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WEAK OPENNESS OF MULTIPLICATION
IN THE SPACE C(0, 1)

Abstract

Let C(0, 1) be the space of all continuous real-valued functions de-
fined on an open interval (0, 1). We shall show that the multiplication
is a weakly open operation in C(0, 1).

Let C(0, 1) be the space of all continuous real-valued functions in (0, 1)
with the metric dist(f, g) = min{sup{|f(t) − g(t)| : t ∈ (0, 1)}, 1}. There
are some natural operations on C(0, 1), for example, addition, multiplication,
minimum and maximum. In [1, 4, 5] such operations were investigated in the
space C([0, 1]) of all continuous real-valued functions defined on [0, 1]. All
the operations are continuous but only addition, minimum and maximum are
open as mappings from C([0, 1]) × C([0, 1]) to C([0, 1]). It is interested that
multiplication is not continuous in C(0, 1). Namely, convergence in C(0, 1) is
equivalent to the uniform convergence. Consider fn(x) = 1

n and gn(x) = 1
x

for any n ∈ N and x ∈ (0, 1). Then the sequence (fn · gn) is not uniformly
convergent to limn→∞ fn · limn→∞ gn = 0.

Definition 1. [1, 2] A map between topological spaces is weakly open if the
image of every non-empty open set has a non-empty interior.

In [1] it is shown that the multiplication in C([0, 1]) is a weakly open
operation. In [3] there are considered some properties of multiplication in
the algebra C(X) of real-valued continuous functions defined on a compact
topological space X.

During 22th SUMMER CONFERENCE ON REAL FUNCTION THE-
ORY, Stará Lesná, Slovakia 31.08-05.09 2009 Artur Wachowicz showed that
multiplication in C(0, 1) is not an open operation and asked the question:
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Does multiplication is a weakly open mapping in the space C(0, 1)?
In the present paper we give a positive answer to this question.
Let B(f, r) ( B(f, r) ) denote an open ( respectively, closed ) ball centered

at f and of radius r > 0 in C(0, 1) and let ||·|| stand for the standard euclidean
norm in R2.

Theorem 1. Let f, g ∈ C(0, 1) and ε > 0 be such that ||(f(t), g(t))|| ≥ ε for
every t ∈ (0, 1). Then for every h ∈ C(0, 1) satisfying condition dist(h, fg) ≤
ε2

2 , there exist f1, g1 ∈ C(0, 1) such that dist(f, f1) ≤ ε, dist(g, g1) ≤ ε and
f1g1 = h.

Proof. Let D = {(x, y) ∈ R2 : ||(x, y)|| ≥ ε}. We define a function α : D →
R2

α(x, y) =
(
x+ ε y√

x2+y2
, y + ε x√

x2+y2

)
.

Next, for every (x, y) ∈ D we define a function ϕ(x,y) : [0, 1]→ R

ϕ(x,y)(t) =
(
x+ tε y√

x2+y2

)(
y + tε x√

x2+y2

)
.

The function ϕ(x,y) is just the restriction of the multiplication to the line seg-
ment starting at (x, y) and ending at α(x, y). We will show that the following
properties are fulfilled:

a1) α is continuous,

a2) ||α(x, y)− (x, y)|| = ε for every (x, y) ∈ D,

a3) for every (x, y) ∈ D the function ϕ(x,y) is strictly increasing,

a4)
(
x+ ε y√

x2+y2

)(
y + ε x√

x2+y2

)
− xy ≥ ε2

2 (equivalently,

ϕ(x,y)(1)− ϕ(x,y)(0) ≥ ε2

2 ) for every (x, y) ∈ D.

Property a1) follows directly from the definition of α.

a2) We have

||α(x, y)− (x, y)|| =
∣∣∣∣∣∣∣∣(ε y√

x2+y2
, ε x√

x2+y2

)∣∣∣∣∣∣∣∣ = ε
√

y2

x2+y2 + x2

x2+y2 = ε

for every (x, y) ∈ D.
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a3) We easily compute ϕ(x,y)(t) = xy + tε x2+y2√
x2+y2

+ t2ε2 xy
x2+y2 . Hence

ϕ′(x,y)(t) = ε x2+y2√
x2+y2

+ 2tε2 xy
x2+y2 = ε

(√
x2 + y2 + tε 2xy

x2+y2

)
.

