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CHANGE OF VARIABLE THEOREMS FOR
THE KH INTEGRAL

Abstract

Let f : [a, b] ⊆ R̄ → E and ϕ : [a, b] → F , where (E ,F ,G) is a
Banach space triple. a) We prove that if ϕ is continuous [c, d] → [a, b]
and f ◦ψ · dϕ ◦ψ is Kurzweil or Henstock variationally integrable, then
so is f · dϕ and fulfills the well known change of variable formula. It
follows that if ψ is an indefinite Henstock integral and if f ◦ψ ψ′dx is K-
H integrable, then so is fdx and the change of variable formula applies.
b) We produce several versions of the converse of a), that is, we give
necessary and sufficient conditions in order that with ψ as above, the
integrability of f · dϕ implies that of f ◦ ψ · dϕ ◦ ψ and the change of
variable formula.

1 Introduction.

The problem of change of variable in the integral has a long history. It is
best formulated in the context of the Kurzweil-Henstock-Stieltjes integral, and
consists in finding the best conditions under which the relation∫ b

a

f ◦ ψ · d(ϕ ◦ ψ) =
∫ ψ(b)

ψ(a)

f · dϕ (A)

holds, when one of these two integrals exists. Sometimes, the existence of
the first integral is given and one wants to ensure the existence of the second
one: this is what we call the first category change of variable theorems; and
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sometimes the existence of the second integral is given and one wants to ensure
the existence of the first one: this is the second category change of variable
theorems. Mostly, change of variable theorems replace expression (A) by∫ b

a

f ◦ ψ · ψ′dx =
∫ ψ(b)

ψ(a)

f · dx; (B)

that is, they assume that 1) ϕ = Id, 2) ψ is absolutely continuous, and 3)
(almost always) ψ is a real valued function. This is necessary in order to handle
the problem in the context of the Lebesgue integral (the more general form (A)
isn’t relevant since the Stieltjes extension of the Lebesgue integral must assume
the integrator monotonic). But even in this reduced form, the question has a
long history (see [8]). Nevertheless, it is only recently that Leader succeeded in
proving that the only three assumptions above are sufficient to ensure formula
(B), when the existence of the first integral is assumed [6]. Actually, Leader
proved a formula of the form (A) in the context of the Kurzweil-Henstock-
Stieltjes integral, where he assumed ψ and ϕ continuous, ψ real valued of
bounded variation, and f ◦ψ ·d(ϕ◦ψ) absolutely integrable (this implies easily
the first category version of (B) for the Lebesgue integral). His proof relies
heavily upon a nice generalization of his own of the Banach indicatrix theorem,
that can be stated only in the context of the Kurzweil-Henstock integral.
Moreover, Leader was able to express the absolute integral

∫ b
a
f ◦ψ · |d(ϕ ◦ψ)|

by mean of his generalized Banach indicatrix. The result of Leader can be seen
as an achievement in the Lebesgue integration theory, for it is probably the best
possible (first category) change of variable theorem one can give in this context.
But from the point of view of the Kurzweil-Henstock integration theory, this
result is not entirely satisfactory: Indeed, the function ψ has to be of bounded
variation, and f ◦ ψ · d(ϕ ◦ ψ) absolutely integrable, what makes this result a
theorem in absolute integration. Second, the proof of Leader is intricate and
seems very difficult to generalize to Banach space valued functions f and ϕ,
whenever there exists a product between the respective Banach spaces. Other
previous works on first category theorems in the context of the KH-integration
include formulae of type (A), where ψ is assumed strictly monotonic. This is
not too difficult to prove and actually, is an important step in the proof of
our theorems. There is also a change of variable formula for the distributional
integral (see [9]).

In this paper, we give a first category theorem of the form (A) that removes
all the restrictions above, valid for Banach Space valued functions f and ϕ:
Suppose the first integral in formula (A) exists; if the function ψ is not contin-
uous, then without very specific additional conditions on f , the above relation
is easily seen to be false (even if ϕ = Id). So, to ensure the existence of the
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last integral, the condition that ψ be continuous seems to be not too much
exaggerated. We have found, and this is the content of Thm. 6.1 below, that
this only condition is sufficient. As a simple corollary, we deduce formula
(B), which provides an alternative proof of the result of Leader. The demon-
stration of Thm. 6.1 is not terribly complicated, as soon as one has shown
the following assertion: Assume that ψ is continuous in some finite interval
[a, b], that f ◦ ψ d(ϕ ◦ ψ) is integrable in [a, b], and that ψ(a) = ψ(b). Then∫ b
a
f ◦ ψ d(ϕ ◦ ψ) = 0. The proof of this assertion is indirect, like the proof of

the Cousin lemma: it consists in showing that for every given positive function
δ defined in [a, b], there exists a tagged division D of [a, b] subordinated to δ
such that the Riemann sum associated to D and to f ◦ ψ d(ϕ ◦ ψ) is equal to
0 (Lemma 6.5).

The second category change of variable theorems seem more difficult to
handle: assuming the existence of the second integral in (A), there is no
simple natural condition on ψ one can hope to ensure the existence of the
first integral and formula (A) (the continuity of ψ is very unlikely to provide
such a condition, despite we know no counterexample). We shall nevertheless
provide theorems of this kind that are better than all we know on the subject.
Let us assume in the sequel that ψ is continuous, and put F (x) =

∫ x
a
f · dϕ.

In Thm. 7.5, we assume furthermore the function ψ is locally decomposable in
its domain, at all but a countable number of points; by “decomposable” at x,
we mean that the slopes of ψ at x are either non-negative, or non-positive, or
that x is a strict maximum or a strict minimum of ψ. In these conditions, the
second category version of (A) holds. Since almost all the continuous functions
that occur in practice are decomposable at all but a countable number of
points, this theorem has some practical interest. In Thm. 7.2, we assume
the underlying Banach triple fulfills some topological conditions, and that
ψ is surjective. Then we show that the existence of a function g such that
F ◦ ψ(x) =

∫ x
c
g ◦ ψ · dϕ ◦ ψ is sufficient to ensure the second category version

of (A). Finally, in Thm. 7.7, we assume that ϕ(x) = x and investigate two
cases: 1) ψ is of bounded variation and 2) ψ is the indefinite Henstock integral
of a function. The latter case is motivated by the fact that if one defines the
Henstock derivative of a function f as a function f ′ such that f is the Henstock
indefinite integral of f ′, then most of the classical theorems of calculus hold for
this derivative (including the Taylor formula). So it would be nice to include
the chain rule in the list, which is precisely the motivation of the second
case above. Unfortunately, it is difficult to prove or to disprove both cases
(Pb. 7.6). Nevertheless, we have found a small set of points S such that the
second category version of (A) holds whenever S is F ◦ ψ-null.
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2 Definitions and Preliminaries.

2.1 Metric of R̄.

Let R̄ = R ∪ {+∞,−∞} be the extended real line, endowed with its usual
topology, ordering, and operations extending the operations of R. Define
ρ : [−∞,+∞]→ [−1, 1] by ρ(x) = arctan(x)/π. Using the function ρ, we can
endow R̄ with a metric that induces its topology by d̄(x, y) = |ρ(x) − ρ(y)|..
Then the metric d̄ induces the same topology as the usual one on R̄, and makes
R̄ homeomorphic to [0, 1].

In this paper, we use the metric d̄ in the definition of the Kurzweil-Henstock
integral in place of the more topological notion of gauges. The two definitions
are of course equivalent because the metric d̄ generates the topology of R̄.
But the use of a metric seems to us easier and more intuitive, and further-
more allows most of the definitions usually related to compact intervals to be
immediately transposed to R̄.

2.2 Banach Triples.

In the sequel, we consider integrals that involve a product between Banach
spaces. Let us make the convention that (E , ‖ ‖E), (F , ‖ ‖F ) and (G, ‖ ‖G)
denote in the sequel three Banach spaces, endowed with a bilinear product
E × F → G that fulfills (unless specified otherwise)

‖x · y‖G ≤ ‖x‖E‖y‖F , ∀ x ∈ E , y ∈ F .

Notice that this implies in particular the product is continuous E × F → G.
Such a triple of Banach spaces is usually called Banach triple, and denoted
(E ,F ,G). When F = R, one can define a bilinear product E ×F by xλ = λx.
In the sequel, we use indifferently these two notations. This doesn’t harm in
general because the meaning to assign to the product is clear.

