metrizable and Hausdorff. Since they also are compact, they are
metrizable. Rewrite this double sequence as the sequence (Kn) we are looking
for.

Remark 2. In Lemma 1, µ is neither necessarily a Borel measure nor a
regular one. For instance, let X = N ∪ {∞} be the one point Alexandrov
compactification of the natural numbers with the discrete topology and µ the
counting measure in X. In this example the compact set X has infinite measure
and {∞} is not an outer regular Borel set. This example is presented for other
purposes in the text book of the author [9, page 184].

The equality BX ⊗σ BY = BX×Y is well known whenever X and Y satisfy
the second axiom of countability, but a weaker form also holds:

Lemma 3. If one of the topological spaces X or Y satisfies the second axiom
of countability, then BX ⊗σ BY = BX×Y .

Proof. Since BX×Y = σ (TX×Y ), it is sufficient to prove that TX×Y ⊂
BX ⊗σ BY . Suppose that U = {Cm : m ∈ N} is a topological basis of TX .
Fix any open set ∪i∈I (Ai ×Bi) in TX×Y = TX ⊗τ TY , where Ai ∈ TX
and Bi ∈ TY . Express Ai as ∪(n,i)∈Ni

C(n,i), Ni ⊂ N, C(n,i) ∈ U. Define
Jm =

{
i ∈ I : ∃ (n, i) , C(n,i) = Cm

}
, m ∈ N and Dm = ∪i∈Jm

Bi. Then

∪i∈I (Ai ×Bi) = ∪i∈I
(
∪(n,i)∈Ni

C(n,i) ×Bi
)

= ∪i∈I ∪(n,i)∈Ni

(
C(n,i) ×Bi

)
= ∪m (Cm ×Dm) ∈ σ (BX × BX) = BX ⊗σ BX .

To prove the existence of a maximal µ−negligible open set W or equiva-
lently, the existence of a smaller closed set F that supports the measure, it is
sufficient to assume that all open sets are µ-inner regular. To see this, simply
define F= WC and W to be the union of all µ−negligible open sets (Ui)i∈I .
If K ⊂W and K ∈ K, there exists a finite subfamily (Ui)i∈J , J ⊂ I, that still
covers the compact set K. Then µ (K) ≤

∑
i∈J µ (Ui) = 0. Since W is µ-inner

regular and K was arbitrarily chosen, it follows that µ (W ) = 0.
We are now in position to announce and prove the contributions of this

paper.
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3 Results.

A topological measure in X is strictly positive whenever every non-empty open
subset of X has a strictly positive measure. A topological space is said to
satisfy the countable chain condition (ccc) if every pairwise disjoint collection
of non-empty open subsets is countable. It is known that a topological σ−finite
and strictly positive measure space X is ccc. In case X is also metrizable, it
is separable. However, the first part of next theorem shows that more is true.
Moreover, the second part is the main contribution of this paper.

Theorem 4. Suppose that µX is a σ-finite and inner regular topological Haus-
dorff measure such that its support F in X with the induced topology is lo-
cally metrizable. Let (Y,TY ,MY , µY ) be any other topological σ-finite measure
space. Then F is separable and the µX⊗µY−completion of BX⊗σBY contains
BX×Y .

Proof. Since the compact subsets of F with the induced Hausdorff topology
are just the compact subsets of X that are contained in F , the restriction
of the measure µX to F is still inner regular. By hypothesis, F is locally
metrizable so that F , with the induced topology and measure, satisfies the
hypothesis of Lemma 1

Set W = FC . Then W is the maximal µX−negligible open set of X. Let
V be an open set in F . Then V = U ∩ F , for some open set U in X. From
U = V ∪ (U 8F ), we obtain µX (U) = µX (V ). If µX (V ) = 0, then U ⊂W so
that V = φ. It follows that the restriction of µX to F is strictly positive.

The compact and metrizable sets (Kn) ⊂ F given by Lemma 1 are sepa-
rable. For each n, let An be a countable dense set in Kn. Thus, A = ∪nAn
is a countable set that is dense in ∪nKn. We claim A is also dense in F . To
see this, let x be an element of F and V an open set that contains x. Then
µ (V ) > 0 and, consequently, the relatively open set V ∩ (∪nKn) in (∪nKn) is
not empty. Thus, V ∩A 6= φ which shows F is separable.

