Stanisław Kowalczyk, Institute of Mathematics, Academia Pomeraniensis, Arciszewskiego 22b, Slupsk, Poland. email: stkowalcz@onet.eu

WEAK OPENNESS OF MULTIPLICATION IN THE SPACE C(0, 1)

Abstract

Let C(0,1) be the space of all continuous real-valued functions defined on an open interval (0,1). We shall show that the multiplication is a weakly open operation in C(0,1).

Let C(0,1) be the space of all continuous real-valued functions in (0,1)with the metric dist $(f,g) = \min\{\sup\{|f(t) - g(t)|: t \in (0,1)\}, 1\}$. There are some natural operations on C(0,1), for example, addition, multiplication, minimum and maximum. In [1, 4, 5] such operations were investigated in the space C([0,1]) of all continuous real-valued functions defined on [0,1]. All the operations are continuous but only addition, minimum and maximum are open as mappings from $C([0,1]) \times C([0,1])$ to C([0,1]). It is interested that multiplication is not continuous in C(0,1). Namely, convergence in C(0,1) is equivalent to the uniform convergence. Consider $f_n(x) = \frac{1}{n}$ and $g_n(x) = \frac{1}{x}$ for any $n \in \mathbb{N}$ and $x \in (0,1)$. Then the sequence $(f_n \cdot g_n)$ is not uniformly convergent to $\lim_{n\to\infty} f_n \cdot \lim_{n\to\infty} g_n = 0$.

Definition 1. [1, 2] A map between topological spaces is weakly open if the image of every non-empty open set has a non-empty interior.

In [1] it is shown that the multiplication in C([0,1]) is a weakly open operation. In [3] there are considered some properties of multiplication in the algebra C(X) of real-valued continuous functions defined on a compact topological space X.

During 22^{th} SUMMER CONFERENCE ON REAL FUNCTION THE-ORY, Stará Lesná, Slovakia 31.08-05.09 2009 Artur Wachowicz showed that multiplication in C(0, 1) is not an open operation and asked the question:

Mathematical Reviews subject classification: Primary: 26A99; Secondary: 26A15 Key words: multiplication, open mapping, weakly open mapping, space of continuous functions Received by the editors January 22, 2009

Communicated by: Alexander Olevskii

Does multiplication is a weakly open mapping in the space C(0, 1)? In the present paper we give a positive answer to this question.

Let B(f,r) ($\overline{B}(f,r)$) denote an open (respectively, closed) ball centered at f and of radius r > 0 in C(0,1) and let $||\cdot||$ stand for the standard euclidean norm in \mathbb{R}^2 .

Theorem 1. Let $f, g \in C(0,1)$ and $\varepsilon > 0$ be such that $||(f(t), g(t))|| \ge \varepsilon$ for every $t \in (0,1)$. Then for every $h \in C(0,1)$ satisfying condition dist $(h, fg) \le \frac{\varepsilon^2}{2}$, there exist $f_1, g_1 \in C(0,1)$ such that dist $(f, f_1) \le \varepsilon$, dist $(g, g_1) \le \varepsilon$ and $f_1g_1 = h$.

PROOF. Let $D = \{(x,y) \in \mathbb{R}^2 \colon ||(x,y)|| \ge \varepsilon\}$. We define a function $\alpha \colon D \to \mathbb{R}^2$

$$\alpha(x,y) = \left(x + \varepsilon \frac{y}{\sqrt{x^2 + y^2}}, y + \varepsilon \frac{x}{\sqrt{x^2 + y^2}}\right).$$

Next, for every $(x, y) \in D$ we define a function $\varphi_{(x,y)} \colon [0, 1] \to \mathbb{R}$

$$\varphi_{(x,y)}(t) = \left(x + t\varepsilon \frac{y}{\sqrt{x^2 + y^2}}\right) \left(y + t\varepsilon \frac{x}{\sqrt{x^2 + y^2}}\right)$$

