Stanisław Kowalczyk, Institute of Mathematics, Academia Pomeraniensis, Arciszewskiego 22b, Slupsk, Poland. email: stkowalcz@onet.eu

WEAK OPENNESS OF MULTIPLICATION IN THE SPACE $C(0,1)$

Abstract

Let $C(0,1)$ be the space of all continuous real-valued functions defined on an open interval $(0,1)$. We shall show that the multiplication is a weakly open operation in $C(0,1)$.

Let $C(0,1)$ be the space of all continuous real-valued functions in $(0,1)$ with the metric $\operatorname{dist}(f, g)=\min \{\sup \{|f(t)-g(t)|: t \in(0,1)\}, 1\}$. There are some natural operations on $C(0,1)$, for example, addition, multiplication, minimum and maximum. In $[1,4,5]$ such operations were investigated in the space $C([0,1])$ of all continuous real-valued functions defined on $[0,1]$. All the operations are continuous but only addition, minimum and maximum are open as mappings from $C([0,1]) \times C([0,1])$ to $C([0,1])$. It is interested that multiplication is not continuous in $C(0,1)$. Namely, convergence in $C(0,1)$ is equivalent to the uniform convergence. Consider $f_{n}(x)=\frac{1}{n}$ and $g_{n}(x)=\frac{1}{x}$ for any $n \in \mathbb{N}$ and $x \in(0,1)$. Then the sequence $\left(f_{n} \cdot g_{n}\right)$ is not uniformly convergent to $\lim _{n \rightarrow \infty} f_{n} \cdot \lim _{n \rightarrow \infty} g_{n}=0$.
Definition 1. [1, 2] A map between topological spaces is weakly open if the image of every non-empty open set has a non-empty interior.

In [1] it is shown that the multiplication in $C([0,1])$ is a weakly open operation. In [3] there are considered some properties of multiplication in the algebra $C(X)$ of real-valued continuous functions defined on a compact topological space X.

During $22^{\text {th }}$ SUMMER CONFERENCE ON REAL FUNCTION THEORY, Stará Lesná, Slovakia 31.08-05.09 2009 Artur Wachowicz showed that multiplication in $C(0,1)$ is not an open operation and asked the question:

[^0]Does multiplication is a weakly open mapping in the space $C(0,1)$? In the present paper we give a positive answer to this question.
Let $B(f, r)(\bar{B}(f, r))$ denote an open (respectively, closed) ball centered at f and of radius $r>0$ in $C(0,1)$ and let $\|\cdot\|$ stand for the standard euclidean norm in \mathbb{R}^{2}.

Theorem 1. Let $f, g \in C(0,1)$ and $\varepsilon>0$ be such that $\|(f(t), g(t))\| \geq \varepsilon$ for every $t \in(0,1)$. Then for every $h \in C(0,1)$ satisfying condition $\operatorname{dist}(h, f g) \leq$ $\frac{\varepsilon^{2}}{2}$, there exist $f_{1}, g_{1} \in C(0,1)$ such that $\operatorname{dist}\left(f, f_{1}\right) \leq \varepsilon$, $\operatorname{dist}\left(g, g_{1}\right) \leq \varepsilon$ and $f_{1} g_{1}=h$.

Proof. Let $D=\left\{(x, y) \in \mathbb{R}^{2}:\|(x, y)\| \geq \varepsilon\right\}$. We define a function $\alpha: D \rightarrow$ \mathbb{R}^{2}

$$
\alpha(x, y)=\left(x+\varepsilon \frac{y}{\sqrt{x^{2}+y^{2}}}, y+\varepsilon \frac{x}{\sqrt{x^{2}+y^{2}}}\right)
$$

Next, for every $(x, y) \in D$ we define a function $\varphi_{(x, y)}:[0,1] \rightarrow \mathbb{R}$

$$
\varphi_{(x, y)}(t)=\left(x+t \varepsilon \frac{y}{\sqrt{x^{2}+y^{2}}}\right)\left(y+t \varepsilon \frac{x}{\sqrt{x^{2}+y^{2}}}\right)
$$