2.3 Tagged Intervals and Divisions.

A tagged interval of [a, b] ⊆ R̄ is a couple Î = ([u, v], ξ), where [u, v] ⊆ [a, b]
and ξ ∈ [u, v] or ξ = ∅; The interval [u, v] is by definition the interval of Î.
In case ξ = ∅, we identify Î with [u, v], so the set of tagged intervals of [a, b]
is a superset of the set of intervals of [a, b]. Two tagged intervals are said
to be non-overlapping if the intersection of their intervals is void, or if they
intersect only at their end points. If [a, b] ∈ R, A partial division D of an
interval [a, b] ⊆ R̄ is a finite set of non-overlapping tagged intervals of [a, b]; an
interval of D is the interval of one of its tagged intervals, and an anchor point
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of D is one of the point ξ of the tagged intervals ([u, v], ξ) of D. A tagged
interval ([u, v], ξ) is tame if ξ = u or ξ = v, and a partial division is tame if
each of its tagged intervals is tame. A partial division anchors in a set M if
its anchor points belong to M . A division of [a, b] is a partial division of [a, b]
whose intervals cover [a, b].

Now, suppose that δ : [a, b] → R∗+ is a strictly positive function. A
tagged interval ([u, v], ξ) of [a, b] is subordinated to δ if d̄(ξ, v) < δ(ξ) and
d̄(ξ, u) < δ(ξ). A partial division D of [a, b] is subordinated to δ if each of its
tagged intervals is subordinated to δ; we denote D << δ a partial division D
subordinated to δ. Even if δ is not defined on the whole of [a, b] but only on
the anchor points of D, we say that such a partial division D is subordinated
to δ. The Cousin lemma ensures that for every δ : [a, b] → R∗+, there exists
a division of [a, b] subordinated to δ. The same is true for tame divisions: to
see this, it suffices to take a division subordinated to δ, and to split each of
its tagged intervals ([u, v], ξ) into two tagged interval ([u, ξ], ξ) and ([ξ, v], ξ).

2.4 Interval Functions and Differential Elements.

Assume that (G,F ,G) is a Banach triple, and that [a, b] ⊆ R̄. If δ : [a, b]→ R∗+,
let us denote by ˆIntδ([a, b]) the set of tagged interval of [a, b] subordinated to
δ. A function ˆIntδ([a, b])→ G, for some δ : [a, b]→ R∗+, is called a differential
element of [a, b] (or in abbreviation, a differential of [a, b]). In general, we
denote such a function by a letter preceded by “d”, like “dh”, “dQ” etc. We
also allow notations like dh : [a, b] → G to signify that dh is a differential
element of [a, b] ranging in G. We can add and multiply by scalars differential
elements, the result being again differential elements, denoted by expressions
like λdh1 + dh2 + dh3 whose meaning is clear. Indeed, if δ1 and δ2 are such
that dh1 and dh2 are defined on ˆIntδ1([a, b]) and ˆIntδ2([a, b]) resp., then with
δ = min(δ1, δ2), dh1 and dh2 are clearly defined both on ˆIntδ([a, b]), hence so
is their sums, product with scalars etc. In the same manner, if dh1 ranges in E
and dh2 ranges in F , we can multiply dh1 and dh2 to get differential elements,
denoted dh1 · dh2, with values in G. Also, given a function f : [a, b] → E and
a differential element dh : [a, b]→ F , we can create a new differential denoted
f · dh and defined by

f · dh((I, ξ)) = f(ξ) · dh((I, ξ))

(a similar definition for dh · f , where dh is E-valued and f is F-valued). We
denote by ‖dh‖ the differential

‖dh‖ (Î) = ‖dh(Î)‖.
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If ϕ : [a, b]→ G is a function, then we denote by dϕ the differential

dϕ([u, v]) = ϕ(v)− ϕ(u),

defined on ˆIntδ([a, b]) for any δ. Thus, f · dϕ denotes the differential

f · dϕ(([u, v], ξ) = f(ξ) · (ϕ(v)− ϕ(u)).

Finally, we denote by dx : R̄ → R the differential dϕ, where ϕ(x) = x if
x 6= ±∞, and ϕ(±∞) = 0.

2.5 The Kurzweil Integral.

A differential element dh : [a, b] → G is Kurzweil (or K-) integrable, with
integral equal to S ∈ G, if for every ε > 0, there exists a function δ : [a, b] →
R∗+ such that, for every tame division D of [a, b] subordinated to δ, D is in
the domain of dh and ∥∥∥∥S −∑

Î∈D

dh(Î)
∥∥∥∥G < ε. (1)

It is not difficult to show, with the (tame version of the) Cousin lemma,
that the integral of dh is well defined. Moreover, it doesn’t depend on the
metric d̄, but only on the topology of R̄: any other metric of R̄ that would
induce this topology would give the same result. The K-integral of dh will
be denoted by (K)

∫ b
a

dh, or simply
∫ b
a

dh if there is no risk of confusion.
Also, if f : [a, b] → E , then the integral of f is by definition the integral of
fdx (= dxf), where dx is defined as above.

It may look surprising that we use the notion of tame division in place
of the traditional notion of division in our definition of the Kurzweil integral;
there are several good reasons to do so, by far the most important of which
is the fact that for any function ϕ of bounded variation, ‖dϕ‖ is tamely K-
integrable (with integral equal to the variation of ϕ). On the contrary, this
holds for (traditional) K-integration only if ϕ is continuous from the right or
from the left at any point: consider the function ϕ defined by ϕ(x) = 0 for
all x 6= 0 and ϕ(x) = 1 if x = 0; then it is easily seen (even directly) that
|dϕ| is not (traditional) K-integrable in any interval [a, b] 3 0 with a, b 6= 0.
Nevertheless, we point out that most of the theorems in this paper hold for
KH-integrals defined by mean of classic divisions. In fact, upon redefining in
an obvious way the concepts of “variational equivalence” (see Sec. 3 below),
most of the proofs can be adapted “as is” in the sequel.

Finally, we say that a function F : [a, b] ⊆ R̄ → G is an indefinite integral
in [a, b] if there exists f : [a, b] → G such that f(x) =

∫ x
c
f dx for some c ∈
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[a, b]. It is an indefinite integral in ]a, b[ if it is an indefinite integral in every
[α, β] ⊂]a, b[.

The Kurzweil integral fulfills all the usual properties one may expect of an
integral. We need the following essential theorem in the sequel.

Theorem 2.5.1 (The Henstock-Saks lemma). Let dh : [a, b] ⊆ R̄ → G be a
differential element. Assume that dh is K-integrable in [a, b]. Then for every
ε > 0, there exists a function δ : [a, b] → R∗+ such that, for every PARTIAL
tame division D << δ,∥∥∥∥ ∑

(I,ξ)∈D

∫
I

dh− dh((I, ξ))
∥∥∥∥ < ε. (2)

Furthermore, if G has finite dimension, then condition (2) can be strengthened
to ∑

(I,ξ)∈D

∥∥∥∥∫
I

dh− dh((I, ξ))
∥∥∥∥ < ε. (3)

Proof. The real case is well known, and (2) is an immediate adaptation to
Banach spaces. Assertion (3) can be derived from the more general proposition
3.1 below.

2.6 The Henstock Integral.

It is not true, if G is a general Banach space that condition (3) always holds
(see [3], ex. 2.1 and 3.1). The Henstock integral, that postulates this property,
is less general than the Kurzweil integral, but behaves much better. The
original definition of Henstock was related to additive interval functions. I see
no reason not to generalize his definition to arbitrary differential elements.

Let dh : [a, b] ⊆ R̄→ G be a differential element. Then dh is variationally
(or Henstock) integrable if it is Kurzweil integrable, and condition (3) holds
for a suitable δ. We denote the Henstock integral of dh by (H)

∫ b
a

dh. As
expected again, the Henstock integral fulfills the usual properties of integrals.

We make the following convention in the sequel: If we use the terms “in-
tegrable” or “integral” without other specification in the formulation of a
proposition, it has to be understood either as “Kurzweil integrable/integral”,
or “Henstock integrable/integral” in the whole proposition. Furthermore, if
some integrals appear in such a proposition, then they are either Kurzweil
integrals, or Henstock integrals according to this choice.
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3 Variational Equivalence on a Set.

Let dh1 and dh2 be differential elements [a, b] ⊆ R̄ → G, [α, β] ⊆ [a, b] be an
interval, and M ⊆ R̄ be a set. Then the differential elements dh1 and dh2 will
be said weakly variationally equivalent on M in [α, β], if for every ε > 0, there
exist δ : M ∩ [α, β] → R∗+ such that, for every partial tame division D << δ
of [α, β] that anchors in M ,∥∥∥∑

Î∈D

dh1(Î)− dh2(Î)
∥∥∥ < ε. (4)

The elements dh1 and dh2 will be said variationally equivalent on M in [α, β]
if condition (4) can be strengthened to∑

Î∈D

‖dh1(Î)− dh2(Î)‖ < ε.

We say for convenience that dh1 and dh2 are (weakly) variationally equivalent
on M if they are (weakly) variationally equivalent on M in [a, b]. Similarly,
we say that dh1 and dh2 are (weakly) variationally equivalent if they are
(weakly) variationally equivalent on [a, b] in [a, b]. In the sequel, the notation
dh1 ∼ dh2 means “dh1 is weakly variationally equivalent to dh2”, and the
notation dh1 ≈ dh2 means “dh1 is variationally equivalent to dh2”. To prove
the following proposition, the equivalence of the norms in Rn, or alternatively,
an argument of compacity of the unit ball, must be used.

