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ASSOCIATED TO THE PONCELET

BILLIARD

Abstract

Consider a fixed differentiable curve K (which is the boundary of
a convex domain) and a family indexed by λ ∈ [0, 1] of differentiable
curves L = Lλ such that they are the boundary of convex (connected)
domains Aλ. Suppose that for λ1 < λ2 we have Aλ1 ⊂ Aλ2 . Then, the

number of n-Poncelet pairs is given by e(n)
2

, where e(n) is the number of
natural numbers m smaller than n and which satisfies mcd(m,n) = 1.
The curve K does not have to be part of the family.

In order to show this result we consider an associated billiard trans-
formation and a twist map which preserves area. We use Aubry-Mather
theory and the rotation number of invariant curves to obtain our main
result. In the last section we estimate the derivative of the rotation
number of a general twist map using some properties of the continued
fraction expansion.

1 Introduction – The Poncelet Billiard.

All results here are for a fixed differentiable C∞ curve K (which is the bound-
ary of a convex domain) and a family indexed by λ ∈ [0, 1] of differentiable C∞
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curves L = Lλ such that they are the boundary of strictly convex domains Aλ
(a family of connected sets). Suppose that for λ1 < λ2 we have Aλ1 ⊂ Aλ2 .

We will consider here the real (not complex) billiard. We point out that
the hypothesis of differentiability C∞ (plus strict convexity) of the curve is
enough to define the associated twist map in class C∞ (a key ingredient in the
proofs) [16] (sections 9.2 and 9.3), [7] (section 3.4), [3].

Some explicit results (not for the Poncelet counting problem) for billiards,
in the case the curves are ellipses, were obtained in [5]. Our reasoning applies
for a more general family of curves. We refer the reader to [6] and [4] for some
applications of the Poncelet billiard problem.

In order to simplify the exposition we will refer to circles instead of curves.
Some computations are explicit for circles but our reasoning applies to the
setting we just described above. The estimates of Proposition 3 below are not
contained in previous results which analyze the Poncelet problem.

The main obstructions for a general theory (not just the circle or ellipse)
for the Poncelet’s problem is to be well defined by the Poncelet billiard map.
There are several examples of where it is defined. Once it is defined, all
main results described here are good (i.e. there exists an invariant natural
probability, or at least the map decreases the natural probability). In our
general results this should be implicit.

Let K be a circle as in figure 1, and also let L be another circle interior to K
with A and A′ as variable points in K. Consider the Poncelet transformation
associated with such a pair of circles K and L and the corresponding image
of the point A being A′, and then the image of A′ is A′′ and so on (see figure
1). A nice description of the problem appears in [17] and [18].

T , C, and o are shown in figure 2. Here R is the radius of the circle K and
C is the center of K. We will use the variables θ and ϕ to describe the point
A and its future hit as in figure 1 and 2. The point A′ has coordinates θ′ and
ϕ′. The variable points B and B′ on the x-axis are also described in figure
2. Denote θ′ = G1(θ, ϕ) and ϕ′ = G2(θ, ϕ). The transformation G = (G1, G2)
can be consider also as a transformation of (A, r) → (A′, r′), where r and r′

are tangent lines to the circles as in figure 1. Note that once A is fixed, if
we take a variable line r, this means we are considering different circles L.
The circle K is considered fixed in our setting. The reader can find several
references about the Poncelet Billiard in [1], [5], [6], [4], [9], [11], [13], [14],
[15], [18].

We say K,L is an n-Poncelet pair if there exists an A such that the suc-
cessive iteration of the procedure described above, after n steps, returns to A.
The existence of an n-periodic point (A, r) for G (for a certain pair of circles
K,L) is equivalent to the existence of a n-Poncelet pair. We would like to
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count the number of possible Poncelet pairs of order n.
It is easy to obtain the analytic expression

G(θ, ϕ) = (2ϕ− θ + π, 3ϕ− 2θ −B(θ′) + π),

where B(θ′) = 2 arctan( C sin(θ′)
R+C cos(θ′) ).

