RESEARCH

N. K. Shukla,^{*} Department of Mathematics, University of Allahabad, Allahabad - 211 002, India. email: o.nirajshukla@gmail.com G. C. S. Yadav,[†] Department of Mathematics, University of Allahabad, Allahabad - 211 002, India. email: gcsyadav@gmail.com

A CHARACTERIZATION OF THREE-INTERVAL SCALING SETS

Abstract

In this paper, we characterize scaling sets consisting of three intervals. In addition, we provide a procedure to obtain scaling sets possessing finitely many intervals.

1 Introduction.

Observing that a minimally supported frequency (MSF) wavelet ψ arises from a multiresolution analysis (MRA) with scaling function φ iff there is a measurable set S in the real line \mathbb{R} such that $|\hat{\varphi}| = \chi_S$, the notion of a scaling set has been developed in [2, 6]. A measurable set S of \mathbb{R} containing a neighborhood of zero and contained in 2S is a *scaling set* if each element of S uniquely corresponds with an element of $[a, a + 2\pi), a \in \mathbb{R}$, by a 2π -integral translate and vice versa. In case an MSF wavelet arises from a generalized multiresolution analysis (GMRA) with scaling function φ and there is a measurable set S in \mathbb{R} such that $|\hat{\varphi}| = \chi_S$, S has been called to be a *generalized scaling set* [2, 10].

The notion of a generalized scaling set provides a method to obtain wavelet sets. A measurable set W of the real line \mathbb{R} is called a *wavelet set* if the characteristic function on W is $\sqrt{2\pi}$ times the modulus of the Fourier transform of an orthonormal wavelet ψ of $L^2(\mathbb{R})$ [3]. By an *orthonormal wavelet* ψ , we mean a function in $L^2(\mathbb{R})$ whose successive dilates by a scalar d of all integral

Mathematical Reviews subject classification: Primary: 42C15, 42C40

Key words: scaling set, generalized scaling set, wavelet set

Received by the editors January 21, 2009

Communicated by: Alexander Olevskii *Supported by the CSIR, New Delhi.

[†]Supported by the UGC, New Delhi.

¹²¹

translates form an orthonormal basis for $L^2(\mathbb{R})$. These notions have their versions in higher dimensions as well [2, 4, 5, 10], and these have been extensively studied in many research papers besides those already referred. Ha, Kang, Lee and Seo [7] characterized wavelet sets in \mathbb{R} which are unions of three disjoint intervals. These are precisely

$$\begin{bmatrix} -2(1-\frac{2p+1}{2^{j+1}-1})\pi, -(1-\frac{2p+1}{2^{j+1}-1})\pi \end{bmatrix} \cup \begin{bmatrix} \frac{2(p+1)\pi}{2^{j+1}-1}, \frac{2(2p+1)\pi}{2^{j+1}-1} \end{bmatrix} \cup \begin{bmatrix} \frac{2^{j+1}(2p+1)\pi}{2^{j+1}-1}, \frac{2^{j+2}(p+1)\pi}{2^{j+1}-1} \end{bmatrix}$$
(1)

for natural numbers j and p, where $j \ge 2$ and $1 \le p \le 2^j - 2$.

Determination of wavelet sets of \mathbb{R} which are unions of pairwise disjoint intervals attracted several workers who made significant contributions towards this end [1, 3, 7, 8, 10].

The purpose of this paper is to characterize three-interval scaling sets of \mathbb{R} by selecting three distinct and increasing points in the circle S^1 , or equivalently, in $[0, 2\pi)$. Certain examples of wavelet sets arising from three-interval scaling sets are provided. In the end, we give a procedure to obtain scaling sets of \mathbb{R} consisting of finitely many intervals.

2 Notation and Preliminaries.

For a set W of the real line \mathbb{R} , W^+ denotes $W \cap (0, \infty)$ and W^- denotes $W \cap (-\infty, 0)$. Also, we denote $(0, \infty)$ by \mathbb{R}^+ and $(-\infty, 0)$ by \mathbb{R}^- . Let $a \in \mathbb{R}$. Then for $x \in \mathbb{R}$, there is a unique integer k such that $a \leq x + 2k\pi < a + 2\pi$. Next, let $b \in \mathbb{R}^+$. Then for x > 0, there is a unique integer j such that $b \leq 2^j x < 2b$. These observations provide the following maps for $a \in \mathbb{R}$, $b \in \mathbb{R}^+$ and $c \in \mathbb{R}^-$:

(i) $\tau_a : \mathbb{R} \longrightarrow [a, a+2\pi)$, defined by

$$\tau_a(x) = x + 2k\pi, \ x \in \mathbb{R},$$

(ii) $\delta_b : \mathbb{R}^+ \longrightarrow [b, 2b)$, defined by

$$\delta_b(x) = 2^j x, \ x \in \mathbb{R}^+,$$

(iii) $\delta_c : \mathbb{R}^- \longrightarrow [2c, c)$, defined by

$$\delta_c(x) = -\delta_{-c}(-x), \ x \in \mathbb{R}^-.$$

It has been proved in [7, Theorem 3.6], that W is a wavelet set of \mathbb{R} iff τ_a , δ_b and δ_c are measurable bijections for some $a \in \mathbb{R}$, $b \in \mathbb{R}^+$ and $c \in \mathbb{R}^-$, when restricted to W, W^+ and W^- , respectively. It is pertinent to mention that there are several other criteria for wavelet sets [2, 3, 4, 5, 9].

