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QUOTIENTS OF DARBOUX-LIKE
FUNCTIONS

Abstract

We characterize the families of quotients of functionally connected,
connected and almost continuous functions. We prove also theorems
concerning common divisor for the families of the quotients of func-
tionally connected (resp. connected, almost continuous) functions with
respect to functional connectivity (resp. connectivity, almost continu-
ity).

1 Introduction.

The letter R denotes the real line. The symbol I[a, b] denotes the closed inter-
val with endpoints a and b. The family of all functions from a set X into Y is
denoted by Y X . For each set A ⊂ R, the symbol χA denotes the characteristic
function of A. We consider cardinals as ordinals not in one-to-one correspon-
dence with the smaller ordinals. The symbol cardX stands for the cardinality
of a set X; we write c = card R. For a cardinal number κ, we write cf(κ) for
the cofinality of κ; i.e., for the smallest cardinality of a family of cardinals less
than κ whose union equals κ. We say that κ is regular provided that κ = cf(κ).
The projection of a set U ⊂ R2 onto the x-axis is denoted by domU . We say
that a set A ⊂ R is bilaterally c-dense in itself if card(A ∩ I) = c for every
nondegenerate interval I with A ∩ I 6= ∅.

Mathematical Reviews subject classification: Primary: 26A15; Secondary: 54C08
Key words: Darboux-like function, Darboux function, functionally connected function,

connected function, almost continuous function, quotient of functions
Received by the editors January 25, 2009
Communicated by: Krzysztof Ciesielski
∗This research was partially supported by Kazimierz Wielki University.
†This research was partially supported by Technical University of  Lódź.
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Let f : R→ R. For each y ∈ R, let [f < y] = {x ∈ R : f(x) < y}. Similarly
we define the symbols [f > y], [f = y], etc.

A word function stands for a mapping from R into R unless otherwise
explicitly stated. The following are classes of functions:

D consists of all Darboux functions; i.e., f ∈ D iff it has the intermediate
value property,

FC consists of all functionally connected functions; i.e., f ∈ FC iff g ∩ f 6= ∅
whenever g : I[a, b] → R is a continuous function with f(a) < g(a) and
f(b) > g(b) (we make no distinction between a function and its graph),

Conn consists of all connected functions; i.e., f ∈ Conn iff f is a connected
subset of R2,

AC consists of all almost continuous functions in the sense of Stallings [9]; i.e.,
f ∈ AC iff for every open set V ⊂ R2 containing f , there is a continuous
function h ⊂ V .

Remark 1.1. One can easily see that AC ⊂ Conn ⊂ FC ⊂ D (see also [9]).

There are several papers concerning theorems on a common summand (see,
e.g., [2] or [1]) or factor [7]. In this paper we deal with theorems on a common
divisor. Similar problems were studied by the first author in [3] and [4]. More
precisely, we examine the cardinal

q(A) df= min
({

cardF : F ⊂ A/A & ¬
(
∃g∀f∈F f/g ∈ A

)}
∪
{

(cardA/A)+
})

for A ∈ {FC, Conn,AC}, where

A/A
df=
{
f/g : f, g ∈ A & g(x) 6= 0 for each x ∈ R

}
.

Remark 1.2. In the above definition, it is quite natural to restrict ourselves
to subfamilies of A/A only. Indeed, if there is a function g such that both f/g
and 1/g are in A, then f ∈ A/A.

So, before we can examine the value of q(A), we should know what the
family A/A is. In this paper, using the results of the second author [5], we
characterize the families FC/FC, Conn/Conn, and AC/AC.

Recall the following characterization of D/D given by Natkaniec and Or-
wat [8, Theorem 7].

Proposition 1.1. A function f belongs to D/D iff the following conditions
hold :
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D1. if f(a)f(b) < 0, then [f = 0] ∩ I[a, b] 6= ∅,

D2. both [f > 0] and [f < 0] are bilaterally c-dense in themselves.

In [4], the cardinal q(D) was examined. We prove analogous results for q(A),
where A ∈ {AC, Conn,FC}.