Figure 1: Poncelet’s Billiard

We know that r is a periodic function of ϕ of period π. We change coordi-
nates to get x = θ

2π and y = ϕ
π . Therefore, denoting by f the transformation

G in the new coordinates

(x′, y′) = f(x, y) = ( y − x + 1/2, 3 y − 4x+ Z(y − x+ 1/2 ) + 1 ),

where Z(s) = −B(2πs). The function Z is periodic of period 1. Therefore
f = (f1, f2) is a twist map on the torus (see [2],[5],[9] for references), because

∂f1(x, y)
∂y

=
∂x′

∂y
= 1 > 0,
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and, also preserves area

JacDf = Det
(

−1 1
−4− Z ′(y − x+ 1/2) 3 + Z ′(y − x+ 1/2)

)
= 1.

One can write y = x′+x−1/2, and therefore the generating potential h(x, x′)
for such f is

h(x, x′) = −xx′ − x2 − x
2

+
3 (x′)2 − x′

2
+H(x′),

where H is such that H ′(x′) = Z(x′). The twist map is not exact. After this
brief introduction we will present in the next section a sequence of results that
will be used in the last section to show our main theorem:

Theorem 1. For a fixed circle K and for a family of concentric circles L,
the number of n-Poncelet pairs is e(n)

2 , where e(n) is the number of natural
numbers m smaller than n and which satisfies mcd(m,n) = 1.

The general problem for conics is the following: given a conic K and a
pencil of conics L, obtain the number of conics L ∈ L such that K,L is an
n-Poncelet pair. This problem was solved in [14] (see also [2] for an enriched
version) for the complex plane for a generic pencil but under the condition
that K ∈ L. In our analysis we have that K is not in L.

Consider a family gt : R → R, where a ≤ t ≤ b, of monotonous increasing
homeomorphisms, such that

gt(x+ 1) = gt(x) + 1, x ∈ R, a ≤ t ≤ b.

From the identification S1 = R
Z , from the family gt, we obtain another one

ft : S1 → S1, where a ≤ t ≤ b, of homeomorphisms of the circle which
preserve orientation.

We know that the following function is well-defined:

r(t) = lim
k→∞

gkt (x)− x
k

, a ≤ t ≤ b,

and the value r(t) indeed is independent of x. We are interested in properties
of the function r(t) and of the rotation number function ρ(t) = r(t) (mod
1) ∈ R

Z .
In the last section we show the following two propositions:

Proposition 2. The function r : [a, b]→ R is continuous and monotonically
increasing. Moreover, if a ≤ t1 < t2 ≤ b and r(t1) /∈ Q or r(t2) /∈ Q, then
r(t1) < r(t2).
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Proposition 3. There exists a set of full measure X ⊂ R (that is, R−X has
Lebesgue measure zero) such that if τ ∈ (a, b) and r(τ) ∈ X, then

lim sup
t2→τ−, t1→τ+

r(t2)− r(t1)
(t2 − t1)2

≥ m2

e2F (1 + e2F )2
.

Figure 2: Coordinates

2 Results for Twist Maps.

Consider f : S1 → S1, where S1 = R
Z , a circle homeomorphism which preserves

orientation. Denote by g : R→ R a lifting of f . Denote by r(g) the limit

lim
k→∞

gk(x)− x
k

= r(g),
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which is independent of x ∈ R (see [12] chapter 11). The rotation number of
f , denoted by ρ(f), is the number r(g) (mod 1) ∈ S1. General references for
the rotation number and Twist Maps are [16], [8], [12].

Lemma 4. For f and its lifting g:

a) ρ(f) is an invariant of conjugation (by a homeomorphism which pre-
serves orientation) for f ,

b) if ρ(f) = p
q (mod 1), where q > 0 and p, q are relatively prime, then

there exists an x0 such that gq(x0) = x0 + p (see [9]), and the orbit of
x0 (mod 1) is periodic of period exactly q.

The following Lemma is also well known:

Lemma 5. Consider g, h : R → R continuous and strictly increasing such
that g(x+ 1) = g(x) + 1 and h(x+ 1) = h(x) + 1, ∀x ∈ R.

Then,

a) If h(x) ≤ g(x), ∀x ∈ R, then r(h) ≤ r(g).

b) g → r(g) is continuous in the C0 topology.

c) If h(x) < g(x), ∀x ∈ R, and if r(h) or r(g) is irrational, then r(h) < r(g).

Now, consider the cylinder X = S1×R = R
Z ×R and the natural projection

π : R2 → X.