The function $\varphi_{(x,y)}$ is just the restriction of the multiplication to the line segment starting at (x, y) and ending at $\alpha(x, y)$. We will show that the following properties are fulfilled:

- a1) α is continuous,
- a2) $||\alpha(x,y) (x,y)|| = \varepsilon$ for every $(x,y) \in D$,
- a3) for every $(x, y) \in D$ the function $\varphi_{(x,y)}$ is strictly increasing,

a4)
$$\left(x + \varepsilon \frac{y}{\sqrt{x^2 + y^2}}\right) \left(y + \varepsilon \frac{x}{\sqrt{x^2 + y^2}}\right) - xy \ge \frac{\varepsilon^2}{2}$$
 (equivalently,
 $\varphi_{(x,y)}(1) - \varphi_{(x,y)}(0) \ge \frac{\varepsilon^2}{2}$) for every $(x,y) \in D$.

Property a1) follows directly from the definition of α .

a2) We have

$$||\alpha(x,y) - (x,y)|| = \left| \left| \left(\varepsilon \frac{y}{\sqrt{x^2 + y^2}}, \varepsilon \frac{x}{\sqrt{x^2 + y^2}} \right) \right| \right| = \varepsilon \sqrt{\frac{y^2}{x^2 + y^2} + \frac{x^2}{x^2 + y^2}} = \varepsilon$$

for every $(x, y) \in D$.

WEAK OPENNESS OF MULTIPLICATION IN THE SPACE C(0,1)

a3) We easily compute $\varphi_{(x,y)}(t) = xy + t\varepsilon \frac{x^2 + y^2}{\sqrt{x^2 + y^2}} + t^2 \varepsilon^2 \frac{xy}{x^2 + y^2}$. Hence

$$\varphi'_{(x,y)}(t) = \varepsilon \frac{x^2 + y^2}{\sqrt{x^2 + y^2}} + 2t\varepsilon^2 \frac{xy}{x^2 + y^2} = \varepsilon \left(\sqrt{x^2 + y^2} + t\varepsilon \frac{2xy}{x^2 + y^2}\right)$$

And since $\frac{2|xy|}{x^2+y^2} \leq 1$ and $\varepsilon \leq \sqrt{x^2+y^2}$ for every $(x,y) \in D$ we get

$$\begin{aligned} \varphi'_{(x,y)}(t) &\geq \varepsilon \left(\sqrt{x^2 + y^2} - t\varepsilon \frac{2|xy|}{x^2 + y^2} \right) \geq \\ &\geq \varepsilon \left(\sqrt{x^2 + y^2} - t\sqrt{x^2 + y^2} \right) \geq \varepsilon \sqrt{x^2 + y^2} (1 - t). \end{aligned}$$

Hence $\varphi'_{(x,y)}(t) \ge 0$ for $t \in [0,1]$ and $\varphi'_{(x,y)}(t) > 0$ for $t \in [0,1)$. Therefore $\varphi_{(x,y)}$ is a strictly increasing function for every $(x,y) \in D$.

a4) For every $(x, y) \in D$, we have

$$\begin{split} \left(x + \varepsilon \frac{y}{\sqrt{x^2 + y^2}}\right) \left(y + \varepsilon \frac{x}{\sqrt{x^2 + y^2}}\right) - xy &= xy + \varepsilon \frac{x^2 + y^2}{\sqrt{x^2 + y^2}} + \varepsilon^2 \frac{xy}{x^2 + y^2} - xy = \\ &= \varepsilon \left(\frac{x^2 + y^2}{\sqrt{x^2 + y^2}} + \varepsilon \frac{xy}{x^2 + y^2}\right) \geq \varepsilon \left(\sqrt{x^2 + y^2} - \varepsilon \frac{|xy|}{x^2 + y^2}\right) \geq \\ &\geq \varepsilon \left(\sqrt{x^2 + y^2} - \frac{\varepsilon}{2}\right) \geq \varepsilon \left(\sqrt{x^2 + y^2} - \frac{\sqrt{x^2 + y^2}}{2}\right) = \frac{\varepsilon}{2}\sqrt{x^2 + y^2} \geq \frac{\varepsilon^2}{2}. \end{split}$$

Thus properties a1) - a4) are proven.