The function $\varphi_{(x, y)}$ is just the restriction of the multiplication to the line segment starting at (x, y) and ending at $\alpha(x, y)$. We will show that the following properties are fulfilled:
a1) α is continuous,
a2) $\|\alpha(x, y)-(x, y)\|=\varepsilon$ for every $(x, y) \in D$,
a3) for every $(x, y) \in D$ the function $\varphi_{(x, y)}$ is strictly increasing,
a4) $\left(x+\varepsilon \frac{y}{\sqrt{x^{2}+y^{2}}}\right)\left(y+\varepsilon \frac{x}{\sqrt{x^{2}+y^{2}}}\right)-x y \geq \frac{\varepsilon^{2}}{2}$ (equivalently, $\left.\varphi_{(x, y)}(1)-\varphi_{(x, y)}(0) \geq \frac{\varepsilon^{2}}{2}\right)$ for every $(x, y) \in D$.

Property $a 1$) follows directly from the definition of α.
a2) We have

$$
\|\alpha(x, y)-(x, y)\|=\left\|\left(\varepsilon \frac{y}{\sqrt{x^{2}+y^{2}}}, \varepsilon \frac{x}{\sqrt{x^{2}+y^{2}}}\right)\right\|=\varepsilon \sqrt{\frac{y^{2}}{x^{2}+y^{2}}+\frac{x^{2}}{x^{2}+y^{2}}}=\varepsilon
$$

for every $(x, y) \in D$.
a3) We easily compute $\varphi_{(x, y)}(t)=x y+t \varepsilon \frac{x^{2}+y^{2}}{\sqrt{x^{2}+y^{2}}}+t^{2} \varepsilon^{2} \frac{x y}{x^{2}+y^{2}}$. Hence

$$
\varphi_{(x, y)}^{\prime}(t)=\varepsilon \frac{x^{2}+y^{2}}{\sqrt{x^{2}+y^{2}}}+2 t \varepsilon^{2} \frac{x y}{x^{2}+y^{2}}=\varepsilon\left(\sqrt{x^{2}+y^{2}}+t \varepsilon \frac{2 x y}{x^{2}+y^{2}}\right) .
$$

And since $\frac{2|x y|}{x^{2}+y^{2}} \leq 1$ and $\varepsilon \leq \sqrt{x^{2}+y^{2}}$ for every $(x, y) \in D$ we get

$$
\begin{aligned}
& \varphi_{(x, y)}^{\prime}(t) \geq \varepsilon\left(\sqrt{x^{2}+y^{2}}-t \varepsilon \frac{2|x y|}{x^{2}+y^{2}}\right) \geq \\
& \geq \varepsilon\left(\sqrt{x^{2}+y^{2}}-t \sqrt{x^{2}+y^{2}}\right) \geq \varepsilon \sqrt{x^{2}+y^{2}}(1-t)
\end{aligned}
$$

Hence $\varphi_{(x, y)}^{\prime}(t) \geq 0$ for $t \in[0,1]$ and $\varphi_{(x, y)}^{\prime}(t)>0$ for $t \in[0,1)$. Therefore $\varphi_{(x, y)}$ is a strictly increasing function for every $(x, y) \in D$.
a4) For every $(x, y) \in D$, we have

$$
\begin{gathered}
\left(x+\varepsilon \frac{y}{\sqrt{x^{2}+y^{2}}}\right)\left(y+\varepsilon \frac{x}{\sqrt{x^{2}+y^{2}}}\right)-x y=x y+\varepsilon \frac{x^{2}+y^{2}}{\sqrt{x^{2}+y^{2}}}+\varepsilon^{2} \frac{x y}{x^{2}+y^{2}}-x y= \\
=\varepsilon\left(\frac{x^{2}+y^{2}}{\sqrt{x^{2}+y^{2}}}+\varepsilon \frac{x y}{x^{2}+y^{2}}\right) \geq \varepsilon\left(\sqrt{x^{2}+y^{2}}-\varepsilon \frac{|x y|}{x^{2}+y^{2}}\right) \geq \\
\geq \varepsilon\left(\sqrt{x^{2}+y^{2}}-\frac{\varepsilon}{2}\right) \geq \varepsilon\left(\sqrt{x^{2}+y^{2}}-\frac{\sqrt{x^{2}+y^{2}}}{2}\right)=\frac{\varepsilon}{2} \sqrt{x^{2}+y^{2}} \geq \frac{\varepsilon^{2}}{2} .
\end{gathered}
$$