Definition 6. The vector field u over the cylinder X is called the ascendent
vector field if u is such that u(a, b) equals the tangent vector to the curve
t→ (a, t + b), in the point t = 0.

We denote by π1 : X → S1 and π2 : X → R the natural projections. We
will consider here diffeomorphisms of class C1, f : X → X, such that

a) f preserves orientation and the ends of X,

b) f preserves area of a Riemannian metric, and

c) for each point x ∈ X the vectors u and dfx(u) are independent and
coherent with the natural orientation.

Consider F : R2 → R2, F (x, y) = (F1(x, y), F2(x, y)), a lifting of such f . Then
F satisfies the conditions

1. F1(x+ 1, y) = F1(x, y) + 1,
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2. F2(x+ 1, y) = F2(x, y),

3. for each x, we have limy→∞ F2(x, y) =∞,

4. F preserves area of a Riemannian metric which is invariant by translation
(x, y)→ (x+ 1, y),

5. ∂F1
∂y (x, y) > 0 (the twist condition).

We point out that by condition 5 we have that given (x0, y0) and (x0, y1)
in R2, such that, y1 > y0, then F1(x0, y1) > F1(x0, y0).

Definition 7. Consider φ : R → R, a continuous function of period 1, and
the curve Γ ⊂ X with parametrization x → π(x, φ(x)), 0 ≤ x ≤ 1. We say Γ
is an invariant rotational circle for f if f(Γ) = Γ.

We point out that Γ is an oriented circle and π−1(Γ) is the graph of φ.
Moreover f : Γ → Γ preserves the orientation of Γ. We denote by ρ(Γ) the
rotation number of ρ(f |Γ). The transformation F also preserves the graph of
φ and its orientation (we refer the reader to section 9.3 in [16]).

The usual definition of invariant rotational circle is more general ([7] chap-
ter 3, definition 11) but a theorem due to Birkhoff ([7], 3.1) shows that, under
quite general conditions, this definition coincides with our definition 7. The
rotational invariant curve we are going to consider here (a subset of the torus)
is a set of positions q on the circle K and respective tangent line tangent to
the small circle L (passing through q, p) as shown in figure 3.

Consider a g associated to Γ by g(x) = F1(x, φ(x)),∀x ∈ R. The function
g is continuous, strictly increasing and satisfies

g(x+ 1) = F1(x+ 1, φ(x+ 1)) = F1(x+ 1, φ(x)) = g(x) + 1.

We claim that
ρ(Γ) = r(g) (mod1).

Indeed, by definition π1|Γ : Γ→ S1 is a homeomorphism which preserves ori-
entation. Consider ϕ = (π1|Γ)◦ (f |Γ)◦ (π1|Γ)−1. Then ϕ preserves orientation
and ρ(Γ) = ρ(ϕ).

By the other side

π1 ◦ π(x, 0) = x (mod1),∀x ∈ R.

As

ϕ(π1(π(x, 0))) = ϕ(π1(π(x, φ(x)))) =
π1(f(π(x, φ(x)))) = π1(π(F (x, φ(x)))) = π1 ◦ π(g(x), 0),

then g is a lifting of ϕ. Then, ρ(ϕ) = r(g) (mod 1) and the claim is true.
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Theorem 8. Consider Γ1 and Γ2, two rotational invariant circles associated
respectively to φ1 and φ2. Suppose φ1(x) < φ2(x),∀x ∈ R. Denote

g1(x) = F1(x, φ1(x)), g2(x) = F1(x, φ2(x)), ∀x ∈ R.

Then,
r(g1) < r(g2).

Proof. Following [7] 3.3, from φ1 < φ2 we have that g1(x) < g2(x)∀x ∈ R.
Therefore, r(g1) ≤ r(g2). If r(g1) or r(g2) is irrational, then the claim is true
(Lemma 5).

Suppose that r(g1) = r(g2) = p
q , where q > 0 and p and q are relatively

prime. Consider the translation Tn : R2 → R2 given by Tn(x, y) = (x + n, y)
and the diffeomorphism G = T−p ◦F q : R2 → R2. We will show that G(A), for
a certain region A, is strictly inside the set A and we will get a contradiction
with the fact that G preserves area.

We denote m′ = G(m), m ∈ R2. Note that G preserves the oriented graphs
of φ1 and φ2. By Lemma 4 b) there exists x1, x2 ∈ R such that

gq1(x1) = x1 + p, gq2(x2) = x2 + p.