Proposition 3.1. Assume that G is Banach finite dimensional. Then the
concepts of variational equivalence and of weak variational equivalence coincide
in G.

The remaining propositions and theorems of this section will be used again
and again in the sequel. The proofs present no real difficulties and are omitted
(see also [6]).

Theorem 3.2. Let dh1 and dh2 be differential [a, b] ⊆ R̄ → G. The follow-
ing conditions are sufficient in order that dh1 and dh2 be variationally (resp.
weakly variationally) equivalent on a set M ⊆ [a, b]:

(i) dh1 and dh2 are variationally (resp. weakly variationally) equivalent on
each set of a countable cover {Mk ⊆ [a, b], k ∈ N∗ } of M .

(ii) dh1 and dh2 are variationally (resp. weakly variationally) equivalent on
M in [α, β], for every bounded [α, β] ⊂]a, b[, and also on {a, b} ∩M in
[a, b].
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Furthermore, condition (ii) is necessary in order dh1 and dh2 be varia-
tionally (resp. weakly variationally) equivalent on M , and so is condition (i)
if each Mk ⊆M .

Proposition 3.3. Let [a, b] ⊆ R̄ be given, and differential dh and dh′ [a, b]→
E, dϕ and dϕ′, [a, b] → F , and dh1, dh′1, dh2, dh′2, [a, b] → G. Assume that
M ⊆ R̄ is a set.

(i) If dh1 ≈ dh′1 and dh2 ≈ dh′2 on M then dh1 + dh2 ≈ dh′1 + dh′2 on M.
The same assertion holds for the weak variational equivalence.

(ii) If dh ≈ dh′ on M , then λdh ≈ λdh′ for every λ ∈ R. The same holds
for weak variational equivalence.

(iii) Assume that dh is bounded at every point of M . Then if dϕ ≈ dϕ′ on
M , dh · dϕ ≈ dh · dϕ′ on M. The converse is true provided the product
between E and F is norm preserving.

(iv) If dϕ ≈ dϕ′ on M , then f · dϕ ≈ f · dϕ′ on M for every function
f : [a, b] → E. Conversely, assume that f(x) 6= 0 for all x and that the
product between E and F is norm preserving. Then f · dϕ ≈ f · dϕ′ on
M implies dϕ ≈ dϕ′ on M .

(v) If dh ≈ dh′ and dϕ ≈ dϕ′ on M , then dh ·dϕ ≈ dh′ ·dϕ′ on M , provided
dh and dϕ′ be bounded at every point of M , or dh′ and dϕ be bounded
at every point of M .

(vi) Let g : E → E ′ be a Lipschitz function to another Banach space E ′. Then
if dh ≈ dh′, d(g ◦ dh) ≈ d(g ◦ dh′).

(vii) If dh ≈ dh′ on M , then ‖dh‖ ≈ ‖dh′‖ on M .

(viii) Let ψ : [a, b] → G be of bounded variation in [a, b], and put V (x) =
Varxaψ. Then ‖dψ‖ is (tamely) variationally equivalent to dV . This
doesn’t hold for non-tame equivalence, unless ψ is d̄-continuous from the
right or from the left at any point.

(ix) dh ≈ 0 on M if and only if ‖dh‖ ≈ 0 on M .

(x) If ‖dh‖ ≤ ‖dh′‖ and dh′ ≈ 0, then dh ≈ 0.

(xi) If dh is continuous on a countable set, then it is ≈ 0 on this set. In
particular, if f : [a, b]→ G is continuous, then df ≈ 0 on every countable
set.



176 Michael Bensimhoun

(xii) If dϕ ≈ 0 on M , then f · dϕ ≈ 0 on M for every function f : [a, b]→ E.

In particular, fdx ≈ 0 on every negligible set M ⊂ [a, b]. The converse is
true, provided that f(x) 6= 0 for all x ∈M .

Proposition 3.4. Let F : [a, b] ⊆ R̄→ E be differentiable at every point of a
set T ⊆]a, b[. Then dF ≈ F ′dx and ‖dF‖ ≈ ‖F ′dx‖ on T in [a, b].

Theorem 3.5. Let dh1 and dh2 be differentials [a, b] → G ([a, b] ⊆ R̄). As-
sume that dh1 is K-integrable (resp. H-integrable) in [a, b]. Then in order
that dh2 be K-integrable (resp. H-integrable) in [a,b], it is sufficient that dh2

be weakly variationally equivalent (resp. variationally equivalent) to dh1. In
other words, if dh1 and dh2 are (weakly) variationally equivalent, the integra-
bility of either differential element implies the integrability of the other and
equality of their integrals.

4 Absolute Integrability.

Let dh : [a, b] ⊆ R̄ → G be a differential element. Then dh is absolutely K-
integrable (resp. absolutely H-integrable) in [a, b], if dh is K-integrable (resp.
H-integrable) in [a, b], and ‖dh‖ is TAMELY integrable in [a, b]. It is important
to realize that in this definition, the integrability of dh can be thought either
in the context of tame integration, or in that of non-tame integration, but the
integrability of ‖dh‖ relates to tame integration only. A function f is absolutely
K-integrable (resp. absolutely H-integrable) if fdx is absolutely K-integrable
(resp. H-integrable).

Theorem 4.1. Let f : [a, b] ⊆ R̄→ E and ϕ : [a, b]→ F .
(i) The differential ‖dϕ‖ is tamely H-integrable in [a, b] if and only if ϕ is of
bounded variation in [a, b], and then Varba(ϕ) =

∫ b
a
‖dϕ‖.

(ii) If ϕ is of bounded variation in [a, b] and V (x) = Varxa(ϕ), then f ‖dϕ‖ is
tamely integrable if and only if fdV is, and then

∫ b
a
f ‖dϕ‖ =

∫ b
a
f dV .

Proof. This follows from Prop. 3.3 (viii) and (iv) and Thm. 3.5.

Theorem 4.2. Let f : [a, b] ⊆ R̄ → E be a function and dh : [a, b] → F
be a differential. If f · dh is absolutely integrable in [a, b], then the function
F (x) =

∫ x
a
f · dh is of bounded variation in [a, b]. Conversely, if f · dh is H-

integrable in [a, b] and F (x) =
∫ x
a
f · dh is of bounded variation in [a, b], then

f · dh is absolutely H-integrable in [a, b], with (tame)
∫ b
a
‖f · dh‖ = Varba(F ).
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Proof. The first assertion is straightforward. Conversely, suppose f · dh H-
integrable and F of bounded variation in [a, b]. By the Henstock-Saks lemma,
f · dh ≈ dF in [a, b] (all the equivalence here are tame). Hence ‖f · dh‖ ≈
‖dF‖ in [a, b] (Prop. 3.3 (vii)). Put V (x) = Varxa(F ). Since ‖dF‖ ≈ dV

(by Thm. 4.1 (i)), ‖f · dh‖ ≈ dV in [a, b]. Thus,
∫ b
a
‖f · dh‖ = Varba(F )

(Thm. 3.5).

5 Other Needed Theorems.

Theorem 5.1. Let f and g be defined in [a, b], and dh be a differential of [a, b].
Assume that the products between the underlying Banach spaces is associative,
and that g · dh is Henstock integrable, with G(x) =

∫ x
a
g · dh. Then f · g · dh ≈

f · dG in [a, b]. In particular, if one of the integrals
∫ b
a
f · dG or

∫ b
a
f · g · dh

exists, the other integral exists and they are equal.

Proof. By the Henstock-Saks lemma, dG ≈ g ·dh. By Prop. 3.3 (iv), f ·dG ≈
f · g · dh. Conclude by Thm. 3.5.

In the next theorem (second assertion), we introduce a special condition
on E that is true in euclidean spaces, and more generally in separable spaces
(that is, spaces that have a countable dense subset). We have a proof that is
by no means trivial, but the limitations on the size of the paper prevent us to
give it here.

Theorem 5.2. Let f, g : [a, b] ⊆ R̄ → E and dh : [a, b] → F be such that
f · dh is integrable. Then if f and g differ only on a dh-negligible set of [a, b],
g · dh is integrable and

∫ b
a
f ·dh =

∫ b
a
g ·dh. Conversely, assume that for every

ε > 0, there exists a countable cover of E by balls of radius less than ε, that the
product between E and F is norm-preserving, and that f · dh is H-integrable.
Then if

∫ β
α
f · dh = 0 for all [α, β] ⊆ [a, b], f(x) = 0 dh-almost everywhere in

[a, b].