Thus properties $a 1)-a 4$) are proven.
Similarly, define a function $\beta: D \rightarrow \mathbb{R}^{2}$:

$$
\beta(x, y)=\left(x-\varepsilon \frac{y}{\sqrt{x^{2}+y^{2}}}, y-\varepsilon \frac{x}{\sqrt{x^{2}+y^{2}}}\right)
$$

and for every $(x, y) \in D$, define a function $\psi_{(x, y)}:[0,1] \rightarrow \mathbb{R}$,

$$
\psi_{(x, y)}(t)=\left(x-t \varepsilon \frac{y}{\sqrt{x^{2}+y^{2}}}\right)\left(y-t \varepsilon \frac{x}{\sqrt{x^{2}+y^{2}}}\right) .
$$

The function $\psi_{(x, y)}$ is just the restriction of the multiplication to the line segment starting at (x, y) and ending at $\beta(x, y)$. We shall show that the following properties are fulfilled:
b1) β is continuous,
b2) $\|\beta(x, y)-(x, y)\|=\varepsilon$ for every $(x, y) \in D$,
b3) for every $(x, y) \in D$ the function $\psi_{(x, y)}$ is strictly decreasing,
b4) $x y-\left(x-\varepsilon \frac{y}{\sqrt{x^{2}+y^{2}}}\right)\left(y-\varepsilon \frac{x}{\sqrt{x^{2}+y^{2}}}\right) \geq \frac{\varepsilon^{2}}{2}$ (equivalently, $\psi_{(x, y)}(0)-$ $\left.\psi_{(x, y)}(1) \geq \frac{\varepsilon^{2}}{2}\right)$ for every $(x, y) \in D$.
The proofs of $b 1)-b 4$) are analogous to those for $a 1)-a 4$) and we omit them.

Now, let us take any $h \in C(0,1)$ such that $\operatorname{dist}(h, f g) \leq \frac{\varepsilon^{2}}{2}$. For every $t \in(0,1)$ we have

$$
f(t) g(t)-\frac{\varepsilon^{2}}{2} \leq h(t) \leq f(t) g(t)+\frac{\varepsilon^{2}}{2}
$$

hence by $a 4$) and $b 4$)

$$
\begin{aligned}
& \left(f(t)-\varepsilon \frac{g(t)}{\sqrt{(f(t))^{2}+(g(t))^{2}}}\right)\left(g(t)-\varepsilon \frac{f(t)}{\sqrt{(f(t))^{2}+(g(t))^{2}}}\right) \leq h(t) \leq \\
& \quad\left(f(t)+\varepsilon \frac{g(t)}{\sqrt{(f(t))^{2}+(g(t))^{2}}}\right)\left(g(t)+\varepsilon \frac{f(t)}{\sqrt{(f(t))^{2}+(g(t))^{2}}}\right)
\end{aligned}
$$