In the sequel, we shall frequently make use of the consequence of Lemma 3 in [6] stated below.

Lemma 2.1 (6; Lemma 3). Let A be a real expansive $n \times n$ matrix such that |det A| = 2 and $A\mathbb{Z}^n \subset \mathbb{Z}^n$. Let S be a measurable subset of \mathbb{R}^n such that S contains a neighborhood of zero. If $S \subset A^t S$ and S is, modulo null sets, 2π translation congruent to $[-\pi, \pi)^n$, then $W = A^t S - S$ is an A-dilation MRA wavelet.

As its consequence, we have

Result 2.2. Let S be a measurable set in \mathbb{R} which contains a neighborhood of zero and satisfies $S \subset 2S$. If S is 2π -translation congruent to $[-\pi, \pi)$, or equivalently to $[\alpha, \alpha + 2\pi)$, where $\alpha \in \mathbb{R}$, modulo a null set, then W = 2S - Sis a wavelet set associated with a multiresolution analysis.

Definition 2.3. A measurable set S in \mathbb{R} is called a *generalized scaling set* for the dilation 2 if $S = \bigcup_{i \leq 0} 2^{i} W$, for some wavelet set W [10, Definition 1]. This is equivalent to saying that S is a generalized scaling set of \mathbb{R} [2] iff

(i) $S \subset 2S$, and

(ii) $W \equiv 2S - S$ is a wavelet set of \mathbb{R} .

A scaling set of \mathbb{R} is a generalized scaling set but the converse is not necessarily true as is shown in the following example.

Example 2.4. The set

 $S = \begin{bmatrix} \frac{-4\pi}{7}, \frac{4\pi}{7} \end{bmatrix} \cup \begin{bmatrix} \frac{6\pi}{7}, \frac{8\pi}{7} \end{bmatrix} \cup \begin{bmatrix} \frac{12\pi}{7}, \frac{16\pi}{7} \end{bmatrix},$

is a generalized scaling set because

(i) $S \subset 2S$, and

(ii) $W \equiv 2S - S = \begin{bmatrix} -\frac{8\pi}{7}, & -\frac{4\pi}{7} \end{bmatrix} \cup \begin{bmatrix} \frac{4\pi}{7}, & \frac{6\pi}{7} \end{bmatrix} \cup \begin{bmatrix} \frac{24\pi}{7}, & \frac{32\pi}{7} \end{bmatrix}$ is a wavelet set, in view of (1) in the Introduction, for j = 2 and p = 1. However, S is not a scaling set.

In the light of Result 2.2 and Definition 2.3, we have the following result:

Result 2.5. A measurable set S of \mathbb{R} which contains a neighborhood of zero and satisfies:

(1) $S \subset 2S$, and

(2) S is 2π -translation congruent to $[a, a + 2\pi)$, where $a \in \mathbb{R}$, is a scaling set of \mathbb{R} .

Consider the map $p: \mathbb{R} \longrightarrow S^1$ which sends $t \in \mathbb{R}$ to $e^{it} \in S^1$. We identify $t \in [0, 2\pi)$ with e^{it} . For $\alpha_1, \alpha_2, \alpha_3, ..., \alpha_n$ in S^1 , or equivalently, in $[0, 2\pi)$ such that $0 < \alpha_1 < \alpha_2 < \alpha_3 < ... < \alpha_n < 2\pi$, $p^{\leftarrow}(\alpha_1, \alpha_2, \alpha_3, ..., \alpha_n)$ denotes the set $[\alpha_1, \alpha_2) \cup [\alpha_2, \alpha_3) \cup ... \cup [\alpha_n, \alpha_1 + 2\pi)$ in \mathbb{R} . By an *n*-interval scaling set (generalized scaling set), we mean a scaling set (generalized scaling set) consisting of *n* intervals of \mathbb{R} . Similarly, we define an *n*-interval wavelet set. We say an *n*-interval scaling (generalized scaling, wavelet) set to consist of *n* components.

The next section is devoted to the characterization of three-interval scaling sets of \mathbb{R} .