Theorem 5.3 ([2], Thm. 5.9). Let F : [a, b] ⊆ R̄→ E be a function. Then F is
the Henstock integral of a function f : [a, b]→ E if and only if F is continuous
in [a, b] (relative to d̄), and differentiates to f in ]a, b[, at the possible exception
of a negligible set of points S on which dF ≈ 0. When this occurs, dF ≈ 0 on
every negligible set in [a, b].
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Theorem 5.4 ([7]). Let ψ : [c, d] ⊆ R̄→ [a, b]. Assume that ψ is differentiable
at each point of a set M ⊆ [c, d]. Then ψ(M) is negligible if and only if
ψ′(x) = 0 for almost every point x of M . In particular, if ψ′(x) 6= 0 for every
x ∈M , then M is negligible if and only if ψ(M) is negligible.

Corollary 5.5. Let S ⊆ [a, b] be a negligible set, and ψ : [c, d] ⊆ R̄→ [a, b] ⊆
R be an indefinite H-integral in [c, d]. Then dψ ≈ 0 on ψ−1(S).

Proof. Let ε > 0, and let ψ′ such that ψ(x) =
∫ x
c
ψ′dx. Since dψ ≈ 0 on

the set of points where it is not differentiable (Thm. 3.3 (xii) and 5.3), we
can suppose w.l.g. that ψ is differentiable at every point of ψ−1(S). Since
ψ(ψ−1(S)) ⊆ S, Thm. 5.4 implies that ψ′(x) = 0 for a.e. point x ∈ ψ−1(S).
Let S′ be the set of points x ∈ ψ−1(S) such that ψ′(x) 6= 0. Since dx ≈ 0
on every negligible set, so is ψ′dx, and hence dψ. Thus dψ ≈ 0 on S′. On
the other hand, since ψ′(x) = 0 for all x ∈ SrS′, ψ′dx ≈ 0 on SrS′; hence
dψ ≈ 0 on SrS′ (Prop. 3.4). In conclusion, dψ ≈ 0 on ψ−1(S).

Theorem 5.6 ([5], Chap. 9 Thm. 3). Let S ⊆ [a, b] be a negligible set, and
ψ : [c, d] ⊆ R̄ → [a, b] be continuous and of bounded variation in [a, b]. Then
dψ ≈ 0 on ψ−1(S).

6 Change of Variables Theorems, First Category.

Theorem 6.1 (Main theorem). Let the functions f : [a, b] ⊆ R̄ → E, ϕ :
[a, b] → F , and ψ : [c, d] ⊆ R̄ → [a, b] be given. Assume that ψ is continuous
relatively to d̄ as a metric of both [a, b] and [c, d]. Then if f ◦ ψ · d(ϕ ◦ ψ) is
integrable in [c, d], f · dϕ is integrable in ψ([c, d]), and∫ d

c

f ◦ ψ · d(ϕ ◦ ψ) =
∫ ψ(d)

ψ(c)

f · dϕ.

Furthermore, if f ◦ ψ · d(ϕ ◦ ψ) is absolutely integrable in [c, d], then f · dϕ is
absolutely integrable in ψ([c, d]), with∫ d

c

‖f ◦ ψ · d(ϕ ◦ ψ)‖ =
∫ ψ(d)

ψ(c)

‖f · dϕ‖.
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Corollary 6.2. Let f : [a, b] ⊆ R→ R, and φ be absolutely continuous [c, d] ⊆
R̄ → [a, b]. If (f ◦ φ)φ′ is Lebesgue integrable in [c, d], then f is Lebesgue
integrable in φ([c, d]) and

∫ φ(d)

φ(c)
f dx =

∫ d
c

(f ◦ φ)φ′dx.

Proof. Since φ is absolutely continuous in [c, d], it is the absolute integral of
its derivative defined a.e. and Thm. 5.1 shows that∫ d

c

(f ◦ φ)φ′dx =
∫ d

c

(f ◦ φ) dφ.

Since f◦φφ′dx is Lebesgue integrable, it is absolutely integrable. Furthermore,

f ◦ φφ′dx ≈ f ◦ φdφ,

hence f ◦ φdφ is absolutely integrable (Prop. 3.3 (vii)). Thm. 6.1 says that f
is absolutely integrable, hence Lebesgue integrable in φ([c, d]), with∫ φ(d)

φ(c)

f dx = (K)
∫ d

c

(f ◦ φ) dφ =
∫ d

c

f ◦ φφ′dx.

Proof of Thm. 6.1. We will prove the theorem in the context of the H-
integral, the proof being almost the same (and even easier) for K-integrals,
upon replacing expressions like

∑
‖· · ·‖ by ‖

∑
· · ·‖, and variational equivalence

by weak variational equivalence.
Given a continuous function µ : [c, d] → [a, b], such that µ(c) = a and

µ(d) = b, we define a function µ̂ : [a, b] → [c, d], that we call the upper invert
of µ, by

µ̂(x) = inf{α ∈ [c, d] : µ(α) = x }.

We define also µ̂+ by µ̂+(x) = limt→x+ µ̂(t) for every x < b, and µ̂+(b) = d.

Lemma 6.3. µ̂ fulfills the following properties:

(i) µ(µ̂(x)) = x for all x in [a, b];

(ii) µ̂ is strictly increasing [a, b]→ [c, d], µ̂(a) = c and µ̂(b) ≤ d;

(iii) µ̂ is continuous from the left in ]c, d];

(iv) µ̂+ is strictly increasing, continuous from the right in [a, b[, and µ̂+(x) ≥
µ̂(x) for all x; but if x < y, µ̂+(x) < µ̂(y);
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(v) For all x ∈ [a, b[, µ is constant in [µ̂(x), µ̂+(x)]. It follows in particular
that µ(µ̂+(x)) = x for all x ∈ [a, b].

Proof. Straightforward

Lemma 6.4. With the hypothesis of Thm. 6.1, if ψ is continuous and mono-
tonic ([c, d], d̄)→ ([a, b], d̄), then the integrability of f · dϕ in ψ([a, b]) implies
that of f ◦ ψ · d(ϕ ◦ ψ) in [c, d], and then∫ d

c

f ◦ ψ · d(ϕ ◦ ψ) =
∫ ψ(d)

ψ(c)

f · dϕ.

If ψ is a homeomorphism (that is, ψ is continuous and strictly monotonic),
then the converse is true, and the above relation holds again.

Proof. For the first assertion, see [5], Thm. 1. Now assume f ◦ ψ · d(ϕ ◦ ψ)
is H-integrable and ψ is an homeomorphism. Then ψ is invertible and ψ−1 is
continuous and monotonic. But

f · dϕ = f ◦ ψ ◦ ψ−1 · dϕ ◦ ψ ◦ ψ−1,

hence the second assertion is deduced by applying the first assertion to the
differential element (f ◦ ψ) · dϕ ◦ ψ and to the function ψ−1.

The following lemma is the kernel of the proof. It shows in particular that
if f ◦ψ ·dϕ◦ψ is integrable in [c, d] and ψ(c) = ψ(d), then

∫ d
c
f ◦ψ ·dϕ◦ψ = 0.

Lemma 6.5. Let [c, d] ⊆ R be a bounded interval, and ψ : [c, d] → [a, b] be
continuous and such that ψ(c) = ψ(d). Then given any δ′ : [c, d] → R+ and
any two functions f and ϕ defined on [a, b], there exists a division of [c, d],
subordinated to δ′, such that∑

([u,v],ξ)∈D

f(ψ(ξ)) · (ϕ(ψ(v))− ϕ(ψ(u))) = 0.

Proof. We fix δ′ : [c, d]→ R+ and for [x, y] ⊆ [c, d], we consider the property
(P)=(P([x, y])): there exists a division D << δ′ of [x, y], such that, for every
f and ϕ defined in [a, b],∑

([u,v],ξ)∈D

f(ψ(ξ)) · (ϕ(ψ(v))− ϕ(ψ(u))) = 0.
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The proof of the lemma is indirect: we suppose for a contradiction that
P([a, b]) is false. Define an increasing sequence (cn)n and a decreasing sequence
(dn)n by induction in the following way: c0 = c and d0 = d. For all n ≥ 1,
there exists

αn = inf{ |x− y| : x, y ∈ [cn−1, dn−1], ψ(x) = ψ(y), P([x, y]) is false }.