Similarly, define a function $\beta \colon D \to \mathbb{R}^2$:

$$\beta(x,y) = \left(x - \varepsilon \frac{y}{\sqrt{x^2 + y^2}}, y - \varepsilon \frac{x}{\sqrt{x^2 + y^2}}\right),$$

and for every $(x, y) \in D$, define a function $\psi_{(x,y)} \colon [0, 1] \to \mathbb{R}$,

$$\psi_{(x,y)}(t) = \left(x - t\varepsilon \frac{y}{\sqrt{x^2 + y^2}}\right) \left(y - t\varepsilon \frac{x}{\sqrt{x^2 + y^2}}\right)$$

The function $\psi_{(x,y)}$ is just the restriction of the multiplication to the line segment starting at (x, y) and ending at $\beta(x, y)$. We shall show that the following properties are fulfilled:

- b1) β is continuous,
- b2) $||\beta(x,y) (x,y)|| = \varepsilon$ for every $(x,y) \in D$,

b3) for every $(x, y) \in D$ the function $\psi_{(x,y)}$ is strictly decreasing,

b4)
$$xy - \left(x - \varepsilon \frac{y}{\sqrt{x^2 + y^2}}\right) \left(y - \varepsilon \frac{x}{\sqrt{x^2 + y^2}}\right) \ge \frac{\varepsilon^2}{2}$$
 (equivalently, $\psi_{(x,y)}(0) - \psi_{(x,y)}(1) \ge \frac{\varepsilon^2}{2}$) for every $(x, y) \in D$.

The proofs of b(1) - b(4) are analogous to those for a(1) - a(4) and we omit them.

Now, let us take any $h \in C(0,1)$ such that $\operatorname{dist}(h,fg) \leq \frac{\varepsilon^2}{2}$. For every $t \in (0,1)$ we have

$$f(t)g(t) - \frac{\varepsilon^2}{2} \le h(t) \le f(t)g(t) + \frac{\varepsilon^2}{2},$$
 hence by a4) and b4)

$$\begin{split} \left(f(t) - \varepsilon \frac{g(t)}{\sqrt{(f(t))^2 + (g(t))^2}}\right) \left(g(t) - \varepsilon \frac{f(t)}{\sqrt{(f(t))^2 + (g(t))^2}}\right) &\leq h(t) \leq \\ \left(f(t) + \varepsilon \frac{g(t)}{\sqrt{(f(t))^2 + (g(t))^2}}\right) \left(g(t) + \varepsilon \frac{f(t)}{\sqrt{(f(t))^2 + (g(t))^2}}\right) \end{split}$$

(or equivalently $\psi_{(f(t),g(t))}(1) \leq h(t) \leq \varphi_{(f(t),g(t))}(1)$). Therefore (by a1), a3), b1), b3) and the Darboux property) for every $t \in (0,1)$ there exists exactly one point $v^t = (v_x^t, v_y^t)$ lying on the broken line with vertices $\beta(f(t), g(t))$, (f(t), g(t)) and $\alpha(f(t), g(t))$ such that $v_x^t v_y^t = h(t)$. Now, we may define functions $f_1, g_1: (0, 1) \to \mathbb{R}$ as $f_1(t) = v_x^t$ and $g_1(t) = v_y^t$ for every $t \in (0, 1)$. It follows directly from the definitions of f_1 and g_1 that $f_1g_1 = h$ and by a2) and b2)

$$\begin{aligned} \left| \left| \left(f_1(t), g_1(t) \right) - \left(f(t), g(t) \right) \right| \right| &\leq \\ &\leq \max \left\{ \left| \left| \alpha \left(f(t), g(t) \right) - \left(f(t), g(t) \right) \right| \right|, \left| \left| \beta \left(f(t), g(t) \right) - \left(f(t), g(t) \right) \right| \right| \right\} = \varepsilon \end{aligned} \right. \end{aligned}$$

for every $t \in (0, 1)$. Hence $\operatorname{dist}(f, f_1) \leq \varepsilon$ and $\operatorname{dist}(g, g_1) \leq \varepsilon$. It remains to show that f_1 and g_1 are continuous.