3 A Characterization of Three-Interval Scaling Sets.

Let α , β , γ in S^1 , or equivalently, in $[0, 2\pi)$ be such that $0 < \alpha < \beta < \gamma < 2\pi$. Recall that $p^{\leftarrow}(\alpha, \beta, \gamma)$ denotes the set $[\alpha, \beta) \cup [\beta, \gamma) \cup [\gamma, \alpha+2\pi)$ in \mathbb{R} . We now proceed to obtain three-interval scaling sets of \mathbb{R} by translating $[\alpha, \beta)$, $[\beta, \gamma)$ and $[\gamma, \alpha + 2\pi)$ by integral multiples of 2π . Since a scaling set of \mathbb{R} has to contain a neighborhood of zero, we have to translate the interval $[\gamma, \alpha + 2\pi)$ by -2π . Translate $[\alpha, \beta)$ by $2n\pi$ and $[\beta, \gamma)$ by $2m\pi$ such that the three intervals $[\gamma-2\pi, \alpha)$, $[\alpha+2n\pi, \beta+2n\pi)$ and $[\beta+2m\pi, \gamma+2m\pi)$ are mutually separated; that is to say that the closure of one does not meet the other.

Let m > 0. Then, in light of the fact that we are concerned with threeinterval scaling sets, we have to discard the cases when n = 0 and also when n = m. For n > 0, consider the two possibilities: (i) m > n, and (ii) n > m. In both the possibilities, the components remain mutually separated. However, $S \not\subset 2S$ in these situations, where

$$S = [\gamma - 2\pi, \alpha) \cup [\alpha + 2n\pi, \beta + 2n\pi) \cup [\beta + 2m\pi, \gamma + 2m\pi).$$

For n < 0, m > n, it can again be seen that $S \not\subset 2S$. Thus S cannot be a scaling set, when m > 0.

Next, let m < 0. To have components in S mutually separated, $m \neq -1$ and also, $n \neq 0$. Therefore $m \leq -2$. Suppose m < -2. If n > 0, then n > m, and in this situation, although the three-components of S remain mutually separated, $S \not\subset 2S$. For n < 0, the possibilities (i) n > m, and (ii)

124

n < m, provide $S \not\subset 2S$, while n = m reduces the number of components in S. Thus only $m \in \{-2, 0\}$ can provide scaling sets. When m = -2, and $n \in \mathbb{Z} - \{-1\}, S \not\subset 2S$. Likewise, when m = 0 and $n \in \mathbb{Z} - \{-1, 1\}, S \not\subset 2S$. Therefore, to have S as a scaling set of \mathbb{R} , we are left with following choices:

Choice I. m = 0 and n = 1,

Choice II. m = 0 and n = -1, and

Choice III. m = -2 and n = -1.

Choice I gives

$$S = [\gamma - 2\pi, \alpha) \cup [\beta, \gamma) \cup [\alpha + 2\pi, \beta + 2\pi).$$

The requirement that $S \subset 2S$ for S to be a scaling set holds iff the following conditions are satisfied:

- (a) $2\alpha \ge \gamma$,
- (b) $\alpha + 2\pi \ge 2\beta$, and
- (c) $2\gamma \ge \beta + 2\pi$.

By construction, S is 2π -translation congruent to $[\alpha, \alpha+2\pi)$. Hence, by Result 2.5, it follows that S is a scaling set.

Given below is an alternative proof for S to be a scaling set. Note that

$$W = [2(\gamma - 2\pi), \gamma - 2\pi) \cup [\alpha, \beta] \cup [\gamma, 2\alpha) \cup [2\beta, \alpha + 2\pi) \cup [\beta + 2\pi, 2\gamma) \cup [2(\alpha + 2\pi), 2(\beta + 2\pi)],$$

$$\equiv I_1 \cup I_2 \cup I_3 \cup I_4 \cup I_5 \cup I_6 \qquad (say).$$

That W is a wavelet set follows by observing that the maps τ_{α} , $\delta_{\gamma-2\pi}$ and δ_{α} are bijections. Indeed,

(i) $\tau_{\alpha}: W \longrightarrow [\alpha, \alpha + 2\pi)$ is defined by

$$\tau_{\alpha} (x) = \begin{cases} x + 2\pi & \text{if } x \in I_{1}, \\ x & \text{if } x \in I_{2} \cup I_{3} \cup I_{4}, \\ x - 2\pi & \text{if } x \in I_{5}, \\ x - 4\pi & \text{if } x \in I_{6}. \end{cases}$$

(ii) $\delta_{\gamma-2\pi}: W^- \longrightarrow [2(\gamma - 2\pi), \gamma - 2\pi),$ where $W^- \equiv I_1$, is defined by $\delta_{\gamma-2\pi}(x) = x.$ (iii) $\delta_{\alpha}: W^+ \longrightarrow [\alpha, 2\alpha)$, where $W^+ \equiv I_2 \cup I_3 \cup I_4 \cup I_5 \cup I_6$, is defined by

$$\delta_{\alpha}\left(x\right) = \begin{cases} x & \text{if } x \in I_{2} \cup I_{3}, \\ \frac{x}{2} & \text{if } x \in I_{4} \cup I_{5}, \\ \frac{x}{4} & \text{if } x \in I_{6}. \end{cases}$$

Thus S is a generalized scaling set. Further, in the light of Corollary 3.4 of [2] according to which a measurable set S in \mathbb{R} is a scaling set iff it is a generalized scaling set of order $d-1 \equiv 2-1 = 1$ and $\sum_{k \in \mathbb{Z}} \chi_S(\xi + 2k\pi) = 1$, almost everywhere, it follows that S is a scaling set. **Choice II** gives

$$S = [\alpha - 2\pi, \beta - 2\pi) \cup [\gamma - 2\pi, \alpha) \cup [\beta, \gamma).$$

The requirement that $S \subset 2S$ for S to be a scaling set holds iff the following conditions are satisfied:

- (a) $2\alpha \ge \gamma$, and
- (b) $\alpha + 2\pi \ge 2\gamma$.