Then define cn and dn such that cn ≤ dn, [cn, dn] ⊆ [cn−1, dn−1], ψ(cn) =
ψ(dn), P([cn, dn]) is false and dn − cn < αn + 1/n (notice that the existence
of αn is ensured by induction). Let c̄ = lim cn and d̄ = lim dn. Notice that cn
tends increasingly to c̄ and dn tends decreasingly to d̄. By the continuity of
ψ, ψ(c̄) = ψ(d̄). We now consider several cases:
case 1: c̄ = d̄; let n ≥ 1 such that [cn, dn] ⊆]c̄ − δ′(c̄), d̄ + δ′(d̄)[. Then
the division {([cn, dn], c̄)} is a division of [cn, dn] that fulfills condition (P), a
contradiction.
case 2: c̄ < d̄ and P([c̄, d̄]) is true; we can choose n ≥ 1 such that [cn, dn] ⊆
]c̄− δ′(c̄), d̄+ δ′(d̄)[, and a division D of [c̄, d̄] that fulfills condition (P). Then
the division

{ ([cn, c̄], c̄), ([d̄, dn], d̄) } ∪D

is a division of [cn, dn] that fulfills the conditions of (P), a contradiction.
case 3: c̄ < d̄ and P([c̄, d̄]) is false; we have to examine two subcases:

first subcase: for every ε > 0, there exists s > c̄ and t < d̄ such that
s− c̄ < ε, d̄− t < ε, and ψ(s) = ψ(t).

Choose such an s and t in ]c̄, c̄+ δ′(c̄)[ and ]d̄− δ′(b̄), d̄[ resp. In particular,
([c̄, s], c̄) << δ and ([t, d̄]) << δ (recall that d̄(x, y) < |x− y|)). Then P([s,t])
is false, else we could choose a division D of [s, t] such that P([s, t]) is true,
and the division

{ ([c̄, s], c̄), ([t, d̄], d̄) } ∪D

would be a division of [c̄, d̄] that fulfills condition (P), a contradiction. Hence,
P([s, t]) is false. But this also leads to a contradiction with the definition of c̄
and d̄: indeed, put ε = s− c̄+ d̄− t (> 0). Let n be such that 1/n < ε. Then

t− s = d̄− c̄− ε < dn − cn − ε < dn − cn −
1
n
< αn+1.

This contradicts the fact that

αn+1 = inf{ |x− y| : x, y ∈ [cn, dn], ψ(x) = ψ(y), P([x, y]) is false }.

second subcase: there exists ε > 0 such that, for every s > c̄ and t < d̄
that fulfills s− c̄ < ε and d̄− t < ε, ψ(s) 6= ψ(t) (notice that this is the exact
converse of the first subcase).
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From the intermediate value theorem, there can not exist s > c̄ and t < d̄
that fulfill |c̄ − s| < ε and |d̄ − t| < ε, and such that (ψ(s) ≥ ψ(c̄) and
ψ(t) ≥ ψ(d̄)) or (ψ(s) < ψ(c̄) and ψ(t) < ψ(d̄)), else we could choose suitable
s′ and t′ in ]c̄, s] and [t, d̄[ such that ψ(s′) = ψ(t′). Hence, for all s > c̄ and
t < d̄ such that |c̄ − s| < ε and |t − d̄| < ε, (ψ(s) ≥ ψ(c̄) and ψ(t) < ψ(d̄)),
or (ψ(s) < ψ(c̄) and ψ(t) ≥ ψ(d̄)). Suppose for example that ψ(s) ≥ ψ(c̄) for
all s ∈ [c̄, c̄ + ε[, the end of the proof being similar in the other case. Then
ψ(t) < ψ(d̄) = ψ(c̄) by what has been just said; hence there exists e ∈]c̄, t[ such
that ψ(e) = ψ(c̄) = ψ(d̄) (intermediate value theorem again). If P([c̄, e]) and
P([e, d̄]) were true, then concatenating the corresponding divisions, P([c̄, d̄])
would also be true, in contradiction with the hypothesis. Hence P([c̄, e]) or
P([e, d̄]) is false; but this leads again to a contradiction because |c̄−e| < |c̄− d̄|
and |e− d̄| < |c̄− d̄|, and we can use the same argument as that at the end of
the first subcase.

Reduction. we can suppose without loss of generality that [c, d] is finite,
ψ(c) = a, and ψ(d) = b.

Proof. Assume the theorem has been proved under the conditions of the
reduction. If ψ is any continuous function [c, d] → [a, b], and f ◦ ψ · d(ϕ ◦ ψ)
is integrable in [c, d], we have to prove that f · dϕ is integrable in ψ([c, d]),
and fulfills the change of variable formula. Nothing is lost if we suppose that
[a, b] = ψ([c, d]). By the continuity of ψ, there exists γ and δ in [c, d] such that
ψ(γ) = a and ψ(δ) = b; thus, the reduction hypothesis implies that f · dϕ is
integrable in [a, b], and if f ◦ ψ · d(ϕ ◦ ψ) is absolutely integrable, then so is
f · dϕ. Thus, the only thing we have to prove is that∫ ψ(d)

ψ(c)

f · dϕ =
∫ d

c

f ◦ ψ · d(ϕ ◦ ψ). (a)

Let ρ be the homeomorphism [−∞,+∞] → [−1, 1] defined in Sec. 2.1. Then
ρ([c, d]) is bounded, say ρ([c, d]) = [c′, d′]. Now choose −∞ < c′′ < c′ and
d′ < d′′ < +∞. Define a function ν : [c′′, d′′]→ [a, b] by

ν(x) =


ψ ◦ ρ−1(x), x ∈ [c′, d′];
a, x = c′′;
b, x = d′′;
ν(x) linear, x ∈ [c′′, c′] and x ∈ [d′, d′′].

Of course, ν is a continuous function that fulfills the conditions of the re-
duction, that is, [c′′, d′′] is bounded and [ν(c′′), ν(d′′)] = ν([c′′, d′′]) = [a, b].
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Furthermore Lemma 6.4 implies that f ◦ ν · dϕ ◦ ν is integrable in [c′′, d′′]
because 1) f · dϕ is integrable in [a, b] and ν is continuous and monotonic on
each of the intervals [c′′, c′] and [d′, d′′], and 2) f ◦ ψ · dϕ ◦ ψ is integrable in
[c, d] and ρ−1 is homeomorphic [c′, d′]→ [c, d]. Dealing with f ◦ ν · dϕ ◦ ν and
making use of the reduction hypothesis, it is now not difficult to prove (a).

Now, let ψ satisfy the conditions of the reduction, and ψ̂ be the upper invert
of ψ (see definition before Lemma 6.3). Let ε > 0. We define δ : [a, b] → R+

in the following way: Let δ′ : [c, d] → R+ be such that for every division
D′ << δ′ of [c, d],∑

([u,v],ξ)∈D′

∥∥∥∥∫ v

u

f ◦ ψ · dϕ ◦ ψ − f(ϕ(x)) · (ψ(ϕ(v))− ψ(ϕ(u)))
∥∥∥∥ < ε.

Because of the continuity from the left of ψ̂ in ]a, b], there exists for all x ∈]a, b]
a real η−(x) such that y < x and x− y < η−(x) imply

|ψ̂(y)− ψ̂(x)| < δ′(ψ̂(x)).

Define also η−(a) > 0 in any manner. Similarly, for all x ∈ [a, b[, there exists
η+ > 0 such that y > x and y − x < η+ imply |ψ̂+(y)− ψ̂+(x)| < δ′(ψ̂+(x)).
We define η+(b) > 0 in any manner, and put

δ(x) = min(η+(x), η−(x)).

Diminish δ in such a way that every division D << δ anchor in {a, b}. Let D
be a division of [a, b] subordinated to δ. Since D anchors in {a, b}, the tagged
interval of D that contains the point a as its end point is of the form ([a, va], a)
where va > a, and the tagged interval of D that contains the point b as its
end point is of the form ([ub, b], b) where ub < a.

We shall match to D a special division D′ of [c, d] subordinated to δ′: to
each ([u, v], ξ) ∈ D such that v > ξ, attach the partial division

D′ξ = { ([ψ̂(u), ψ̂(ξ)], ψ̂(ξ)), ([ψ̂+(ξ), ψ̂(v)], ψ̂+(ξ)) }

of [c, d]. Furthermore, if ψ̂(ξ) < ψ̂+(ξ), insert inside D′ξ a division of the
interval [ψ̂(ξ), ψ̂+(ξ)] subordinated to δ′ that fulfills the assertion of Lemma 6.5
(recall that ψ(ψ̂(ξ)) = ξ = ψ(ψ̂+(ξ))). In particular, D′a is a total division of
[c = ψ̂(a), ψ̂(va)]. Next, to each ([u, v], ξ) ∈ D such that v = ξ, attach the
partial division

D′ξ = { ([ψ̂(u), ψ̂(ξ)], ψ̂(ξ)) }
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of [c, d]. In particular, D′b is of the form ([ψ̂(ub), ψ̂(b)], ψ̂(b)). If ψ̂(b) < ψ̂+(b) =
d, we concatenate to D′b a division of [ψ̂(b), d] that fulfills the assertion of
Lemma 6.5. In such a way, we obtain a total division D′ =

⋃
ξD
′
ξ of [c, d]

subordinated to δ′. It is easily seen that∑
([u,v],ξ)∈D

∥∥∥f(ξ) · (ϕ(v)− ϕ(u))−
∑

([u′,v′],ξ′)∈D′ξ

f(ψ(ξ′)) ·
(
ϕ(ψ(v′)− ϕ(ψ(u′)

)∥∥∥ = 0.