(or equivalently $\left.\psi_{(f(t), g(t))}(1) \leq h(t) \leq \varphi_{(f(t), g(t))}(1)\right)$. Therefore (by $a 1$), $a 3$), $b 1), b 3)$ and the Darboux property) for every $t \in(0,1)$ there exists exactly one point $v^{t}=\left(v_{x}^{t}, v_{y}^{t}\right)$ lying on the broken line with vertices $\beta(f(t), g(t))$, $(f(t), g(t))$ and $\alpha(f(t), g(t))$ such that $v_{x}^{t} v_{y}^{t}=h(t)$. Now, we may define functions $f_{1}, g_{1}:(0,1) \rightarrow \mathbb{R}$ as $f_{1}(t)=v_{x}^{t}$ and $g_{1}(t)=v_{y}^{t}$ for every $t \in(0,1)$. It follows directly from the definitions of f_{1} and g_{1} that $f_{1} g_{1}=h$ and by $a 2$) and $b 2$)

$$
\begin{aligned}
& \left\|\left(f_{1}(t), g_{1}(t)\right)-(f(t), g(t))\right\| \leq \\
& \leq \max \{\|\alpha(f(t), g(t))-(f(t), g(t))\|,\|\beta(f(t), g(t))-(f(t), g(t))\|\}=\varepsilon
\end{aligned}
$$

for every $t \in(0,1)$. Hence $\operatorname{dist}\left(f, f_{1}\right) \leq \varepsilon$ and $\operatorname{dist}\left(g, g_{1}\right) \leq \varepsilon$. It remains to show that f_{1} and g_{1} are continuous.

Let $t_{0} \in(0,1)$ and let $\left(t_{n}\right)_{n \in \mathbb{N}}$ be any sequence convergent to t_{0}. By the continuity of f, g, α and β, we have $\lim _{n \rightarrow \infty}\left(f\left(t_{n}\right), g\left(t_{n}\right)\right)=\left(f\left(t_{0}\right), g\left(t_{0}\right)\right)$, $\lim _{n \rightarrow \infty} \alpha\left(f\left(t_{n}\right), g\left(t_{n}\right)\right)=\alpha\left(f\left(t_{0}\right), g\left(t_{0}\right)\right)$ and $\lim _{n \rightarrow \infty} \beta\left(f\left(t_{n}\right), g\left(t_{n}\right)\right)=$ $\beta\left(f\left(t_{0}\right), g\left(t_{0}\right)\right)$. Every point $v^{t_{n}}$ lies on the broken line with vertices $\beta\left(f\left(t_{n}\right), g\left(t_{n}\right)\right),\left(f\left(t_{n}\right), g\left(t_{n}\right)\right)$ and $\alpha\left(f\left(t_{n}\right), g\left(t_{n}\right)\right)$. Hence $\left(v^{t_{n}}\right)_{n \in \mathbb{N}}$ is a bounded sequence in \mathbb{R}^{2}. Thus it has a convergent subsequence $\left(v^{t_{n_{k}}}\right)_{k \in \mathbb{N}}$. Let $v_{0}=$ $\left(v_{x}^{0}, v_{y}^{0}\right)=\lim _{k \rightarrow \infty} v^{t_{n_{k}}}$. Again, using the facts that every point $v^{t_{n_{k}}}$ lies on the broken line with vertices $\beta\left(f\left(t_{n_{k}}\right), g\left(t_{n_{k}}\right)\right),\left(f\left(t_{n_{k}}\right), g\left(t_{n_{k}}\right)\right)$ and $\alpha\left(f\left(t_{n_{k}}\right), g\left(t_{n_{k}}\right)\right)$
and that vertices of those broken lines converge to $\beta\left(f\left(t_{0}\right), g\left(t_{0}\right)\right),\left(f\left(t_{0}\right), g\left(t_{0}\right)\right)$ and $\alpha\left(f\left(t_{0}\right), g\left(t_{0}\right)\right)$ respectively, we get that v^{0} lies on the broken line with vertices $\beta\left(f\left(t_{0}\right), g\left(t_{0}\right)\right),\left(f\left(t_{0}\right), g\left(t_{0}\right)\right)$ and $\alpha\left(f\left(t_{0}\right), g\left(t_{0}\right)\right)$. Next, by the continuity of h and by the continuity of multiplication we get

$$
v_{x}^{0} v_{y}^{0}=\lim _{k \rightarrow \infty} v_{x}^{t_{n_{k}}} v^{t_{n_{k}}}=\lim _{k \rightarrow \infty} h\left(t_{n_{k}}\right)=h\left(t_{0}\right)
$$