By construction, S is 2π -translation congruent to $[\alpha, \alpha+2\pi)$. Hence, by Result 2.5, it follows that S is a scaling set. **Choice III** gives

$$S = [\beta - 4\pi, \gamma - 4\pi) \cup [\alpha - 2\pi, \beta - 2\pi) \cup [\gamma - 2\pi, \alpha).$$

The requirement that $S \subset 2S$ for S to be a scaling set holds iff the following conditions are satisfied:

- (a) $2\gamma \leq \alpha + 2\pi$,
- (b) $\gamma \leq 2\beta$, and
- (c) $2\alpha \leq \beta$.

By construction, S is 2π -translation congruent to $[\alpha, \alpha+2\pi)$. Hence, by Result 2.5, it follows that S is a scaling set.

We sum up the above in the following:

Theorem 3.1. A triple (α, β, γ) , where α, β, γ in S^1 , or equivalently, in $[0, 2\pi)$ such that $0 < \alpha < \beta < \gamma < 2\pi$ provides exactly three kinds of three-interval scaling sets described as follows:

(i)
$$S = [\gamma - 2\pi, \alpha) \cup [\beta, \gamma) \cup [\alpha + 2\pi, \beta + 2\pi)$$
, where
(a) $2\alpha \ge \gamma$, (b) $\alpha + 2\pi \ge 2\beta$, and (c) $2\gamma \ge \beta + 2\pi$

(ii) $S = [\alpha - 2\pi, \beta - 2\pi) \cup [\gamma - 2\pi, \alpha) \cup [\beta, \gamma)$, where (a) $2\alpha \ge \gamma$, and (b) $\alpha + 2\pi \ge 2\gamma$.

(iii) $S = [\beta - 4\pi, \gamma - 4\pi) \cup [\alpha - 2\pi, \beta - 2\pi) \cup [\gamma - 2\pi, \alpha)$, where (a) $2\gamma \le \alpha + 2\pi$, (b) $\gamma \le 2\beta$, and (c) $2\alpha \le \beta$.

The converse of Theorem 3.1 is also true.

Theorem 3.2. Suppose S is a three-interval scaling set of \mathbb{R} . Then there are three elements α , β , γ in S¹, or equivalently, in $[0, 2\pi)$ such that $0 < \alpha < \beta < \gamma < 2\pi$ for which S is of the form (i) or (ii) or (iii) as described in Theorem 3.1.

PROOF. Suppose $S = I_1 \cup I_2 \cup I_3$, where $I_1 = [a, b)$, $I_2 = [c, d)$, and $I_3 = [e, f)$ are three mutually separated intervals of \mathbb{R} . Since a scaling set is associated with an MRA, S is 2π -translation congruent to an interval of \mathbb{R} of measure 2π . Also, one of the components of S, say, I_1 contains a neighborhood of zero.

(1) Suppose a < b < c < d < e < f. As a scaling set satisfies $S \subset 2S$, we shall have either of the following cases:

- (i) $f \leq 2b$.
- (ii) (1) $d \le 2b$, (2) $2c \le e$, and (3) $f \le 2d$.

When restricted to S the map $\tau_a : S \longrightarrow [a, a + 2\pi)$ is the identity on I_1 . Furthermore, from the fact that neither I_2 nor I_3 can contain an integer multiple of 2π , we have either of the following situations arising from τ_a :

(A)	$b = c + 2m\pi$	(B)	$b = e + 2n\pi$
	$d + 2m\pi = e + 2n\pi$		$f + 2n\pi = c + 2m\pi$
	$f + 2n\pi = a + 2\pi$		$a + 2\pi = d + 2m\pi$

First we take up Case (i) with (A). Since $b < 2\pi$, from $b = c + 2m\pi$, we deduce that m < 0 and $c \in (-2m\pi, 2(1-m)\pi)$. As $f \leq 2b$ and c < f, we have $c < 4\pi$. Thus m = -1. This gives $c = b + 2\pi$ and hence 2b < c. This

contradicts the fact that $S \subset 2S$. Considering Case (i) with (B), we arrive at a similar conclusion and therefore Case (i) cannot occur.

Next, we consider Case (ii) with (A). Since $b < 2\pi$, from $b = c + 2m\pi$, we deduce that m < 0 and $c \in (-2m\pi, 2(1-m)\pi)$. As $d < 4\pi$ and c < d, $c < 4\pi$. Thus m = -1. This gives $c = b + 2\pi$ and hence 2b < c. This contradicts the fact that $S \subset 2S$.