Since D′ << δ′, the Henstock-Saks lemma gives

∑
([u,v],ξ)∈D

∥∥∥ ∑
([u′,v′],ξ′)∈D′ξ

f(ψ(ξ′)) · (ϕ(ψ(v′)− ϕ(ψ(u′))−
∫ v′

u′
f ◦ ψ · dϕ ◦ ψ

∥∥∥ < ε.

Denote by D∗ the partial division Dr{([ub, b], b)}. Then it follows from the
two previous inequalities that

∑
([u,v],ξ)∈D∗

∥∥∥∥f(ξ) · (ϕ(v)− ϕ(u))−
∫ ψ̂(v)

ψ̂(u)

f ◦ ψ · dϕ ◦ ψ
∥∥∥∥

+
∥∥∥∥f(b) · (ϕ(ub)− ϕ(b))−

∫ d

ψ̂(ub)

f ◦ ψ · dϕ ◦ ψ
∥∥∥∥ < ε.

Taking into account that ψ̂(a) = c, this shows first that f is K-integrable in
[a, b], with integral equal to

∫ d
c
f ◦ ψ · dϕ ◦ ψ, and then that it is Henstock

integrable, because (K)
∫ v
u
f · dϕ = (K)

∫ ψ̂(v)

ψ̂(u)
f ◦ψ · dϕ ◦ψ by what we have

just shown, and (K)
∫ b
ub
f · dϕ = (K)

∫ d
ψ̂(ub)

f ◦ ψ · dϕ ◦ ψ since ψ(ψ̂(b) = b

and ψ(d) = b.
Finally, let us show the last assertion of the theorem. Put G(x) =

∫ x
c
f ◦ψ ·

d(ϕ ◦ ψ) and F (x) =
∫ x
a
f · dϕ. Since f ◦ ψ · d(ϕ ◦ ψ) is absolutely integrable,

G = F ◦ψ is of bounded variation in [c′, d′], say Vardc(G) = M <∞ (Thm. 4.2).
If F were not of bounded variation in [a, b], there would exist a finite set π of
non-overlapping closed intervals of [a, b] such that∑

[u,v]∈π

‖F (v)− F (u)‖ > M.

We can suppose w.l.g. that the intervals of π cover [a, b]. Denote by a = y0 <
y1 < · · · < yn = b their end-points in the increasing order. Define

x0 = ψ̂(y0) = a < x1 = ψ̂(y1) < · · · < xn = ψ̂(yn) = b;
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in particular, ψ(xi) = yi for all 0 ≤ i ≤ n. Then

∑
[u,v]∈π

‖F (v)− F (u)‖ =
n−1∑
i=0

‖F ◦ ψ(xi+1)− F ◦ ψ(xi)‖ =
n−1∑
i=0

‖G(xi+1)−G(xi)‖

by the first assertion of the theorem again. Therefore, Vardc(G) > M , a con-
tradiction. Thus, F is of bounded variation in [a, b]. It follows from Thm. 4.2
that f · dϕ is absolutely integrable.

Corollary 6.6. Let ψ : [c, d] → [a, b] be the indefinite Henstock integral of a
function ψ′, and assume that f ◦ ψ ψ′dx is integrable in [c, d]. Then f dx is
integrable in [a, b] and fulfills∫ b

a

f dx =
∫ d

c

f ◦ ψ ψ′dx.

Proof. This follows immediately from Thms. 6.1 and 5.1.

7 Change of Variable Theorems, Second Category.

Now, let us investigate the converse of Thm. 6.1. The more general question
one can ask is:

Problem 7.1. Let f · dϕ be K-integrable (resp. H-integrable) in [a, b], and
ψ : [c, d]→ [a, b] be continuous. To prove or to disprove:

The Kurzweil (resp. Henstock) integral
∫ d
c
f ◦ψ · dϕ ◦ψ exists and is equal

to
∫ ψ(d)

ψ(c)
f · dϕ.

For the moment, we have enough tools to show the following proposition.

Proposition 7.2. Let f : [a, b] ⊆ R̄→ E and ϕ : [a, b]→ F such that f ·dϕ be
integrable in [a, b]. Let ψ : [c, d] ⊆ R̄→ [a, b] be continuous (relative to d̄) and
surjective. Put F (x) =

∫ x
ψ(c)

f ·dϕ. If there exists an element g ·dϕ : [a, b]→ G
such that g◦ψ ·d(ϕ◦ψ) is integrable in [c, d], with F ◦ψ(x) =

∫ x
c
g◦ψ ·d(ϕ◦ψ),

then g · dϕ is integrable in [a, b], and F (x) =
∫ x
ψ(c)

g · dϕ. In particular,

(i) if for every ε > 0, there exists a countable cover of E by balls of radius
less than ε, and if the product between E and F is norm-preserving,
then f = g dϕ-a.e., hence f ◦ ψ · d(ϕ ◦ ψ) is integrable in [c, d], with∫ x
c
f ◦ ψ · d(ϕ ◦ ψ) = F ◦ ψ(x).
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(ii) if ϕ = x and fdx is H-integrable in [a, b], then f = g a.e., hence again,
f ◦ ψ · dψ is integrable in [c, d], with

∫ x
c
f ◦ ψ dψ = F ◦ ψ(x).

Proof. By Thm. 6.1, we know that g · dϕ is integrable in [a, b]. Put G(x) =∫ x
ψ(c)

g ·dϕ. Then G◦ψ(x) = F ◦ψ(x) by Thm. 6.1 again. Since ψ is surjective,
F (x) = G(x) for all x ∈ [a, b]. This proves the first assertion. To prove (i),
remark that this implies

∫ x
ψ(c)

(f − g) · dϕ = 0 for all x. Hence, f = g dϕ-a.e.
Conclude by Thm. 5.2. The proof of (ii) follows from Thm. 5.3, F and G being
differentiable a.e., with F ′ = f = G′ = g a.e.

From (ii), if F is an indefinite H-integral and ψ is continuous and surjective,
we see that F ◦ψ can be an indefinite integral only if f ◦ψ dψ is integrable in
[c, d]. So, either F ◦ψ is not an indefinite H-integral, or the change of variable
formula applies.

It is possible to produce another version of (ii), where ψ is not necessarily
continuous, using existing theorems. This is the object of the following theo-
rem, that is a Kurzweil-Henstock version of Thm. (6.95) in [8], due to J. Serrin
and D. E. Varberg in the Lebesgue case.

Theorem 7.3. Let f : [a, b] ⊆ R̄ → E and ψ : [c, d] ⊆ R̄ → [a, b] such that
f dx be H-integrable in [a, b], and ψ be differentiable a.e. in [c, d]. Put F (x) =∫ x
a
f dx. Then if F ◦ ψ is continuous, differentiable a.e., and ≈ 0 on every

negligible set, f ◦ψ ψ′ dx is integrable in [c, d], with
∫ d
c
f ◦ψ ψ′dx = F ◦ψ(d)−

F ◦ ψ(c).

Proof. This follows from Thm. (6.93) of [8], Thm. 5.3, and the well known
fact that an indefinite Henstock integral maps negligible sets to negligible
sets.

The next theorem is perhaps the most general and useful second category
theorem we offer. To state it, we need some definitions.

We say that a function ψ : [c, d] ⊆ R̄→ [a, b] is increasing at a point x, if{
ψ(x+ h) ≥ ψ(x), h ≥ 0,
ψ(x+ h) ≤ ψ(x), h ≤ 0

whenever x + h is in the domain of ψ. We define similarly the notion of
being decreasing at x. Finally, we say that ψ is decomposable at x if ψ is
either increasing at x, or decreasing at x, or admits a STRICT maximum at
x, or admits a STRICT minimum at x. Also, ψ is increasing (decreasing,
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decomposable) at x in an interval I 3 x if ψ|I is, and ψ is locally increasing
(decreasing, decomposable) at x if there exits an open interval I 3 x of [c, d]
in which ψ is decomposable at x. For example, if ψ has an order n non-zero
derivative at x, then ψ is locally decomposable at x by the Taylor formula.
Also, if ψ is constant in a neighborhood of x, then ψ is locally increasing,
hence locally decomposable at x.

Lemma 7.4. Let f : [a, b] ⊆ R̄→ E and ϕ : [a, b]→ F . Assume that f ·dϕ is
H-integrable (resp. K-integrable) in [a, b], with F (x) =

∫ x
a
f ·dϕ. Let ψ : [c, d] ⊆

R̄→ [a, b] be continuous (with respect to d̄).

(i) f ◦ ψ · dϕ ◦ ψ is variationally equivalent to d(F ◦ ψ) on every countable
set S ∈ [a, b].