Without loss of generality suppose x2 > x1.
We denote

M1 = (x1, φ1(x1)),M2 = (x2, φ2(x2)),M3 = (x1, φ2(x1)),M4 = (x2, φ1(x1)).

As

F q(x, φ1(x)) = (gq(x), φ1(gq(x)) = (x+ p, φ1(x+ p)) = (x+ p, φ1(x)),

then M ′1 = G(M1) = G(x1, φ1(x)) = (x1, φ1(x)) = M1. In the same way
M ′2 = M2.

By the twist condition, M ′3 follows M3 in the orientation of the graph of
φ2 (see figure 4). As M2 is fixed, then M ′3 precedes in order to M2. That is,
M ′3 is interior to the arc (which is part of the graph of φ2) connecting M3 and
M2 (in this order as shown in figure 4). In the same way, M ′4 is interior to the
arc (which is part of the graph of φ1) connecting M1 and M4 (in this order).

Furthermore, by the twist condition, the image of the linear interval L1 =
[M1,M3] by G is situated to the right of the line defined by M1 and M3.
By the same reason, the image of the linear interval L2 = [M4,M2] by G is
situated to the left of the line defined by M4 and M2.

Finally, as the graphs of φ1 and φ2 are invariant by G, then it follows from
above that the region A delimited by them (and the lines M1,M3 and M2,M4)
is mapped strictly inside A by the transformation G.
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This is a contradiction to the fact that G preserves area.

Corollary 9. Let φt : R → R, t ∈ [a, b], be a family of continuous periodic
functions of period 1. Suppose that φt(x) is continuous as a function of (t, x)
and that, for each t, the transformation φt defines a rotational invariant circle
Γt, such that they are disjoint two by two. Then there exists a continuous
strictly monotone function r : [a, b]→ R such that

ρ(Γt) = r(t) (mod 1), ∀t ∈ [a, b].

Proof. By hypothesis, for each x ∈ R, the function t → φt(x) is injective.
Therefore, it is either strictly increasing or strictly decreasing. If it is increasing
for some point x, it cannot be decreasing for other points.

Figure 3: Points in the Billiard

Without loss of generality, suppose that t→ φt(x) is strictly increasing for
all x ∈ R. Denote gt(x) = F1(x, φt(x)). Then, by the claim after Definition 7,
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for all t ∈ [a, b],
ρ(Γt) = r(gt) (mod 1).

Therefore, take r(t) = r(gt). Then, r is continuous (see [7], [16]) and strictly
increasing (by Theorem 8).

Consider now the torus Y = S1 × S1 with the natural orientation and let
π1, π2 : Y → S1 be the canonical projections. Denote by v the unitary vector
field which is tangent to the fibers of π1 (compatible with the orientation of
S1). Consider a C1 diffeomorphism f : Y → Y such that

a) f preserves orientation of Y ,

b) f preserves area of a Riemannian metric on Y ,

c) v, df(v) are independent in each point and they are compatible (in this
order) with the orientation of Y (twist condition).

Definition 10. Consider φ : S1 → S1, a continuous function and the oriented
curve Γ ⊂ X, with parametrization x → π(x, φ(x)), x ∈ S1. We say Γ is an
invariant rotational circle for f if f(Γ) = Γ and f |Γ preserves orientation.

We point out that ρ(f |Γ) is well defined and we denote ρ(Γ) = ρ(f |Γ).

Corollary 11. Let φt : S1 → S1, t ∈ [a, b], be a family of continuous func-
tions. Suppose that φt(x) is continuous as a function of (t, x) and that for
each t the transformation φt defines a rotational invariant circle Γt, such that
they are disjoint two by two.

Then there exists a continuous strictly monotone function r : [a, b] → R
such that

ρ(Γt) = r(t) (mod 1), ∀t ∈ [a, b].

Proof. Denote Y0 = Y − Γb; then there exists a diffeomorphism θ : X → Y0

which preserves orientation, compatible with the projections π1 : X → S1,
π1|Y0 : Y0 → S1, and such that it preserves the orientation of the fibers of
these projections.

The transformation f0 = θ−1 ◦ f ◦ θ : X → X is a diffeomorphism of the
cylinder X and which satisfies the properties of f : X → X described just after
Definition 6 (f0 preserves the ends of X because it preserves the orientation
of Y and the orientation of Γb).