Now consider Case (ii) with (B). Since $d \leq 2b$, $d < 4\pi$. Also, $f \leq 2d$ gives $f < 8\pi$. From $b = e+2n\pi$, we get n < 0 and $e \in (-2n\pi, 2(1-n)\pi)$. As $f < 8\pi$ and e < f, $e < 8\pi$. Thus n = -1, or -2, or -3. From $a + 2\pi = d + 2m\pi$, we get m < 1 and $d \in (-2m\pi, 2(1-m)\pi)$. As $d < 4\pi$, m = 0, or -1. If m = -1, then $d = a + 4\pi$, which gives 2b < d. This contradicts the fact that $S \subset 2S$. If m = 0 and $n \in \{-2, -3\}, 2d < f$ which again contradicts the fact that that $S \subset 2S$. Finally, m = 0 and n = -1 give

$$S = [a, b) \cup [c, a + 2\pi) \cup [b + 2\pi, c + 2\pi),$$

showing that S arises via Choice I on taking $\alpha = b$, $\beta = c$ and $\gamma = a + 2\pi$.

(2) Suppose e < f < a < b < c < d. Since $S \subset 2S$, we have $2a \le e$, and $d \le 2b$. When restricted to S the map $\tau_a : S \longrightarrow [a, a + 2\pi)$ is identity on I_1 . Furthermore, from the fact that neither I_2 nor I_3 can contain an integral multiple of 2π , we have either of the following situations arising from τ_a :

(A)
$$b = c + 2m\pi$$
 (B) $b = e + 2n\pi$
 $d + 2m\pi = e + 2n\pi$ $f + 2n\pi = c + 2m\pi$
 $f + 2n\pi = a + 2\pi$ $a + 2\pi = d + 2m\pi$

First consider (A). From $b = c + 2m\pi$, we get m < 0 and $c \in (-2m\pi, 2(1 - m)\pi)$. As $d < 4\pi$ and c < d, we have $c < 4\pi$. Thus m = -1, and $c = b + 2\pi$. This provides 2b < c which is a contradiction to the fact that $S \subset 2S$.

Next, consider (B). From $b = e + 2n\pi$, we deduce that n > 0 and $e \in (-2n\pi, 2(1-n)\pi)$. As $2a \le e$ and $-2\pi < a$, we have $-4\pi < e$. Thus n = 1, or 2. From $a + 2\pi = d + 2m\pi$, we obtain that m < 1 and $d \in (-2m\pi, 2(1-m)\pi)$. As $d \le 2b$ and $b < 2\pi$, we have $d < 4\pi$. Thus m = 0, or -1. If m = -1, then $d = a + 4\pi$ which gives 2b < d. This contradicts the fact that $S \subset 2S$. If n = 2, then $e = b - 4\pi$ which provides 2a > e, again a contradiction to the fact $S \subset 2S$. If m = 0 and n = 1, then

$$S = [b - 2\pi, c - 2\pi) \cup [a, b] \cup [c, a + 2\pi),$$

which arises via **Choice II** by taking $\alpha = b$, $\beta = c$, $\gamma = a + 2\pi$.

(3) In case, when e < f < c < d < a < b, it can be seen that S arises from **Choice III**, in a way similar to (1) for $\alpha = b$, $\beta = d + 2\pi$ and $\gamma = a + 2\pi$. \Box

Remark 3.3. Denoting the scaling set S obtained in (i) of Theorem 3.1 by $S(I; \alpha, \beta, \gamma)$ and that in (iii) by $S(III; \alpha, \beta, \gamma)$, it is seen that

$$S(\text{III}; \alpha, \beta, \gamma) = -S(\text{I}; 2\pi - \gamma, 2\pi - \beta, 2\pi - \alpha).$$

Remark 3.4. The generalized scaling set in Example 2.4 is not a scaling set because S is not of the form (i), or (ii), or (iii) in Theorem 3.1 for any $\alpha, \beta, \gamma \in [0, 2\pi)$.

4 Examples of Three-Interval Scaling Sets.

In this section, from the conditions obtained on α , β and γ so that $p^{\leftarrow}(\alpha, \beta, \gamma)$ furnishes scaling sets are discussed. Certain three-interval scaling sets are obtained and the number of components in the associated wavelet sets is seen to be between 3 and 6 in case of **Choice I** as well as in case of **Choice III** and between 4 and 6 in case of **Choice II**.

We first consider scaling sets obtained via Choice I.