But on the broken line with vertices $\beta\left(f\left(t_{0}\right), g\left(t_{0}\right)\right),\left(f\left(t_{0}\right), g\left(t_{0}\right)\right)$ and $\alpha\left(f\left(t_{0}\right), g\left(t_{0}\right)\right)$ there is only one point $v^{t_{0}}$ such that $v_{x}^{t_{0}} v_{y}^{t_{0}}=h\left(t_{0}\right)$. Thus $v_{0}=$ $v^{t_{0}}$. It follows that $\lim _{k \rightarrow \infty} f_{1}\left(t_{n_{k}}\right)=f_{1}\left(t_{0}\right)$ and $\lim _{k \rightarrow \infty} g_{1}\left(t_{n_{k}}\right)=g_{1}\left(t_{0}\right)$. It proves that f_{1} and g_{1} are continuous functions.

Corollary 1. Let $f, g \in C(0,1)$ and $\varepsilon>0$ be such that $\|(f(t), g(t))\| \geq \varepsilon$ for every $t \in(0,1)$. Then $\bar{B}\left(f g, \frac{\varepsilon^{2}}{2}\right) \subset \bar{B}(f, \varepsilon) \bar{B}(g, \varepsilon)$, where

$$
\bar{B}(f, \varepsilon) \bar{B}(g, \varepsilon)=\{\tilde{f} \tilde{g}: \tilde{f} \in \bar{B}(f, \varepsilon), \tilde{g} \in \bar{B}(g, \varepsilon)\}
$$

Lemma 1. For any continuous functions $f, g:(0,1) \rightarrow \mathbb{R}$ and for every $\varepsilon>0$ there exist continuous functions $\widetilde{f}, \widetilde{g}:(0,1) \rightarrow \mathbb{R}$ such that $\operatorname{dist}(f, \widetilde{f}) \leq 2 \varepsilon$, $\operatorname{dist}(g, \widetilde{g}) \leq 2 \varepsilon$ and $\|(\widetilde{f}(t), \widetilde{g}(t))\| \geq \varepsilon$ for every $t \in(0,1)$.

Proof. Let $A=\{t \in(0,1):|f(t)|<\varepsilon\}$ and $B=\{t \in(0,1):|g(t)|<\varepsilon\}$. Since f and g are continuous functions, the sets A and B are open. Hence $A=\bigcup_{k \in K}\left(a_{k}, b_{k}\right)$, where intervals $\left(a_{k}, b_{k}\right)$ are pairwise disjoint and K is a countable set. Moreover $\left|f\left(a_{k}\right)\right|=\left|f\left(b_{k}\right)\right|=\varepsilon$ for every $k \in K$. Next, let
$K_{1}=\left\{k \in K:\left(a_{k}, b_{k}\right) \cap B=\emptyset\right\}$,

$$
K_{2}=\left\{k \in K:\left(a_{k}, b_{k}\right) \cap B \neq \emptyset \wedge f\left(a_{k}\right)=f\left(b_{k}\right)\right\},
$$

and

$$
K_{3}=\left\{k \in K:\left(a_{k}, b_{k}\right) \cap B \neq \emptyset \wedge f\left(a_{k}\right) \neq f\left(b_{k}\right)\right\} .
$$

Obviously, $K=K_{1} \cup K_{2} \cup K_{3}$ and K_{1}, K_{2}, K_{3} are pairwise disjoint. Since f is continuous, $f\left(\left(a_{k}, b_{k}\right)\right) \supset(-\varepsilon, \varepsilon)$ for every $k \in K_{3}$. Therefore, again by the continuity of f, the family $\left\{\left(a_{k}, b_{k}\right)\right\}_{k \in K_{3}}$ is locally finite in $(0,1)$. For every $k \in K_{3}$ we may choose open intervals $\left(\alpha_{k}, \beta_{k}\right)$ and $\left(\gamma_{k}, \delta_{k}\right)$ such that