For each t ∈ [a, b], we have that θ−1(Γt) is a rotational invariant circle
of f0. In the same way as in Corollary 7, there exists r[a, b) → R, which is
continuous, strictly monotone and such that

ρ(Γt) = r(t) (mod 1), t ∈ [a, b).
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Note that π1|Γt : Γt → S1 is a diffeomorphism which preserves orientation.
By conjugacy,

ρ(Γt) = ρ((π1|Γt) ◦ (f |Γt) ◦ (π1|Γt)−1 ).

Then, by Lemma 5 b), we have that

lim
t→b−

ρ(Γt) = ρ(Γb).

From this follows that
lim
t→b−

r(t) = l

is finite. We define r(b) = l and ρ(Γb) = r(b) (mod 1).

3 The Main Result.

Using the previous notation for the Poncelet billiard, denote by Y the torus

Y = {(A, r) : A ∈ K, r a line byA} = K × S1.

The transformation f : Y → Y associated to the Poncelet Billiard was defined
before in Section 1. f satisfies the hypothesis described in Section 2.

Consider a fixed circle L of center 0 and radius t, where t ∈ [0, R− c]. To
each point A ∈ K = S1, one can associate a tangent r to L passing by A, and
which has the property that L is on the left of r when oriented from A to A′. In
figure 3 we show the set of tangents to L defining the corresponding rotational
invariant circle Γt. For a fixed circle L, we define in such way a transformation
φt : S1 → S1, which depends continuously on t. These φt define a family of
rotational invariant circles Γt, which are, two by two, disjoint.

By Corollary 11, there exists r : [0, R − c] → R, continuous, strictly
monotonous and such that

ρ(Γt) = r(t) (mod 1).

As f |ΓR−c has a fixed point, then ρ(ΓR−c) = 0 (mod 1). As a continuous limit
of the figure 1 when t→ 0, one can see that f |Γ0 has period 2, and therefore
ρ(Γ0) = 1/2 (mod 1). Therefore, r(0) = 1

2 + n, and r(R − c) = m, where
n,m ∈ Z.

We can suppose that r(t) is such that r(0) = 1/2, and r(R − c) = k ∈ Z.
We point out that f |Γt has no fixed points if t 6= (R − c). Then, r(t) is not
in Z if t 6= (R − c) (Lemma 4 b). The conclusion is that k = 0 or k = 1.
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Figure 4: Phase Space

Therefore, r is continuous, strictly increasing with values in [1/2, 1] or strictly
decreasing with values in [0, 1/2].

For each q = 3, 4, 5, . . ., denote e(q) the number of natural numbers n < q,
which are relatively prime with q. Therefore, in any case, for a fixed q, there
are exactly e(q)

2 numbers n in such a way that n
q is attained in the image of r.

From this and Lemma 4 b) comes the following:

Lemma 12. For each natural number q = 1, 2, 3, 4, . . ., there are e(q)
2 rota-

tional invariant circles Γt such that f |Γt has a periodic orbit of period exactly
q.

By Poncelet Theorem [4] and [18], f |Γt has a periodic orbit of period q, if
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and only if, f |Γt is a q-periodic transformation. In this case the corresponding
pair K,L is called a Poncelet pair. From this follows Theorem 1.

4 A Second Order Estimate of the Derivative of Twist
Maps.

The results of this sections are for a more general class of twist maps.
Consider a family gt : R → R, where a ≤ t ≤ b, of monotonous increasing

homeomorphisms, such that

gt(x+ 1) = gt(x) + 1, x ∈ R, a ≤ t ≤ b.

From the identification S1 = R
Z , from the family gt, we obtain another one

ft : S1 → S1, where a ≤ t ≤ b, of homeomorphisms of the circle which
preserve orientation.

We know that the following function is well-defined:

r(t) = lim
k→∞

gkt (x)− x
k

, a ≤ t ≤ b,

and the value r(t) indeed is independent of x. We are interested in properties
of the function r(t) and of the rotation number function ρ(t) = r(t) (mod
1) ∈ R

Z . We assume just the twist condition: there exists ∂gt(x)
∂t and it is

continuous and positive for all x ∈ R, t ∈ [a, b].
As ∂gt(x)

∂t is periodic in x, we get

m = inf
a≤t≤b, x∈R

∂gt(x)
∂t

> 0.