(a) When $2\alpha = \gamma$, $2\beta = \alpha + 2\pi$ and $2\gamma = \beta + 2\pi$, we have $\alpha = \frac{6\pi}{7}$, $\beta = \frac{10\pi}{7}$ and $\gamma = \frac{12\pi}{7}$ so that the scaling set obtained is given by

$$S = \left[-\frac{2\pi}{7}, \frac{6\pi}{7}\right) \cup \left[\frac{10\pi}{7}, \frac{12\pi}{7}\right) \cup \left[\frac{20\pi}{7}, \frac{24\pi}{7}\right)$$

The corresponding wavelet set is

$$W \equiv 2S - S = \left[-\frac{4\pi}{7}, -\frac{2\pi}{7} \right] \cup \left[\frac{6\pi}{7}, \frac{10\pi}{7} \right] \cup \left[\frac{40\pi}{7}, \frac{48\pi}{7} \right].$$

Notice that W is a three-interval wavelet set.

(b) When $2\alpha = \gamma$, $2\beta = \alpha + 2\pi$ and $2\gamma > \beta + 2\pi$, we have $\alpha > \frac{6\pi}{7}$, $\beta > \frac{10\pi}{7}$ and $\gamma > \frac{12\pi}{7}$ so that the scaling sets obtained are

$$S = [\gamma - 2\pi, \alpha) \cup [\beta, \gamma) \cup [\alpha + 2\pi, \beta + 2\pi).$$

The corresponding wavelet sets are

$$W = \left[2(\gamma - 2\pi), \gamma - 2\pi\right) \cup \left[\alpha, \beta\right] \cup \left[\beta + 2\pi, 2\gamma\right) \cup \left[2(\alpha + 2\pi), 2(\beta + 2\pi)\right).$$

These corresponding wavelet sets are four-interval wavelet sets. For illustration, choosing $\alpha = \frac{13\pi}{14}$, we have $\beta = \frac{41\pi}{28}$ and $\gamma = \frac{13\pi}{7}$ so that the scaling set thus obtained is

$$S = \left[-\frac{\pi}{7}, \frac{13\pi}{14}\right) \cup \left[\frac{41\pi}{28}, \frac{13\pi}{7}\right) \cup \left[\frac{41\pi}{14}, \frac{97\pi}{28}\right),$$

and the corresponding wavelet set is

$$W = \left[-\frac{2\pi}{7}, -\frac{\pi}{7}\right) \cup \left[\frac{13\pi}{14}, \frac{41\pi}{28}\right) \cup \left[\frac{97\pi}{28}, \frac{26\pi}{7}\right) \cup \left[\frac{41\pi}{7}, \frac{97\pi}{14}\right)$$

which has four components.

Proceeding as in (b), we obtain scaling sets in cases

- (i) $2\alpha = \gamma$, $2\beta < \alpha + 2\pi$ and $2\gamma = \beta + 2\pi$,
- (ii) $2\alpha > \gamma$, $2\beta = \alpha + 2\pi$ and $2\gamma = \beta + 2\pi$,

in each of which the associated wavelet sets have four components.

(c) When $2\alpha = \gamma$, $2\beta < \alpha + 2\pi$ and $2\gamma > \beta + 2\pi$, we have scaling sets given by

$$S = [\gamma - 2\pi, \alpha) \cup [\beta, \gamma) \cup [\alpha + 2\pi, \beta + 2\pi),$$

and the corresponding wavelet sets are given by

$$W = [2(\gamma - 2\pi), \gamma - 2\pi) \cup [\alpha, \beta] \cup [2\beta, \alpha + 2\pi) \cup [\beta + 2\pi, 2\gamma) \cup [2(\alpha + 2\pi), 2(\beta + 2\pi)].$$

These corresponding wavelet sets are five-interval wavelet sets. For illustration, choosing $\alpha = \frac{13\pi}{14}$, $\beta = \frac{10\pi}{7}$ and $\gamma = \frac{13\pi}{7}$, we have the scaling set S as

$$S = \left[-\frac{\pi}{7}, \frac{13\pi}{14}\right) \cup \left[\frac{10\pi}{7}, \frac{13\pi}{7}\right) \cup \left[\frac{41\pi}{14}, \frac{24\pi}{7}\right),$$

while the corresponding wavelet set is

$$W = \left[-\frac{2\pi}{7}, -\frac{\pi}{7}\right) \cup \left[\frac{13\pi}{14}, \frac{10\pi}{7}\right) \cup \left[\frac{20\pi}{7}, \frac{41\pi}{14}\right) \cup \left[\frac{24\pi}{7}, \frac{26\pi}{7}\right) \cup \left[\frac{41\pi}{7}, \frac{48\pi}{7}\right)$$

which possesses five components.

Proceeding as in (c), we obtain scaling sets in cases

- (i) $2\alpha > \gamma$, $2\beta < \alpha + 2\pi$ and $2\gamma = \beta + 2\pi$,
- (ii) $2\alpha > \gamma$, $2\beta = \alpha + 2\pi$ and $2\gamma > \beta + 2\pi$,

in each of which the associated wavelet sets have five components.