And since 2|xy|
x2+y2 ≤ 1 and ε ≤

√
x2 + y2 for every (x, y) ∈ D we get

ϕ′(x,y)(t) ≥ ε
(√

x2 + y2 − tε 2|xy|
x2+y2

)
≥

≥ ε
(√

x2 + y2 − t
√
x2 + y2

)
≥ ε
√
x2 + y2(1− t).

Hence ϕ′(x,y)(t) ≥ 0 for t ∈ [0, 1] and ϕ′(x,y)(t) > 0 for t ∈ [0, 1). Therefore
ϕ(x,y) is a strictly increasing function for every (x, y) ∈ D.

a4) For every (x, y) ∈ D, we have(
x+ ε y√

x2+y2

)(
y + ε x√

x2+y2

)
−xy = xy+ε x2+y2√

x2+y2
+ε2 xy

x2+y2−xy =

= ε

(
x2+y2√
x2+y2

+ ε xy
x2+y2

)
≥ ε

(√
x2 + y2 − ε |xy|

x2+y2

)
≥

≥ ε
(√

x2 + y2 − ε
2

)
≥ ε

(√
x2 + y2 −

√
x2+y2

2

)
= ε

2

√
x2 + y2 ≥ ε2

2 .

Thus properties a1)− a4) are proven.
Similarly, define a function β : D → R2:

β(x, y) =
(
x− ε y√

x2+y2
, y − ε x√

x2+y2

)
,

and for every (x, y) ∈ D, define a function ψ(x,y) : [0, 1]→ R,

ψ(x,y)(t) =
(
x− tε y√

x2+y2

)(
y − tε x√

x2+y2

)
.

The function ψ(x,y) is just the restriction of the multiplication to the line
segment starting at (x, y) and ending at β(x, y). We shall show that the
following properties are fulfilled:

b1) β is continuous,

b2) ||β(x, y)− (x, y)|| = ε for every (x, y) ∈ D,
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b3) for every (x, y) ∈ D the function ψ(x,y) is strictly decreasing,

b4) xy −
(
x− ε y√

x2+y2

)(
y − ε x√

x2+y2

)
≥ ε2

2 (equivalently, ψ(x,y)(0) −

ψ(x,y)(1) ≥ ε2

2 ) for every (x, y) ∈ D.

The proofs of b1) − b4) are analogous to those for a1) − a4) and we omit
them.

Now, let us take any h ∈ C(0, 1) such that dist(h, fg) ≤ ε2

2 . For every
t ∈ (0, 1) we have

f(t)g(t)− ε2

2 ≤ h(t) ≤ f(t)g(t) + ε2

2 ,
hence by a4) and b4)(

f(t)− ε g(t)√
(f(t))2+(g(t))2

)(
g(t)− ε f(t)√

(f(t))2+(g(t))2

)
≤ h(t) ≤(

f(t) + ε g(t)√
(f(t))2+(g(t))2

)(
g(t) + ε f(t)√

(f(t))2+(g(t))2

)
( or equivalently ψ(f(t),g(t))(1) ≤ h(t) ≤ ϕ(f(t),g(t))(1) ). Therefore (by a1), a3),
b1), b3) and the Darboux property) for every t ∈ (0, 1) there exists exactly
one point vt = (vt

x, v
t
y) lying on the broken line with vertices β

(
f(t), g(t)

)
,(

f(t), g(t)
)

and α
(
f(t), g(t)

)
such that vt

xv
t
y = h(t). Now, we may define

functions f1, g1 : (0, 1) → R as f1(t) = vt
x and g1(t) = vt

y for every t ∈ (0, 1).
It follows directly from the definitions of f1 and g1 that f1g1 = h and by a2)
and b2)∣∣∣∣(f1(t), g1(t)

)
−
(
f(t), g(t)

)∣∣∣∣ ≤
≤ max

{∣∣∣∣α(f(t), g(t)
)
−
(
f(t), g(t)

)∣∣∣∣, ∣∣∣∣β(f(t), g(t)
)
−
(
f(t), g(t)

)∣∣∣∣} = ε

for every t ∈ (0, 1). Hence dist(f, f1) ≤ ε and dist(g, g1) ≤ ε. It remains to
show that f1 and g1 are continuous.