For a given irrational value x consider its development in continuous frac-
tion and we call approximations of x the successive truncations of this infinite
expansion. We denote by defect approximation one which is smaller than x
and by excess approximation one which is larger than x. We refer the reader
to [8] for general properties of continuous fraction expansion.

We denote by F the sum of the inverses of the Fibonacci sequence:

F =
1
1

+
1
1

+
1
2

+
1
3

+
1
5

+
1
8

+ ...

Consider two monotonous increasing homeomorphisms g1, g2 : R → R such
that

g1(x+ 1) = g1(x) + 1 , g2(x+ 1) = g2(x) + 1 , x ∈ R.
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Denote

r1 = lim
k→∞

gk1 (x)− x
k

, r2 = lim
k→∞

gk2 (x)− x
k

.

Suppose g1(x) < g2(x), ∀x ∈ R. As g1(x)− g2(x) is periodic and continuous,
we have that

α = inf
x∈R

(g2(x)− g1(x)) > 0.

Lemma 13. a) r1 ≤ r2,

b) Suppose that r1 is irrational and denote by p
q an excess continued fraction

approximation of r1 (that is, p
q ≥ r1) such that q > 1

α . Then,

r1 <
p

q
≤ r2.

c) Suppose r2 is irrational and denote by p′

q′ an excess continued fraction

approximation of r1 (that is, p′

q′ ≥ r1) such that q′ > 1
α . Then,

r1 ≤
p′

q′
< r2.

For a proof of the lemma see section 11.1 in [16]
We need some results about approximation by truncation of continued

fractions.

Lemma 14. For each irrational x consider pn(x)
qn(x) , n = 1, 2, 3, . . ., the n-

truncation of the continuous fractional expansion of x. Given 0 < ε < 1,
then for Lebesgue almost every irrational x ∈ R, there exists a sequence
n1 < n2 < n3, . . . of natural numbers (which depend on x and ε) such that

2e−2F

1 + ε
<
qnk+1(x)
qnk

(x)
<

2e2F

1− ε
, k = 1, 2, 3, . . .

Proof. We can suppose x ∈ (0, 1). Denote by T : [0, 1) → [0, 1) the Gauss
transformation T (x) = 1

x − [ 1
x ], if x 6= 0, and T (0) = 0.

For each irrational number x, from section 3.5 in [8]

− log qn(x) = log(x) + log(T (x)) + . . .+ log(Tn−1(x)) +R(n, x),

where |R(n, x)| ≤ F , for all x and n = 1, 2, 3, . . . Therefore,

log
(
qn+1(x)
qn(x)

)
= − log Tn(x) +R(n, x)−R(n+ 1, x),
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and finally

−2F − log Tn(x) ≤ log
(
qn+1(x)
qn(x)

)
≤ 2F − log Tn(x).

As T is ergodic [8], for Lebesgue almost every irrational x ∈ (0, 1), we have
that 1

2 , is a limit of a certain subsequence of Tn(x). Therefore, there exists
natural numbers n1 < n2 < n3 < . . . such that

1
2
− ε

2
< Tnk(x) <

1
2

+
ε

2
, k = 1, 2, 3, . . .

From this we get

−2F − log
(

1
2

+
ε

2

)
< log

(
qnk+1(x)
qnk

(x)

)
< 2F − log

(
1
2
− ε

2

)
.

Corollary 15. Given 0 < ε < 1, for almost irrational x there exists an
infinite number of excess approximations p

q , and infinite number of excessive

approximations p′

q′ , such that

2 e−2F

1 + ε
<
q′

q
<

2 e2F

1− ε
, or

2 e−2F

1 + ε
<

q

q′
<

2 e2F

1− ε
.

Proof. In the Lemma 14 above take

p = pnk
(x), q = qnk

(x), p′ = pnk+1(x), q′ = qnk+1(x)

if nk is odd and the opposite if nk is even.

Corollary 16. Given 0 < ε < 1, denote

Kε =
1− ε

e2F (1 + (1 + ε)e2F )2
.

Then, for almost every irrational x ∈ R there exists infinite excess approx-
imations p

q and infinite defect approximations p′

q′ of x such that:

p

q
− p′

q′
≥ Kε

(
1
q

+
1
q′

)2

.
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Proof. Denote

L =
e−2F

1 + ε
, M =

e2F

1− ε
.