(d) When $2\alpha > \gamma$, $2\beta < \alpha + 2\pi$ and $2\gamma > \beta + 2\pi$, we have $\alpha > \frac{2\pi}{3}$ and $\gamma > \frac{4\pi}{3}$ so that the scaling sets thus obtained are

$$S = [\gamma - 2\pi, \alpha) \cup [\beta, \gamma) \cup [\alpha + 2\pi, \beta + 2\pi),$$

130

and the corresponding wavelet sets are

$$W = [2(\gamma - 2\pi), \gamma - 2\pi) \cup [\alpha, \beta] \cup [\gamma, 2\alpha) \cup [2\beta, \alpha + 2\pi) \cup [\beta + 2\pi, 2\gamma) \cup [2(\alpha + 2\pi), 2(\beta + 2\pi)].$$

These corresponding wavelet sets are six-interval wavelet sets. For illustration, choosing $\alpha = \frac{13\pi}{14}$, $\beta = \frac{9\pi}{7}$ and $\gamma = \frac{12\pi}{7}$, we have the scaling set

$$S = \left[-\frac{2\pi}{7}, \frac{13\pi}{14}\right) \cup \left[\frac{9\pi}{7}, \frac{12\pi}{7}\right) \cup \left[\frac{41\pi}{14}, \frac{23\pi}{7}\right),$$

and the corresponding wavelet set

$$W = \left[-\frac{4\pi}{7}, -\frac{2\pi}{7}\right) \cup \left[\frac{13\pi}{14}, \frac{9\pi}{7}\right) \cup \left[\frac{12\pi}{7}, \frac{13\pi}{7}\right) \cup \left[\frac{18\pi}{7}, \frac{41\pi}{14}\right] \cup \left[\frac{23\pi}{7}, \frac{24\pi}{7}\right) \cup \left[\frac{41\pi}{7}, \frac{46\pi}{7}\right]$$

which has six components.

Next, we consider certain scaling sets obtained via Choice II.

(a) When $\gamma = 2\alpha$ and $2\gamma = \alpha + 2\pi$, we have $\alpha = \frac{2\pi}{3}$, $\beta \in (\frac{2\pi}{3}, \frac{4\pi}{3})$ and $\gamma = \frac{4\pi}{3}$ so that the scaling sets obtained are

$$S = \left[-\frac{4\pi}{3}, \beta - 2\pi\right) \cup \left[-\frac{2\pi}{3}, \frac{2\pi}{3}\right) \cup \left[\beta, \frac{4\pi}{3}\right),$$

and the corresponding wavelet sets are

$$W = \left[-\frac{8\pi}{3}, 2(\beta - 2\pi)\right) \cup \left[\beta - 2\pi, -\frac{2\pi}{3}\right) \cup \left[\frac{2\pi}{3}, \beta\right) \cup \left[2\beta, \frac{8\pi}{3}\right).$$

These corresponding wavelet sets are four-interval wavelet sets.

(b) When $2\alpha = \gamma$ and $2\gamma < \alpha + 2\pi$, we have $\alpha < \frac{2\pi}{3}$ and $\gamma < \frac{4\pi}{3}$ so that the scaling sets obtained are

$$S = [\alpha - 2\pi, \beta - 2\pi) \cup [\gamma - 2\pi, \alpha) \cup [\beta, \gamma),$$

while the corresponding wavelet sets are

$$W = [2(\alpha - 2\pi), 2(\beta - 2\pi)) \cup [2(\gamma - 2\pi), \alpha - 2\pi) \cup [\beta - 2\pi, \gamma - 2\pi) \cup [\alpha, \beta) \cup [2\beta, 2\gamma).$$

These corresponding wavelet sets are five-interval wavelet sets.

Proceeding as in (b), we obtain scaling sets in case $2\alpha > \gamma$ and $2\gamma = \alpha + 2\pi$ for which the associated wavelet sets possess five components.

(c) When $2\alpha > \gamma$ and $2\gamma < \alpha + 2\pi$, we have the scaling sets as

$$S = [\alpha - 2\pi, \beta - 2\pi) \cup [\gamma - 2\pi, \alpha) \cup [\beta, \gamma),$$

and the corresponding wavelet sets as

$$W = [2(\alpha - 2\pi), 2(\beta - 2\pi)) \cup [2(\gamma - 2\pi), \alpha - 2\pi) \cup [\beta - 2\pi, \gamma - 2\pi) \cup [\alpha, \beta) \cup [\gamma, 2\alpha) \cup [2\beta, 2\gamma).$$

These corresponding wavelet sets are six-interval wavelet sets. For illustration, choosing $\alpha = \pi$, $\beta = \frac{9\pi}{8}$ and $\gamma = \frac{5\pi}{4}$, we have the scaling set

$$S = \left[-\pi, -\frac{7\pi}{8}\right) \cup \left[-\frac{3\pi}{4}, \pi\right) \cup \left[\frac{9\pi}{8}, \frac{5\pi}{4}\right),$$

whose corresponding wavelet set is

$$W = \left[-2\pi, -\frac{7\pi}{4}\right) \cup \left[-\frac{3\pi}{2}, -\pi\right) \cup \left[-\frac{7\pi}{8}, -\frac{3\pi}{4}\right) \cup \left[\pi, \frac{9\pi}{8}\right) \cup \left[\frac{5\pi}{4}, 2\pi\right) \cup \left[\frac{9\pi}{4}, \frac{5\pi}{2}\right)$$

having six components.