Let t0 ∈ (0, 1) and let (tn)n∈N be any sequence convergent to t0. By the
continuity of f , g, α and β, we have limn→∞

(
f(tn), g(tn)

)
=
(
f(t0), g(t0)

)
,

limn→∞ α
(
f(tn), g(tn)

)
= α

(
f(t0), g(t0)

)
and limn→∞ β

(
f(tn), g(tn)

)
=

β
(
f(t0), g(t0)

)
. Every point vtn lies on the broken line with vertices

β
(
f(tn), g(tn)

)
,
(
f(tn), g(tn)

)
and α

(
f(tn), g(tn)

)
. Hence (vtn)n∈N is a bounded

sequence in R2. Thus it has a convergent subsequence
(
vtnk

)
k∈N. Let v0 =

(v0
x, v

0
y) = limk→∞ vtnk . Again, using the facts that every point vtnk lies on the

broken line with vertices β
(
f(tnk

), g(tnk
)
)
,
(
f(tnk

), g(tnk
)
)

and α
(
f(tnk

), g(tnk
)
)
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and that vertices of those broken lines converge to β
(
f(t0), g(t0)

)
,
(
f(t0), g(t0)

)
and α

(
f(t0), g(t0)

)
respectively, we get that v0 lies on the broken line with ver-

tices β
(
f(t0), g(t0)

)
,
(
f(t0), g(t0)

)
and α

(
f(t0), g(t0)

)
. Next, by the continuity

of h and by the continuity of multiplication we get

v0
xv

0
y = lim

k→∞
v

tnk
x vtnk = lim

k→∞
h(tnk

) = h(t0).

But on the broken line with vertices β
(
f(t0), g(t0)

)
,
(
f(t0), g(t0)

)
and

α
(
f(t0), g(t0)

)
there is only one point vt0 such that vt0

x v
t0
y = h(t0). Thus v0 =

vt0 . It follows that limk→∞ f1(tnk
) = f1(t0) and limk→∞ g1(tnk

) = g1(t0). It
proves that f1 and g1 are continuous functions.

Corollary 1. Let f, g ∈ C(0, 1) and ε > 0 be such that ||(f(t), g(t))|| ≥ ε for
every t ∈ (0, 1). Then B(fg, ε2

2 ) ⊂ B(f, ε)B(g, ε), where
B(f, ε)B(g, ε) = {f̃ g̃ : f̃ ∈ B(f, ε), g̃ ∈ B(g, ε)}.

Lemma 1. For any continuous functions f, g : (0, 1)→ R and for every ε > 0
there exist continuous functions f̃ , g̃ : (0, 1) → R such that dist(f, f̃) ≤ 2ε,
dist(g, g̃) ≤ 2ε and

∣∣∣∣(f̃(t), g̃(t)
)∣∣∣∣ ≥ ε for every t ∈ (0, 1).

Proof. Let A = {t ∈ (0, 1) : |f(t)| < ε} and B = {t ∈ (0, 1) : |g(t)| < ε}.
Since f and g are continuous functions, the sets A and B are open. Hence
A =

⋃
k∈K(ak, bk), where intervals (ak, bk) are pairwise disjoint and K is a

countable set. Moreover |f(ak)| = |f(bk)| = ε for every k ∈ K. Next, let
K1 = {k ∈ K : (ak, bk) ∩B = ∅},

K2 = {k ∈ K : (ak, bk) ∩B 6= ∅ ∧ f(ak) = f(bk)},
and

K3 = {k ∈ K : (ak, bk) ∩B 6= ∅ ∧ f(ak) 6= f(bk)}.
Obviously, K = K1 ∪K2 ∪K3 and K1, K2, K3 are pairwise disjoint. Since f
is continuous, f

(
(ak, bk)

)
⊃ (−ε, ε) for every k ∈ K3. Therefore, again by the

continuity of f , the family {(ak, bk)}k∈K3 is locally finite in (0, 1). For every
k ∈ K3 we may choose open intervals (αk, βk) and (γk, δk) such that