For the second statement it is sufficient to prove the µX ⊗µY−completion
of BX ⊗σ BY contains TX ×Y . Once again by Lemma 1, let (Kn) be a se-
quence of compact sets in F such that µX (F\ ∪n Kn) = 0. Since these Kn

are metrizable, each of them has a countable topological basis {Vn,k : k ∈ N}
of relatively open sets induced by the topology of F or equivalently by the
topology of X. Set V = ∪n,kVn,k and P = F\V. As all sets under considera-
tion are measurable, µX (P ) = 0 and V with the induced topology satisfies the
second axiom of countability. Now express X as the disjoint union V ∪P ∪W.
In this way, any open set U in TX ×Y can be expressed as a disjoint union
A∪B∪C of relatively open sets A ∈ TV ×Y , B ∈ TP ×Y and an open set C ∈
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TW×Y . By Lemma 3

A ∈ TV ×Y = TV ⊗τ TY ⊂ BV ⊗σ BY .

On the other hand P×Y ∈ BP⊗σBY , W×Y ∈ BX⊗σBY , µX⊗µY (P × Y ) = 0
and µX ⊗ µY (W × Y ) = 0. It follows that the µX ⊗ µY− completion of
BX ⊗σ BY contains U , and moreover that, µX ⊗ µY (U) = µX ⊗ µY (A) .

Remark 5. Obviously, the statement of Theorem 4 could be simplified if we
use the weaker hypothesis that X itself is locally metrizable, but we should loose
a great deal of generality under that circumstance. For instance, consider the
trivial case in which µX is the Dirac measure concentrated at a point x of any
Hausdorff topological space X. Since in this case F = {x}, the hypothesis of
the theorem holds.

Remark 6. The main point in Theorem 4 is the simplicity of its statement
and its relatively easy proof while it keeps so many possibilities of applications.
For instance, suppose X and Y are locally compact Hausdorff spaces, µX and
µY σ−finite Radon measures in the sense of Bourbaki and the support of one
of these measures is locally metrizable. Then the completeness of the Radon
product measure µX ×Y defined on BX ×Y and the completeness of the product
measure µX ⊗µY defined on BX ⊗σ BY , are equal. In fact, these measures are
regular, the restriction µX ×Y�BX ⊗σ BY , coincides with µX ⊗µY and from
Theorem 4, the µX ⊗ µY−completion of BX ⊗σ BY contains BX ×Y .

In spite its relatively easy proof, Theorem 4 is not trivial in the sense that
F could be non-metrizable. This is exhibited by the following example.

Example 7. Let X = [0, 1] be the closed unit interval. Partition X as Q∪ I,
where Q stands for the rational numbers and I for the irrational numbers in
X, respectively. Consider the class C of subsets of X defined by the set X,
the entire collection of subsets of Q, and for every x ∈ I and every natural
number n, the subsets

A (x, n) = {x} ∪ {q ∈ Q : |x− q| < 1/n} .

Observe this class is closed under finite intersections. Thus C is a base of
a topology T in X. It is easy to check that T is a Hausdorff topology.

Now we prove that every x ∈ X has a metrizable neighborhood. This fact
is trivial if x ∈ Q. For the other case, define a distance d in the neighborhood
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A (x, n) of x ∈ I, where n is chosen such that x+
−1/n ∈ X, by the following

rule: First divide A (x, n) \ {x} as the disjoint union of rational intervals

A−m = (x− 1/m, x− 1/ (m+ 1)) ∩Q, and

A+
m = (x+ 1/ (m+ 1) , x+ 1/m) ∩Q

for m = n, n + 1, n + 2, .... Then for every q ∈ A−m ∪ A+
m, set d (q, x) =

d (x, q) = 1/ (m+ 1). If p, q ∈ A−m or p, q ∈ A+
m, with p 6= q, set d (q, p) =

d (p, q) = 1/m3. If p ∈ A+
r , q ∈ A+

s , or p ∈ A−r , q ∈ A−s , with r 6= s,
set d (q, p) = d (p, q) = |1/ (r + 1)− 1/ (s+ 1)|. If p ∈ A−r , q ∈ A+

s , set
d (q, p) = d (p, q) = 1/ (r + 1) + 1/ (s+ 1). Finally, for every a ∈ A (x, n), set
d (a, a) = 0. It is a straightforward task to prove d is a distance that defines
the same topology of the restriction of T to A (x, n) .

We claim T is not metrizable. Suppose we have a distance d that defines the
topology T. Let x ∈ I. There exists r > 0, such that the open ball B centered
at x with radius r, does not contain any irrational number with the exception
of x. Let n be such that A (x, n) is contained in the open ball centered at x
with radius r/2. Let p > x, p ∈ A (x, n). Choose an irrational number y such
that x < y < p. Then there exists a rational number q ∈ A (x, n), such that
d (y, q) < r/2. We find the following contradiction. On one hand d (x, y) ≥ r,
but on the other one

d (x, y) ≤ d (x, q) + d (q, y) < r/2 + r/2 = r.

Finally, define µ as the simplest topological measure that has mass 1 at each
singleton {x}, x ∈ Q.

We have constructed an example in which the hypothesis of Theorem 4 are
fulfilled, but F = X is not metrizable.
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