(ii) f ◦ψ · dϕ ◦ψ is (resp. weakly) variationally equivalent to d(F ◦ψ) on the
set of points where ψ is locally decomposable.

Proof. We make the proof for H-integrals, the argument being the same
for K-integrals, upon replacing variational equivalence by weak variational
equivalence.
(i) It suffices to show that f ◦ ψ · dϕ ◦ ψ ≈ d(F ◦ ψ) on every point s ∈ S
(Prop. 3.2). If D is a tame division that anchors in {s}, D is of the form
{([u, v], s)} where u = s or v = s. By the Henstock-Saks lemma, dF ≈ f · dϕ.
In particular, for every ε > 0, there exists δ such that

‖F (ψ(v))− F (ψ(u))− f(ψ(s)) · (ϕ(ψ(v))− ϕ(ψ(u)))‖ < ε (a)

whenever d̄(ψ(v), ψ(u)) < δ(ψ(s)). But by the continuity of ψ, it is always
possible to find δ′ such that d̄(u, v) < δ′(s) implies d̄(ψ(u), ψ(v)) < δ(s). This
shows that (a) holds whenever d̄(u, v) < δ′(s).
(ii) By (i), d(F ◦ ψ) ≈ f ◦ ψ · dϕ ◦ ψ on {c} and {d}, hence we can suppose
w.l.g. that [c, d] is finite (Prop. 3.2 (ii)). Let A be the set of points where ψ is
locally decomposable. For each x ∈ A, there exists 1 ≥ αx > 0 such that ψ is
decomposable at x in [x− αx, x+ αx] ∩ [c, d]. For n ∈ N∗, define An ⊆ A by

An = {x ∈ A : αx ∈ ] 1
n+1 ,

1
n ] }

Then A is the countable union of the sets An, n ∈ N∗. So, it suffices to prove
that d(F ◦ψ) ≈ f ◦ψ · dϕ ◦ψ on An for every n ∈ N∗ (Prop. 3.2). Fix such an
n to suppose w.l.g. that A = An. In particular, αx = α is now the same for
all x ∈ A.
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By the Henstock-Saks lemma, there exists δ such that every division D <<
δ that anchors in ψ(A) fulfills∑

([u,v],ξ)∈D

‖F (v)− F (u)− f(ξ) · (ϕ(v)− ϕ(u))‖ < ε

2
. (b)

From the continuity of ψ, we can define δ′ : [c, d] → R+ such that d̄(x, y) <
δ′(x) implies d̄(ψ(x), ψ(y)) < δ(x). Now, let A1 be the set of all x ∈ A such
that ψ is increasing at x, A2 the set of all x ∈ A such that ψ is decreasing
at x, A3 the set of all x that are strict local minimum of ψ, and A4 the set
of all x that are strict local maximum of ψ. Then A = A1 ∪ A2 ∪ A3 ∪ A4,
so, it suffices to prove that d(F ◦ ψ) ≈ f ◦ ψ · dϕ ◦ ψ on these four sets. The
proof for A3 and A4 is easy because the sets A3 and A4 are countable (in fact
finite): indeed, each point ξ of A3 (resp. A4) is the (unique) strict minimum
(resp. maximum) of ψ in ]ξ − α, ξ + α[; so, the points of A3 (resp. A4) are
separated by a length of at least α, showing that A3 (resp. A4) is countable.
Since A3 ∪A4 is countable, d(F ◦ ψ) ≈ f ◦ ψ · dϕ ◦ ψ on A3 ∪A4 by (i). Now,
let us prove that d(F ◦ ψ) ≈ f ◦ ψ · dϕ ◦ ψ on A1, the proof being similar for
A2. Each point x of A1 fulfills{

ψ(x+ h) ≥ ψ(x), h ≥ 0,
ψ(x+ h) ≤ ψ(x), h ≤ 0

(c)

for all 0 ≤ h ≤ α. Divide the interval [c, d] into a finite number of interval Ik of
equal length, but less than α/2. It suffices to prove that d(F ◦ψ) ≈ f ◦ψ ·dϕ◦ψ
on A1 ∩ Ik (Prop. 3.2). Fix k ∈ N. For each point x ∈ A1 ∩ Ik, (c) surely
obtains with h < α/2. Diminish δ′ at each x in such a way that δ′(x) < α/2.
Let D′ << δ′ be a partial division of [c, d] anchoring in A1 ∩ Ik. Order the
tagged intervals of D′ in the increasing order, say

([u1, v1], ξ1), ([u2, v2], ξ2), . . . , ([us, vs], ξs).

Consider two tagged intervals of D′

([ui, vi], ξi) and ([ui+j , vi+j ], ξi+j), j ≥ 1.

From (c), it follows that

ψ(ui) ≤ ψ(ξi) ≤ ψ(v1), ψ(ui+j), ψ(ξi+j), ψ(vi+j),

and also
ψ(vi+j) ≥ ψ(ξi+j) ≥ ψ(ui+j), ψ(vi), ψ(ui).
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Thus,
([ψ(ui), ψ(vi)], ψ(ξi)) and ([ψ(ui+j), ψ(vi+j)], ψ(ξi+j))

are both tagged intervals, that overlap at most on their half [ψ(ξi), ψ(vi)] and
[ψ(ui+j), ψ(ξi+j)] resp. Therefore, it is clear that the tagged intervals

([ψ(u1), ψ(v1)], ψ(ξ1)), ([ψ(u3), ψ(v3)], ψ(ξ3)), ([ψ(u5), ψ(v5)], ψ(ξ5)), . . .

are non-overlapping, and so are

([ψ(u2), ψ(v2)], ψ(ξ2)), ([ψ(u4), ψ(v4)], ψ(ξ4)), ([ψ(u6), ψ(v6)], ψ(ξ6)), . . . .

Theses two lists of tagged intervals give rise partial divisions

D′1 = { ([ψ(u1), ψ(v1)], ψ(ξ1)), ([ψ(u3), ψ(v3)], ψ(ξ3))], . . . }

and
D′2 = { ([ψ(u2), ψ(v2)], ψ(ξ2)), ([ψ(u4), ψ(v4)], ψ(ξ4)), . . . }

of [a, b], that anchor in A1, and subordinated to δ. By (b),∑
i∈{1,2}

∑
([u,v],ξ)∈D′i

‖F ◦ ψ(v)− F ◦ ψ(u)− f ◦ ψ(ξ) · (ϕ ◦ ψ(v)− ϕ ◦ ψ(u))‖ < ε,

or ∑
([u,v],ξ)∈D′

‖F ◦ ψ(v)− F ◦ ψ(u)− f ◦ (ξ) · (ϕ ◦ ψ(v)− ϕ ◦ ψ(u))‖ < ε,

showing that d(F ◦ ψ) ≈ f ◦ ψ · dϕ ◦ ψ on A1 ∩ Ik, as desired.

Most of the continuous functions that occur in practice are decomposable
at all but a countable number of points, and it is in fact not so easy to produce
a function that is not (such examples can be constructed with the Cantor set).
So, the promised following theorem seems to be useful in practice.

Theorem 7.5. Let f : [a, b] ⊆ R̄ → E and ϕ : [a, b] → F . Assume that
ψ : [c, d] ⊆ R̄ → [a, b] is continuous, and locally decomposable at all but a
countable number of points. Then f · dϕ is integrable in [a, b] if and only if
f ◦ ψ · dϕ ◦ ψ is integrable in [c, d], and the substitution formula holds:∫ d

c

f ◦ ψ · dϕ ◦ ψ =
∫ ψ(d)

ψ(c)

f · dϕ.
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Proof. The “if” part of the theorem follows from Thm. 6.1. The “only if”
part follows from Lemma 7.4 (i) and (ii).

The next problem appears to be true in the context of the Riemann integral,
(this was first proved in [1], and a simpler and more general proof was given
in [4]). But in the context of the KH integral, it remains open.

Problem 7.6. Let f : [a, b] → R be H-integrable, and ψ′ : [c, d] → [a, b] be
H-integrable, with ψ(x) =

∫ x
c
ψ′(t) dt. To prove or to disprove: f ◦ ψ dψ is

H-integrable in [c, d], and
∫ d
c
f ◦ ψ dψ =

∫ ψ(d)

ψ(c)
f dx.

Of course, a counterexample to this problem would be a counterexample
to Problem 7.1. Thm. 7.7 below reflects our attempts to answer as well as
possible Problem 7.6. It generalizes some known theorems of the Lebesgue
theory. We need one more definition.

We say that a function F : [a, b]→ E is Lipschitz at x if for every [y, z] 3 x
sufficiently small, there exists kx ≥ 0 such that

‖F (y)− F (z)‖ ≤ kx‖y − z‖.

In particular, if F is differentiable at x, then it is Lipschitz at x. Also, if F
is the integral of a function f locally almost everywhere bounded, then F is
Lipschitz at every x ∈ [a, b].