[γk, δk] ⊂ (αk, βk) ⊂ [αk, βk] ⊂ (ak, bk)
and (αk, βk) ⊂ B. Now, we may define functions f̃ , g̃ : (0, 1)→ R:

f̃(t) =


f(x) for t ∈

(
(0, 1) \A

)
∪
⋃

k∈K1
(ak, bk),

f(ak) for t ∈ (ak, bk) and k ∈ K2,
f(ak) for t ∈ (ak, γk] and k ∈ K3,
f(bk) for t ∈ [δk, bk) and k ∈ K3,

linear on intervals [γk, δk] for every k ∈ K3,



240 Stanis law Kowalczyk

and

g̃(t) =


g(t) for t ∈ (0, 1) \

⋃
k∈K3

(αk, βk),
ε for t ∈

⋃
k∈K3

[γk, δk],
linear on intervals [αk, γk] and [δk, βk] for every k ∈ K3.

( It may happen that ak = 0 or bk = 1 for some k ∈ K and then f(ak) or
f(bk) do not exist. In this case, we take simply limt→ak

f(t) and limt→bk
f(t)

instead of f(ak) and f(bk) in the definition of f̃ .)
Since f̃|(0,1)\A = f|(0,1)\A and |f̃(t)| ≤ ε ≥ |f(t)| for t ∈ A, we immediately

get dist(f, f̃) ≤ 2ε. Similarly, since g̃|(0,1)\B = g|(0,1)\B and |g̃(t)| ≤ ε ≥ |g(t)|
for x ∈ B, we have dist(g, g̃) ≤ 2ε. Obviously, ||(f̃(t), g̃(t))|| ≥ ε for every
t ∈ (0, 1), because if |f̃(t)| < ε then |g̃(t)| ≥ ε, and if |g̃(t)| < ε then |f̃(t)| ≥ ε.
It remains to prove the continuity of f̃ and g̃. By definition, the restrictions
of g̃ to

⋃
k∈K3

[αk, βk] and to (0, 1) \
⋃

k∈K3
(αk, βk) are continuous, and by

local finiteness of {[αk, βk]}k∈K3 , g̃ is continuous on the whole interval (0, 1).
Similarly, the function f̃ is continuous on

(
(0, 1) \A

)
∪
⋃

k∈K1
(ak, bk) and on⋃

k∈K2∪K3
[ak, bk]. Since f̃

(
(ak, bk)

)
= {limt→ak

f(t)} for k ∈ K2 and since
{[ak, bk] : k ∈ K3} is locally finite, we get that the function f̃ is continuous on
(0, 1).

Theorem 2. Multiplication in the space C(0, 1) is a weakly open mapping.

Proof. Let U be any nonempty open subset of C(0, 1)×C(0, 1). There exist
f, g ∈ C(0, 1) and ε > 0 such that B(f, 4ε) × B(g, 4ε) ⊂ U . By Lemma 1,
we can find f̃ , g̃ ∈ C(0, 1) for which dist(f̃ , f) ≤ 2ε, dist(g̃, g) ≤ 2ε and
||(f̃(t), g̃(t))|| ≥ ε for t ∈ (0, 1). Then by Theorem 1,

B(f̃ g̃, ε2

2 ) ⊂ B(f̃ , ε)B(g̃, ε) ⊂ B(f, 3ε)B(g, 3ε) ⊂ B(f, 4ε)B(g, 4ε).
Hence

B(f̃ g̃, ε2

2 ) ⊂ Int{f1f2 : (f1, f2) ∈ U} 6= ∅.
It follows that the multiplication in the space C(0, 1) is a weakly open mapping.

Corollary 2. From Theorem 2 it easily follows that multiplication is weakly
open in C([0, 1]) (this yields a new proof of the known result). Namely, con-
sider an open set U = B(f, r) × B(g, r) where B(f, r) and B(g, r) are balls
in C([0, 1]). By the Tietze Extension Theorem we extend f , g to f∗, g∗ ∈
C(−1, 2). Then applying Theorem 2 to the set U∗ = B(f∗, r)×B(g∗, r) open
in C(−1, 2) × C(−1, 2) we find a ball B(h, ε) in C(−1, 2) witnessing that the
respective interior is not nonempty. Finally, we ”restrict” this ball to C([0, 1]).
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