$$
\left[\gamma_{k}, \delta_{k}\right] \subset\left(\alpha_{k}, \beta_{k}\right) \subset\left[\alpha_{k}, \beta_{k}\right] \subset\left(a_{k}, b_{k}\right)
$$

and $\left(\alpha_{k}, \beta_{k}\right) \subset B$. Now, we may define functions $\tilde{f}, \widetilde{g}:(0,1) \rightarrow \mathbb{R}$:

$$
\widetilde{f}(t)=\left\{\begin{array}{l}
f(x) \text { for } t \in((0,1) \backslash A) \cup \bigcup_{k \in K_{1}}\left(a_{k}, b_{k}\right), \\
f\left(a_{k}\right) \text { for } t \in\left(a_{k}, b_{k}\right) \text { and } k \in K_{2}, \\
f\left(a_{k}\right) \text { for } t \in\left(a_{k}, \gamma_{k}\right] \text { and } k \in K_{3}, \\
f\left(b_{k}\right) \text { for } t \in\left[\delta_{k}, b_{k}\right) \text { and } k \in K_{3}, \\
\text { linear on intervals }\left[\gamma_{k}, \delta_{k}\right] \text { for every } k \in K_{3},
\end{array}\right.
$$

and

$$
\widetilde{g}(t)=\left\{\begin{array}{cl}
g(t) & \text { for } \quad t \in(0,1) \backslash \bigcup_{k \in K_{3}}\left(\alpha_{k}, \beta_{k}\right), \\
\varepsilon & \text { for } \quad t \in \bigcup_{k \in K_{3}}\left[\gamma_{k}, \delta_{k}\right], \\
\text { linear on intervals }\left[\alpha_{k}, \gamma_{k}\right] \text { and }\left[\delta_{k}, \beta_{k}\right] \text { for every } k \in K_{3} .
\end{array}\right.
$$

(It may happen that $a_{k}=0$ or $b_{k}=1$ for some $k \in K$ and then $f\left(a_{k}\right)$ or $f\left(b_{k}\right)$ do not exist. In this case, we take simply $\lim _{t \rightarrow a_{k}} f(t)$ and $\lim _{t \rightarrow b_{k}} f(t)$ instead of $f\left(a_{k}\right)$ and $f\left(b_{k}\right)$ in the definition of \widetilde{f}.)

Since $\widetilde{f}_{\mid(0,1) \backslash A}=f_{\mid(0,1) \backslash A}$ and $|\widetilde{f}(t)| \leq \varepsilon \geq|f(t)|$ for $t \in A$, we immediately get $\operatorname{dist}(f, \widetilde{f}) \leq 2 \varepsilon$. Similarly, since $\widetilde{g}_{\mid(0,1) \backslash B}=g_{\mid(0,1) \backslash B}$ and $|\widetilde{g}(t)| \leq \varepsilon \geq|g(t)|$ for $x \in B$, we have $\operatorname{dist}(g, \widetilde{g}) \leq 2 \varepsilon$. Obviously, $\|(\widetilde{f}(t), \widetilde{g}(t))\| \geq \varepsilon$ for every $t \in(0,1)$, because if $|\widetilde{f}(t)|<\varepsilon$ then $|\widetilde{g}(t)| \geq \varepsilon$, and if $|\widetilde{g}(t)|<\varepsilon$ then $|\widetilde{f}(t)| \geq \varepsilon$. It remains to prove the continuity of \tilde{f} and \widetilde{g}. By definition, the restrictions of \widetilde{g} to $\bigcup_{k \in K_{3}}\left[\alpha_{k}, \beta_{k}\right]$ and to $(0,1) \backslash \bigcup_{k \in K_{3}}\left(\alpha_{k}, \beta_{k}\right)$ are continuous, and by local finiteness of $\left\{\left[\alpha_{k}, \beta_{k}\right]\right\}_{k \in K_{3}}, \widetilde{g}$ is continuous on the whole interval $(0,1)$. Similarly, the function \tilde{f} is continuous on $((0,1) \backslash A) \cup \bigcup_{k \in K_{1}}\left(a_{k}, b_{k}\right)$ and on $\bigcup_{k \in K_{2} \cup K_{3}}\left[a_{k}, b_{k}\right]$. Since $\widetilde{f}\left(\left(a_{k}, b_{k}\right)\right)=\left\{\lim _{t \rightarrow a_{k}} f(t)\right\}$ for $k \in K_{2}$ and since $\left\{\left[a_{k}, b_{k}\right]: k \in K_{3}\right\}$ is locally finite, we get that the function \tilde{f} is continuous on $(0,1)$.