Theorem 7.7. Let f : [a, b] ⊆ R → E be Henstock integrable, with F (x) =∫ x
a
f(t) dt, and ψ : [c, d] ⊆ R̄ → [a, b] be an indefinite H-integral in [c, d]. Let

S be the (negligible) set of points x ∈ [a, b] such that F is not Lipschitz at x,
T be the set of points x ∈ [c, d] such that ψ is locally decomposable at x, and
T ′ be the set of points x ∈ [c, d] such that F ◦ ψ is differentiable at x with
(F ◦ ψ)′(x) = 0.

(i) The set ψ−1(S)r(T ∪ T ′) is negligible

(ii) In order that f ◦ ψ dψ be H-integrable in [c, d], it is necessary and suffi-
cient that F ◦ψ ≈ 0 on ψ−1(S)r(T∪T ′). When this occurs,

∫ d
c
f◦ψ dψ =∫ ψ(d)

ψ(c)
f dx.

(iii) The same conclusions holds if in place of assuming that ψ is an indefinite
H-integral in [c, d], we assume that ψ is of bounded variation in [c, d].

(iv) If ψ−1(S)r(T ∪ T ′) is countable, then d(F ◦ ψ) ≈ 0 on this set, and
assertions (i) and (ii) hold.
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Proof. (i) By Thm. 5.4, and taking into account that indefinite integrals are
N-functions, ψ−1(S)r(T ∪ T ′) is negligible because 1) its image by F ◦ ψ is
negligible (since S is negligible), and 2) F ◦ψ is differentiable a.e. by Thm. 5.3
and Thm. 6.93 of [8].
(ii) Let S2 be the set of points where F is not differentiable, and T2 be the
set of points where ψ is not differentiable; then S2 and T2 are negligible by
Thm. 5.3, and S ⊆ S2. Put S1 = [a, b]rS2 and T1 = [c, d]rT2. Let ψ′ be the
derivative of ψ at each point of T1, and define ψ′ in any manner at each point
of T2. Consider the three sets: M11 = ψ−1(S1)∩T1, M12 = ψ−1(S1)∩T2, and
M2 = ψ−1(S2) (so, [c, d] = M11 ∪M12 ∪M2). Of course, F ◦ ψ is continuous
because F and ψ are. We first examine variational equivalence between f◦ψ dψ
and d(F ◦ψ) on each of these sets. Notice that f ◦ψ dψ ≈ 0 on {c, d} in [c, d],
because of the continuity of ψ, and the same is true for d(F ◦ ψ) since it is
continuous. Hence, by Lemma 3.2 (ii), we can suppose w.l.g. that [c, d] is
finite. Let ε > 0.
Claim 1: f ◦ ψ dψ ≈ d(F ◦ ψ) on M11.

By Prop. 3.4, dψ ≈ ψ′dx on M11, hence f ◦ψ dψ ≈ f ◦ψ ψ′dx on M11 (see
Prop. 3.3 (iv)). On the other hand, d(F ◦ψ) ≈ F ◦ψ ψ′dx on M11 by Prop. 3.4
again. Hence f ◦ ψ dψ ≈ d(F ◦ ψ) on M11.
Claim 2: f ◦ ψ dψ ≈ d(F ◦ ψ) on M12.

Since T2 is negligible, dψ ≈ 0 ≈ f ◦ ψ dψ on M12 (Thm. 3.3 (xii) and 5.3).
Let us show that d(F ◦ψ) is also variationally equivalent to 0 on M12: indeed,
for each x ∈M12, there exists, by the continuity of ψ and the differentiability
of F at ψ(x), δ(x) > 0 such that d̄(x, y) < δ(x) imply

‖F (ψ(y))− F (ψ(x))‖ ≤ ‖f(ψ(x))(ψ(y)− ψ(x))‖+ |ψ(y)− ψ(x)|.

In other words,
‖d(F ◦ ψ)‖ ≤ ‖F ◦ ψ dψ‖+ |dψ|.

By Prop. 3.3 (ix) and (x), this shows that d(F ◦ ψ) ≈ 0 on M12.
Claim 3: f ◦ ψ dψ ≈ 0 on M2

It suffices to show that dψ ≈ 0 on M2 = ψ−1(S2). But this is the content
of Cor. 5.5, since S2 is negligible by Thm. 5.3.
Claim 4: d(F ◦ ψ) ≈ 0 on the set M2rψ−1(S).

For every x 6∈ S, there exists kx such that [y, z] 3 x and |z− y| sufficiently
small imply

‖F (y)− F (z)‖ ≤ kx|y − z|.

From the continuity of ψ, there exists δ : [c, d]→ R+ such that |x− y| < δ(x)
imply

‖F ◦ ψ(y)− F ◦ ψ(x)‖ < kψ(x)|ψ(y)− ψ(x)|.
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Since dψ ≈ 0 on ψ−1(S) (Cor. 5.5), so is the element kψ(x)dψ (Prop. 3.3 (iv)).
Therefore d(F ◦ ψ) ≈ 0 on ψ−1(S) (Prop. 3.3 (x)).
Claim 5: d(F ◦ ψ) ≈ 0 on M2 ∩ T .

This follows immediately from Claim 3 and Lemma 7.4.
Claim 6: d(F ◦ ψ) ≈ 0 on T ′

This follows from Prop. 3.4 since F ◦ ψ has a null derivative at each point
of T ′.

Let us sum up our results: we have shown that F ◦ ψ ≈ f ◦ ψ dψ on M11

and M12, that f ◦ ψ dψ ≈ 0 on M2, and that d(F ◦ ψ) ≈ 0 on M2rψ−1(S),
on M2 ∩ T and on T ′. Since ψ−1(S) ⊆ M2, d(F ◦ ψ) ≈ 0 at each point of
[c, d] that do not belong to ψ−1(S)r(T ∪T ′). Thus, if d(F ◦ψ) is variationally
equivalent to 0 on ψ−1(S)r(T ∪ T ′), it is variationally equivalent to f ◦ ψ dψ
in [c, d]. Hence f ◦ ψ dψ is H-integrable, with∫ d

c

f ◦ ψ dψ = F ◦ ψ(d)− F ◦ ψ(c).

Conversely, if f ◦ ψ dψ is integrable, then by Thm. 6.1,∫ x

c

f ◦ ψ dψ = F (ψ(x))− F (ψ(c));

Therefore d(F ◦ ψ) is variationally equivalent to f ◦ ψ dψ on M2, hence to 0
on M2, and hence to 0 on ψ−1(S). This ends the proof of (ii).
(iii) As in (ii), we suppose w.l.g. that [c, d] is bounded, and define as pre-
viously S2 to be the set of points where F is not differentiable. Let M1 =
[c, d]rψ−1(S2) and M2 = ψ−1(S2) (so, [c, d] = M1 ∪M2). Let ε > 0.
Claim 1’: d(F ◦ ψ) ≈ f ◦ ψ dψ on M1.

For x ∈M1, define δ(x) in such a way that d̄(x, y) < δ(x) imply

‖F ◦ ψ(y)− F ◦ ψ(x)− f ◦ ψ(x)(ψ(y)− ψ(x))‖ < ε

Vardcψ
|ψ(y)− ψ(x)|.

Then if D << δ is a tame division that anchors in M1,∑
([u,v],ξ)∈D

‖F ◦ ψ(v)− F ◦ ψ(u)− f ◦ ψ(ξ)(ψ(v)− ψ(u))‖ < ε;

thus, d(F ◦ ψ) ≈ f ◦ ψ dψ on M1.
Claim 2’: f ◦ ψ dψ ≈ 0 on M2.

It suffices to prove that dψ ≈ 0 on M2. This is the content of Thm. 5.6.
From this point, the rest of the proof of (iii) goes exactly like the proof of

(ii), from Claim 5 to the end.
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Corollary 7.8. Let f : [a, b] ⊆ R→ E be H-integrable, F (x) =
∫ x
a
f(t) dt, and

ψ : [c, d] ⊆ R̄→ [a, b]. Then f ◦ ψ dψ is integrable and the change of variable
formula applies in the following cases:
(i) f is locally bounded in [a, b], and ψ is either an indefinite integral, or is
continuous of bounded variation in [c, d];
(ii) ψ is either an indefinite integral, or is continuous of bounded variation in
[c, d], and the set ψ−1(S)r(T ∪ T ′) is countable (S, T and T ′ defined as in
Thm. 7.7).

Proof. It is easy to see that F is Lipschitz at every point x in the neigh-
borhood of which f is bounded, hence assertion (i) follows from Thm. 7.7.
Since F ◦ ψ is continuous in [c, d], it is ≈ 0 on every countable set. Therefore,
assertion (ii) follows from Thm. 7.7 again.

Notice that one can infer from these theorems corresponding theorems
in the Lebesgue integral theory, as we did for Thm. 6.2, assuming that the
functions playing role are Lebesgue integrable, and using Thm. 5.1.
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