2 Main Results.

For brevity, we introduce two denotations more. The symbol K denotes the
family of all closed subsets of R2. If f is a function, then let

Af
df=
{
〈x, y〉 ∈ R2 : yf(x) > 0

}
;

i.e., Af =
(
[f > 0]× (0,∞)

)
∪
(
[f < 0]× (−∞, 0)

)
.

We start with a technical lemma.

Lemma 2.1. Let F be any family of functions with cardF ≤ c. There exists
a function g : R→ (0,∞) such that for all K ∈ K and f ∈ F ,

if card dom(K ∩Af ) = c, then K ∩ f
g
6= ∅. (1)

Proof. If card [f 6= 0] < c for each function f ∈ F , then we define g df= χR.
So, assume the opposite case. Put

B df= {〈K, f〉 : K ∈ K & f ∈ F & card dom (K ∩Af ) = c}

and notice that cardB = c.

Indeed, let f ∈ F be such that card [f 6= 0] = c. Then

card [f > 0] = c or card [f < 0] = c,

whence{
〈R× {y}, f〉 : y > 0

}
⊂ B or

{
〈R× {y}, f〉 : y < 0

}
⊂ B,

and consequently cardB ≥ c. On the other hand, cardB ≤ cardK = c.

Let
{
〈Kα, fα〉 : α < c

}
be an enumeration of B. For each α < c, choose

any
xα ∈ dom (Kα ∩Afα

) \ {xβ : β < α},
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and let yα be such that 〈xα, yα〉 ∈ Kα and yαfα(xα) > 0. Define the function
g : R→ (0,∞) by

g(x) df=

{
fα(x)/yα if x = xα, α < c,
1 otherwise.

We shall prove that g possesses the required properties.
One can easily see that g > 0 on R. Let K ∈ K and f ∈ F be such that

card dom (K ∩Af ) = c. Then 〈K, f〉 = 〈Kα, fα〉 for some α < c. Clearly
(fα/g)(xα) = yα, whence

〈xα, yα〉 ∈ Kα ∩
fα
g

= K ∩ f
g
.

The next proposition was proved by the second author in his paper devoted
to separating of sets by Darboux-like functions [5, Proposition 4.1].

Proposition 2.2. If a function f ∈ D/D fulfills the condition:

K ∩ f 6= ∅ whenever K ∈ K and card dom (K ∩Af ) = c, (2)

then f ∈ D. If, moreover,

for each closed set F ⊂ [f 6= 0], if α ∈ [f < 0]∩F and β ∈ [f > 0]∩F ,
then there exist a ∈ [f < 0] ∩ I[α, β] and b ∈ [f > 0] ∩ I[α, β] such that
F ∩ I[a, b] = ∅,

(3)

then f ∈ Conn. If, moreover,

for each closed set F ⊂ [f 6= 0], if α ∈ [f < 0]∩F and β ∈ [f > 0]∩F ,
then there exist a ∈ [f < 0] ∩ I[α, β] and b ∈ [f > 0] ∩ I[α, β] such that
(b− a)(β − α) > 0 and F ∩ I[a, b] = ∅.

(4)

then f ∈ AC.

We will use the above proposition to prove another lemma. Its first part
(concerning Darboux functions) is a repetition of [4, Theorem 2.2].

Lemma 2.3. Let F ⊂ D/D be such that cardF ≤ c. There exists a function
g : R→ (0,∞) such that f/g ∈ D for each function f ∈ F .

If, moreover, every function f ∈ F fulfills (3), then we can conclude that
f/g ∈ Conn for each function f ∈ F .

If, moreover, every function f ∈ F fulfills (4), then we can conclude that
f/g ∈ AC for each function f ∈ F .
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Proof. Construct g according to Lemma 2.1. Fix an f ∈ F . Then

[f/g > 0] = [f > 0], [f/g < 0] = [f < 0], [f/g = 0] = [f = 0]. (5)

Since f ∈ D/D, we conclude by Proposition 1.1 that f/g ∈ D/D. So by
Proposition 2.2, f/g ∈ D, and if, moreover, f fulfills (3) (resp. (4)), then
f/g fulfills this condition, too, and f/g ∈ Conn (resp. f/g ∈ AC).

Corollary 2.4. The following conditions are equivalent :

a) f ∈ Conn/Conn;

b) f ∈ FC/FC;

c) f ∈ D/D and f fulfills condition (3).