Let $t_0 \in (0,1)$ and let $(t_n)_{n \in \mathbb{N}}$ be any sequence convergent to t_0 . By the continuity of f, g, α and β , we have $\lim_{n\to\infty} (f(t_n), g(t_n)) = (f(t_0), g(t_0))$, $\lim_{n\to\infty} \alpha(f(t_n), g(t_n)) = \alpha(f(t_0), g(t_0))$ and $\lim_{n\to\infty} \beta(f(t_n), g(t_n)) = \beta(f(t_0), g(t_0))$. Every point v^{t_n} lies on the broken line with vertices $\beta(f(t_n), g(t_n)), (f(t_n), g(t_n))$ and $\alpha(f(t_n), g(t_n))$. Hence $(v^{t_n})_{n\in\mathbb{N}}$ is a bounded sequence in \mathbb{R}^2 . Thus it has a convergent subsequence $(v^{t_{n_k}})_{k\in\mathbb{N}}$. Let $v_0 = (v_x^0, v_y^0) = \lim_{k\to\infty} v^{t_{n_k}}$. Again, using the facts that every point $v^{t_{n_k}}$ lies on the broken line with vertices $\beta(f(t_{n_k}), g(t_{n_k})), (f(t_{n_k}), g(t_{n_k}))$ and $\alpha(f(t_{n_k}), g(t_{n_k}))$.

238

and that vertices of those broken lines converge to $\beta(f(t_0), g(t_0)), (f(t_0), g(t_0))$ and $\alpha(f(t_0), g(t_0))$ respectively, we get that v^0 lies on the broken line with vertices $\beta(f(t_0), g(t_0)), (f(t_0), g(t_0))$ and $\alpha(f(t_0), g(t_0))$. Next, by the continuity of h and by the continuity of multiplication we get

$$v_x^0 v_y^0 = \lim_{k \to \infty} v_x^{t_{n_k}} v^{t_{n_k}} = \lim_{k \to \infty} h(t_{n_k}) = h(t_0).$$

But on the broken line with vertices $\beta(f(t_0), g(t_0))$, $(f(t_0), g(t_0))$ and $\alpha(f(t_0), g(t_0))$ there is only one point v^{t_0} such that $v_x^{t_0}v_y^{t_0} = h(t_0)$. Thus $v_0 = v^{t_0}$. It follows that $\lim_{k\to\infty} f_1(t_{n_k}) = f_1(t_0)$ and $\lim_{k\to\infty} g_1(t_{n_k}) = g_1(t_0)$. It proves that f_1 and g_1 are continuous functions.

Corollary 1. Let $f, g \in C(0, 1)$ and $\varepsilon > 0$ be such that $||(f(t), g(t))|| \ge \varepsilon$ for every $t \in (0, 1)$. Then $\overline{B}(fg, \frac{\varepsilon^2}{2}) \subset \overline{B}(f, \varepsilon)\overline{B}(g, \varepsilon)$, where $\overline{B}(f, \varepsilon)\overline{B}(g, \varepsilon) = \{\tilde{f}\tilde{g}: \tilde{f} \in \overline{B}(f, \varepsilon), \tilde{g} \in \overline{B}(g, \varepsilon)\}.$

Lemma 1. For any continuous functions $f, g: (0,1) \to \mathbb{R}$ and for every $\varepsilon > 0$ there exist continuous functions $\tilde{f}, \tilde{g}: (0,1) \to \mathbb{R}$ such that $\operatorname{dist}(f, \tilde{f}) \leq 2\varepsilon$, $\operatorname{dist}(g, \tilde{g}) \leq 2\varepsilon$ and $||(\tilde{f}(t), \tilde{g}(t))|| \geq \varepsilon$ for every $t \in (0, 1)$.