From Corollary 15 we can suppose that:

a) L < q′

q < M , or,

b) L < q
q′ < M .

In the first case:(
1
q

+
1
q′

)2

<

(
1
q

+
1
Lq

)2

=
1
q2

(
1 +

1
L

)2

,

and,

p

q
− p′

q′
=
p q′ − q p′

q q′
≥ 1
q q′
≥ 1
M q2

.

Therefore,
p

q
− p′

q′
>

1
M

1
(1 + 1

L )2

(
1
q

+
1
q′

)2

.

The claim follows from the fact that

Kε =
1
M

1
(1 + 1

L )2
.

The second case follows in a similar way.

Now we will apply the results above for the function r(t).

Proposition 17. The function r : [a, b]→ R is continuous and monotonically
increasing. Moreover, if a ≤ t1 < t2 ≤ b and r(t1) /∈ Q or r(t2) /∈ Q, then
r(t1) < r(t2).

Proof. For continuity and other properties see [16]. The rest follows from
Lemma 13.

Lemma 18. If a ≤ t1 < t2 ≤ b, then gt2(x)− gt1(x) ≥ m (t2 − t1).

Proof. It follows easily from the twist condition and the mean value theorem.
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Proposition 19. There exist a set of full measure X ⊂ R (that is, R−X has
Lebesgue measure zero) and such that if τ ∈ (a, b) and r(τ) ∈ X, then

lim sup
t2→τ−, t1→τ+

r(t2)− r(t1)
(t2 − t1)2

≥ m2

e2F (1 + e2F )2
.

Proof. Given 0 < ε < 1, by Corollary 16 there exists a set of full measure
Xε ⊂ R of irrational numbers such that if r(τ) ∈ Xε, then the claim of this
corollary is true for Kε. Let δ be such that (τ − δ, τ + δ) ⊂ (a, b).

The function gτ (x)−gτ−δ(x) is continuous, periodic and positive by Lemma
3. Therefore,

inf
x∈R

(gτ (x)− gτ−δ(x)) > 0.

In the same way,
inf
x∈R

(gτ+δ(x)− gτ (x)) > 0.

By corollary 16, there exists approximations by excess p
q and by defect p′

q′

of r(τ) such that

1
q′
< inf
x∈R

(gτ (x)− gτ−δ(x)),

1
q
< inf
x∈R

(gτ+δ(x)− gτ (x))

and (
p

q
− p′

q′

)
> Kε

(
1
q

+
1
q′

)2

.

As,
inf
x∈R

(gt(x)− gτ (x)) = min
0≤x≤1

(gt(x)− gτ (x)),

there exist τ1, τ2 such that τ − δ < τ1 < τ < τ2 < τ + δ and

inf
x∈R

(gτ (x)− gτ1(x)) =
1
q′
, and inf

x∈R
(gτ2(x)− gτ (x)) =

1
q
.

Now, from Lemma 18, if t1 < τ1 < τ < τ2 < t2, then

inf
x∈R

(gτ (x)− gt1(x)) >
1
q′
, and inf

x∈R
(gt2(x)− gτ (x)) >

1
q
.

By Lemma 13,

r(t1) ≤ p′

q′
< r(τ) <

p

q
≤ r(t2).
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Therefore,

r(t2)− r(t1) ≥ p

q
− p′

q′
> Kε

(
1
q

+
1
q′

)2

.

As r is continuous, we get

r(τ2)− r(τ1) ≥ Kε

(
1
q

+
1
q′

)2

.

Now, by Lemma 18

gτ2(x)− gτ (x) ≥ m(τ2 − τ), ∀x ∈ R,

and
gτ (x)− gτ1(x) ≥ m (τ − τ1), ∀x ∈ R.

It follows that
1
q
≥ m(τ2 − τ), and

1
q′
≥ m(τ − τ1).

Therefore,
r(τ2)− r(τ1) ≥ Kεm

2 (τ2 − τ1)2,

and then

lim sup
t1→τ−, t1→τ+

r(t2)− r(t1)
(t2 − t1)2

≥ Kεm
2.

The claim of the proposition follows from taking

X = ∩∞n=2X 1
n
.
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matical Publications], Instituto Nacional de Matemática Pura e Aplicada
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