Proof. a)⇒b). This implication follows from the inclusion Conn ⊂ FC.
b)⇒ c). Let f = g/h, where g, h ∈ FC. Since h ∈ D, we may assume that

h > 0 on R. Then

[f > 0] = [g > 0], [f < 0] = [g < 0], [f = 0] = [g = 0]. (6)

So by [5, Theorem 4.3], f fulfills (3). The relation ‘f ∈ D/D’ follows from the
inclusion FC ⊂ D.

c)⇒ a). By Lemma 2.3, there exists a function g : R → (0,∞) such that
f/g ∈ Conn and 1/g ∈ Conn. So, f = (f/g)

/
(1/g) ∈ Conn/Conn.

Using Lemma 2.3, Corollary 2.4 and the inclusion Conn ⊂ FC, we obtain

Corollary 2.5. q(FC) ≥ q(Conn) > c.

The proofs of the next two corollaries mimic the arguments used above.

Corollary 2.6. The following conditions are equivalent :

a) f ∈ AC/AC;

b) f ∈ D/D and f fulfills condition (4).

Corollary 2.7. q(AC) > c.

Combining [4, Theorem 2.2] and Corollaries 2.5 and 2.7, we obtain the
next corollary.

Corollary 2.8. If c+ = 2c and A ∈ {AC, Conn,FC,D}, then q(A) = 2c.
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In Theorem 2.9 we need another cardinal:

a(D) df= min
{

cardF : F ⊂ RR & ¬
(
∃g∀f∈F f + g ∈ D

)}
.

This cardinal was defined by Natkaniec [6] and was thoroughly examined by
Ciesielski and Miller [1].

Natkaniec observed that c < a(D) ≤ 2c. (See also [2].) Ciesielski and
Miller [1] generalized this result by showing that cf(a(D)) > c. They also
proved that it is pretty much all that can be said about a(D) in ZFC, by
showing that a(D) can be equal to any regular cardinal between c+ and 2c,
and that it can be equal to 2c independently of the cofinality of 2c.

We will compare the values of q for the families of Darboux-like functions
with this cardinal. We start with the following

Theorem 2.9. Let A ∈ {AC, Conn,FC,D}. Then q(A) ≤ a(D).

Proof. Pick a family F ⊂ (0,∞)R of cardinality a(D) such that for each
g : R → R \ {0}, there exists an f ∈ F with f/g /∈ D (see [4, Theorem 2.3]).
Notice that F ⊂ (0,∞)R ⊂ A/A. (Cf. Proposition 1.1 and Corollaries 2.4
and 2.6.)

Let g : R → R \ {0}. Since A ⊂ D, there is an f ∈ F such that f/g /∈ A.
So, F witnesses that q(A) ≤ cardF = a(D).

To prove some results in the opposite direction, we need several new no-
tions.

For a partially ordered set (P,≤), we say that G ⊂ P is a P-filter, if

• for all p, q ∈ G, there exists an r ∈ G with r ≤ p and r ≤ q,

• for all p, q ∈ P, if p ∈ G and p ≤ q, then q ∈ G.

We define D ⊂ P to be dense, if for every p ∈ P, there exists a q ∈ D with
q ≤ p.

For a cardinal κ and a poset P, we define the following statements.

MAκ(P): for every family D of dense subsets of P with card D < κ, there
exists a P-filter G such that D ∩G 6= ∅ for every D ∈ D.

Lusκ(P): there exists a sequence 〈Gα : α < κ〉 of P-filters (called a κ-Lusin
sequence), such that for every dense set D ⊂ P,

card
{
α < κ : Gα ∩D = ∅

}
< κ.
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Recall that these statements are independent of ZFC. (See, e.g., [1].)
From now on, we let

P df=
{
p ∈ (0,∞)X : X ⊂ R & cardX < c

}
,

and we define
p ≤ q iff q ⊂ p ;

i.e., if p extends q as a partial function.
In the proofs of our theorems, we shall use methods similar to those due

to Ciesielski and Miller [1].

Theorem 2.10. Let κ > c. Assume MAκ(P) and let F be a family of functions
with cardF < κ. There exists a function g : R → (0,∞) such that (1) holds
for all K ∈ K and f ∈ F .