PROOF. Let $A = \{t \in (0,1) : |f(t)| < \varepsilon\}$ and $B = \{t \in (0,1) : |g(t)| < \varepsilon\}$. Since f and g are continuous functions, the sets A and B are open. Hence $A = \bigcup_{k \in K} (a_k, b_k)$, where intervals (a_k, b_k) are pairwise disjoint and K is a countable set. Moreover $|f(a_k)| = |f(b_k)| = \varepsilon$ for every $k \in K$. Next, let $K_t = \{k \in K: (a_t, b_t) \cap B = \emptyset\}$

$$K_1 = \{k \in K : (a_k, b_k) \cap B = \emptyset\},\$$

$$K_2 = \{k \in K : (a_k, b_k) \cap B \neq \emptyset \land f(a_k) = f(b_k)\},\$$

and

 $K_3 = \{k \in K \colon (a_k, b_k) \cap B \neq \emptyset \land f(a_k) \neq f(b_k)\}.$

Obviously, $K = K_1 \cup K_2 \cup K_3$ and K_1, K_2, K_3 are pairwise disjoint. Since f is continuous, $f((a_k, b_k)) \supset (-\varepsilon, \varepsilon)$ for every $k \in K_3$. Therefore, again by the continuity of f, the family $\{(a_k, b_k)\}_{k \in K_3}$ is locally finite in (0, 1). For every $k \in K_3$ we may choose open intervals (α_k, β_k) and (γ_k, δ_k) such that

 $[\gamma_k, \delta_k] \subset (\alpha_k, \beta_k) \subset [\alpha_k, \beta_k] \subset (a_k, b_k)$

and $(\alpha_k, \beta_k) \subset B$. Now, we may define functions $\tilde{f}, \tilde{g}: (0, 1) \to \mathbb{R}$:

$$\widetilde{f}(t) = \begin{cases} f(x) & for \quad t \in ((0,1) \setminus A) \cup \bigcup_{k \in K_1} (a_k, b_k) \\ f(a_k) & for \quad t \in (a_k, b_k) \text{ and } k \in K_2, \\ f(a_k) & for \quad t \in (a_k, \gamma_k] \text{ and } k \in K_3, \\ f(b_k) & for \quad t \in [\delta_k, b_k) \text{ and } k \in K_3, \\ \text{linear on intervals } [\gamma_k, \delta_k] \text{ for every } k \in K_3, \end{cases}$$

and

$$\widetilde{g}(t) = \begin{cases} g(t) & for \quad t \in (0,1) \setminus \bigcup_{k \in K_3} (\alpha_k, \beta_k), \\ \varepsilon & for \quad t \in \bigcup_{k \in K_3} [\gamma_k, \delta_k], \\ \text{linear on intervals } [\alpha_k, \gamma_k] \text{ and } [\delta_k, \beta_k] \text{ for every } k \in K_3 \end{cases}$$

(It may happen that $a_k = 0$ or $b_k = 1$ for some $k \in K$ and then $f(a_k)$ or $f(b_k)$ do not exist. In this case, we take simply $\lim_{t\to a_k} f(t)$ and $\lim_{t\to b_k} f(t)$ instead of $f(a_k)$ and $f(b_k)$ in the definition of f.)