Theorem 2. Multiplication in the space $C(0,1)$ is a weakly open mapping.
Proof. Let U be any nonempty open subset of $C(0,1) \times C(0,1)$. There exist $f, g \in C(0,1)$ and $\varepsilon>0$ such that $B(f, 4 \varepsilon) \times B(g, 4 \varepsilon) \subset U$. By Lemma 1 , we can find $\widetilde{f}, \widetilde{g} \in C(0,1)$ for which $\operatorname{dist}(\widetilde{f}, f) \leq 2 \varepsilon$, $\operatorname{dist}(\widetilde{g}, g) \leq 2 \varepsilon$ and $\|(\widetilde{f}(t), \widetilde{g}(t))\| \geq \varepsilon$ for $t \in(0,1)$. Then by Theorem 1 ,

$$
B\left(\widetilde{f} \widetilde{g}, \frac{\varepsilon^{2}}{2}\right) \subset \bar{B}(\widetilde{f}, \varepsilon) \bar{B}(\widetilde{g}, \varepsilon) \subset \bar{B}(f, 3 \varepsilon) \bar{B}(g, 3 \varepsilon) \subset B(f, 4 \varepsilon) B(g, 4 \varepsilon)
$$

Hence

$$
B\left(\widetilde{f} \widetilde{g}, \frac{\varepsilon^{2}}{2}\right) \subset \operatorname{Int}\left\{f_{1} f_{2}:\left(f_{1}, f_{2}\right) \in U\right\} \neq \emptyset
$$

It follows that the multiplication in the space $C(0,1)$ is a weakly open mapping.

Corollary 2. From Theorem 2 it easily follows that multiplication is weakly open in $C([0,1])$ (this yields a new proof of the known result). Namely, consider an open set $U=B(f, r) \times B(g, r)$ where $B(f, r)$ and $B(g, r)$ are balls in $C([0,1])$. By the Tietze Extension Theorem we extend f, g to $f^{*}, g^{*} \in$ $C(-1,2)$. Then applying Theorem 2 to the set $U^{*}=B\left(f^{*}, r\right) \times B\left(g^{*}, r\right)$ open in $C(-1,2) \times C(-1,2)$ we find a ball $B(h, \varepsilon)$ in $C(-1,2)$ witnessing that the respective interior is not nonempty. Finally, we "restrict" this ball to $C([0,1])$.

References

[1] M. Balcerzak, A. Wachowicz, and W. Wilczyński Multiplying balls in the space of continuous functions on [0, 1], Studia Math. 170 (2005), 203-209.
[2] M. Burke, Continuous functions which take a somewhere dense set of values on every open set, Topology Appl. 103 (2000), 95-110.
[3] A. Komisarski, A connection between multiplication in $C(X)$ and the dimension of X, Fund. Math. 189 (2006), 149-154.
[4] A. Wachowicz, Baire category and standard operations on pairs of continuous functions, Tatra Mt. Math. Publ. 24 (2002), 141-146.
[5] A. Wachowicz, On some residual sets, PhD dissertation, Łódź Technical Univ., Łódź (2004), (Polish).

[^0]: Mathematical Reviews subject classification: Primary: 26A99; Secondary: 26A15
 Key words: multiplication, open mapping, weakly open mapping, space of continuous functions

 Received by the editors January 22, 2009
 Communicated by: Alexander Olevskii