Proof. First we will show that if card dom (K ∩Af ) = c for some K ∈ K and
f ∈ F , then

DK,f
df=
{
q ∈ P : ∃x∈dom q 〈x, (f/q)(x)〉 ∈ K

}
is dense in P.

Indeed, let K ∈ K and f ∈ F be such that card dom (K ∩Af ) = c. Fix a
p ∈ P. We can choose an x ∈ dom(K ∩ Af ) \ dom p and a y ∈ R such that

〈x, y〉 ∈ K ∩Af . Then q
df= p ∪ {〈x, f(x)/y〉} ∈ DK,f and q ≤ p.

Next observe that for each x ∈ R, the set

Dx
df=
{
q ∈ P : x ∈ dom q

}
is dense in P.

Indeed, let x ∈ R and p ∈ P. If x ∈ dom p, then we put q df= p, otherwise
we let q df= p ∪ {〈x, 1〉}. Then evidently q ∈ Dx and q ≤ p.

Now define

D
df=
{
Dx : x ∈ R

}
∪
{
DK,f : K ∈ K & f ∈ F & card dom (K ∩Af ) = c

}
.

Then D is a family of dense subsets of P with card D < κ. Applying MAκ(P),
we can find a P-filter G such that G ∩D 6= ∅ for each D ∈ D.

Put g df=
⋃
G. Evidently g is a function and g is positive. For every x ∈ R,

we have G ∩Dx 6= ∅, whence dom g = R.
Take K ∈ K and f ∈ F with card dom (K ∩Af ) = c. Since G ∩DK,f 6= ∅,

there is a function q ⊂ g with q ∈ DK,f . Hence

K ∩ (f/g) ⊃ K ∩ (f/q) 6= ∅.
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Theorem 2.11. Assume MAκ(P). For each A ∈ {AC, Conn,FC,D}, we have
q(A) ≥ κ.

Proof. Take any F ⊂ A/A with cardF < κ. We will show that cardF < q(A).
For, we will prove that there exists a function g such that f/g ∈ A for each
f ∈ F .

By [4, Theorem 2.2] and Corollaries 2.5 and 2.7, we may assume that κ > c.
Let g be a function constructed according to Theorem 2.10. Fix an f ∈ F .

Notice that f ∈ D/D and equalities (5) hold. Thus f/g ∈ D/D (cf. Propo-
sition 1.1). Using (1) and equalities (5), we conclude that f/g satisfies (2).
Hence by Proposition 2.2, f/g ∈ D.

If f ∈ Conn/Conn = FC/FC, then by Corollary 2.4, f satisfies (3). Thus
f/g fulfills (3), too. Hence by Proposition 2.2, f/g ∈ Conn ⊂ FC.

Finally if f ∈ AC/AC, then by Corollary 2.6, f satisfies (4). Thus f/g ful-
fills (4), too. Hence by Proposition 2.2, f/g ∈ AC.

In the proof of the next theorem we will use two other posets. Put

P′ df= {p ∈ RX : X ⊂ R & cardX < c},

and p ≤ q iff q ⊂ p. Moreover, let

P∗ df= {〈p, E〉 : p ∈ P′, E ⊂ RR & card E < c},

and (p, E) ≤ (q,F) iff

q ⊂ p & E ⊃ F & p(x) 6= f(x) for all x ∈ dom p \ dom q and f ∈ F .

Theorem 2.12. Assume Lusκ(P∗). If κ > c is regular, then q(A) = a(D) = κ
for each A ∈ {AC, Conn,FC,D}.

Proof. The inequality κ ≥ a(D) follows by [1, Lemma 3.2 and Theorem 2.1].
The inequality a(D) ≥ q(A) follows by Theorem 2.9.

By [1, Lemma 3.3], Lusκ(P∗) implies MAκ(P′). Since the posets P and P′
are order isomorphic, MAκ(P) holds. Thus by Theorem 2.11, q(A) ≥ κ.

Ciesielski and Miller proved that the assumptions of Theorem 2.12 are
independent of ZFC [1]. We want to present the following

Problem. Can any of the equalities

q(AC) = q(Conn) = q(FC) = q(D) = a(D)

be proved in ZFC?
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