Since $\widetilde{f}_{|(0,1)\setminus A} = f_{|(0,1)\setminus A}$ and $|\widetilde{f}(t)| \leq \varepsilon \geq |f(t)|$ for $t \in A$, we immediately get dist $(f, f) \leq 2\varepsilon$. Similarly, since $\widetilde{g}_{|(0,1)\setminus B} = g_{|(0,1)\setminus B}$ and $|\widetilde{g}(t)| \leq \varepsilon \geq |g(t)|$ for $x \in B$, we have dist $(q, \tilde{q}) \leq 2\varepsilon$. Obviously, $||(\tilde{f}(t), \tilde{q}(t))|| \geq \varepsilon$ for every $t \in (0,1)$, because if $|f(t)| < \varepsilon$ then $|\tilde{g}(t)| \ge \varepsilon$, and if $|\tilde{g}(t)| < \varepsilon$ then $|f(t)| \ge \varepsilon$. It remains to prove the continuity of \tilde{f} and \tilde{g} . By definition, the restrictions of \tilde{g} to $\bigcup_{k \in K_3} [\alpha_k, \beta_k]$ and to $(0, 1) \setminus \bigcup_{k \in K_3} (\alpha_k, \beta_k)$ are continuous, and by local finiteness of $\{[\alpha_k, \beta_k]\}_{k \in K_3}, \tilde{g}$ is continuous on the whole interval (0, 1). Similarly, the function \tilde{f} is continuous on $((0,1) \setminus A) \cup \bigcup_{k \in K_1} (a_k, b_k)$ and on $\bigcup_{k \in K_2 \cup K_3} [a_k, b_k]$. Since $\widetilde{f}((a_k, b_k)) = \{\lim_{t \to a_k} f(t)\}$ for $k \in K_2$ and since $\{[a_k, b_k]: k \in K_3\}$ is locally finite, we get that the function \widetilde{f} is continuous on (0,1). \square

Theorem 2. Multiplication in the space C(0,1) is a weakly open mapping.

PROOF. Let U be any nonempty open subset of $C(0,1) \times C(0,1)$. There exist $f,g \in C(0,1)$ and $\varepsilon > 0$ such that $B(f,4\varepsilon) \times B(g,4\varepsilon) \subset U$. By Lemma 1, we can find $\tilde{f}, \tilde{g} \in C(0,1)$ for which $\operatorname{dist}(\tilde{f}, f) \leq 2\varepsilon$, $\operatorname{dist}(\tilde{g}, g) \leq 2\varepsilon$ and $||(\widetilde{f}(t),\widetilde{g}(t))|| \ge \varepsilon$ for $t \in (0,1)$. Then by Theorem 1,

 $B(\widetilde{f}\widetilde{g},\frac{\varepsilon^2}{2})\subset \overline{B}(\widetilde{f},\varepsilon)\overline{B}(\widetilde{g},\varepsilon)\subset \overline{B}(f,3\varepsilon)\overline{B}(g,3\varepsilon)\subset B(f,4\varepsilon)B(g,4\varepsilon).$ Hence

 $B(\widetilde{fg}, \frac{\varepsilon^2}{2}) \subset Int\{f_1f_2 \colon (f_1, f_2) \in U\} \neq \emptyset.$ It follows that the multiplication in the space C(0, 1) is a weakly open mapping.

Corollary 2. From Theorem 2 it easily follows that multiplication is weakly open in C([0,1]) (this yields a new proof of the known result). Namely, consider an open set $U = B(f,r) \times B(q,r)$ where B(f,r) and B(q,r) are balls in C([0,1]). By the Tietze Extension Theorem we extend f, g to $f^*, g^* \in$ C(-1,2). Then applying Theorem 2 to the set $U^* = B(f^*,r) \times B(g^*,r)$ open in $C(-1,2) \times C(-1,2)$ we find a ball $B(h,\varepsilon)$ in C(-1,2) witnessing that the respective interior is not nonempty. Finally, we "restrict" this ball to C([0,1]).

References

- M. Balcerzak, A. Wachowicz, and W. Wilczyński Multiplying balls in the space of continuous functions on [0, 1], Studia Math. 170 (2005), 203–209.
- [2] M. Burke, Continuous functions which take a somewhere dense set of values on every open set, Topology Appl. 103 (2000), 95-110.
- [3] A. Komisarski, A connection between multiplication in C(X) and the dimension of X, Fund. Math. **189** (2006), 149–154.
- [4] A. Wachowicz, Baire category and standard operations on pairs of continuous functions, Tatra Mt. Math. Publ. **24** (2002), 141–146.
- [5] A. Wachowicz, On some residual sets, PhD dissertation, Łódź Technical Univ., Łódź (2004), (Polish).

Stanisław Kowalczyk