A similar discussion as for **Choice I** can be made for **Choice III** to have particular scaling sets.

5 *n*-Interval Scaling Sets.

Consider $\alpha_1, \alpha_2, \alpha_3, ..., \alpha_n$ in S^1 , or equivalently, in $[0, 2\pi)$ such that $0 < \alpha_1 < \alpha_2 < \alpha_3 < ... < \alpha_n < 2\pi$. Recall that $p^{\leftarrow}(\alpha_1, \alpha_2, \alpha_3, ..., \alpha_n)$ denotes the set $[\alpha_1, \alpha_2) \cup [\alpha_2, \alpha_3) \cup ... \cup [\alpha_n, \alpha_1 + 2\pi)$ in \mathbb{R} . In this section, we provide *n*-interval scaling sets with the help of these points. First, assume that *n* is an odd natural number greater than 1. For n=1, $p^{\leftarrow}(\alpha_1) - 2\pi$ becomes a scaling set. Translate the interval $[\alpha_n, \alpha_1 + 2\pi)$ by -2π and intervals $[\alpha_1, \alpha_2), [\alpha_3, \alpha_4), [\alpha_5, \alpha_6), ..., [\alpha_{n-2}, \alpha_{n-1})$, each by 2π , to have

$$S = \left[\alpha_n - 2\pi, \, \alpha_1\right) \cup \bigcup_{m=1}^{\frac{n-1}{2}} \left[\alpha_{2m}, \, \alpha_{2m+1}\right) \cup \bigcup_{m=1}^{\frac{n-1}{2}} \left[\alpha_{2m-1} + 2\pi, \, \alpha_{2m} + 2\pi\right).$$

The requirement that $S \subset 2S$ for S to be a scaling set holds if the following conditions are satisfied:

132

- (i) $\alpha_n \leq 2\alpha_1$,
- (ii) $2\alpha_{2m} \le \alpha_{2m-1} + 2\pi$,
- (iii) $\alpha_{2m} + 2\pi \le 2\alpha_{2m+1},$

where $m \in \{1, 2, 3, ..., \frac{n-1}{2}\}$. By construction, S is 2π -translation congruent to $[\alpha, \alpha+2\pi)$. Hence, by Result

By construction, S is 2π -translation congruent to $[\alpha, \alpha+2\pi)$. Hence, by Resul 2.5, it follows that S is a scaling set.

Below is given an alternative proof for S to be a scaling set. Note that

$$W = [2(\alpha_n - 2\pi), \alpha_n - 2\pi) \cup \bigcup_{m=1}^{\frac{n-1}{2}} [\alpha_{2m-1}, \alpha_{2m}) \cup [\alpha_n, 2\alpha_1) \cup \bigcup_{m=1}^{\frac{n-1}{2}} [2\alpha_{2m}, \alpha_{2m-1} + 2\pi) \cup \bigcup_{m=1}^{\frac{n-1}{2}} [\alpha_{2m} + 2\pi, 2\alpha_{2m+1}) \cup \bigcup_{m=1}^{\frac{n-1}{2}} [2(\alpha_{2m-1} + 2\pi), 2(\alpha_{2m} + 2\pi)],$$
$$\equiv I_1 \cup \bigcup_{m=1}^{\frac{n-1}{2}} I_{2,m} \cup I_3 \cup \bigcup_{m=1}^{\frac{n-1}{2}} I_{4,m} \cup \bigcup_{m=1}^{\frac{n-1}{2}} I_{5,m} \cup \bigcup_{m=1}^{\frac{n-1}{2}} I_{6,m} \quad (say),$$

where

$$\begin{split} I_1 = & \left[2(\alpha_n - 2\pi), \alpha_n - 2\pi \right), \\ I_{2,m} = & \left[\alpha_{2m-1}, \alpha_{2m} \right), \\ I_3 = & \left[\alpha_n, 2\alpha_1 \right), \\ I_{4,m} = & \left[2\alpha_{2m}, \alpha_{2m-1} + 2\pi \right), \\ I_{5,m} = & \left[\alpha_{2m} + 2\pi, 2\alpha_{2m+1} \right), \\ I_{6,m} = & \left[2(\alpha_{2m-1} + 2\pi), 2(\alpha_{2m} + 2\pi) \right). \end{split}$$

That W is a wavelet set follows by observing that the maps τ_{α_1} , $\delta_{\alpha_n-2\pi}$ and δ_{α_1} are bijections. Indeed,

(i) $\tau_{\alpha_1}: W \longrightarrow [\alpha_1, \alpha_1 + 2\pi)$ is defined by

$$\tau_{\alpha_1}(x) = \begin{cases} x & \text{if } x \in \bigcup_{m=1}^{\frac{n-1}{2}} I_{2,m} \cup I_3 \cup I_{4,1}, \\ x - 2\pi & \text{if } x \in \bigcup_{m=2}^{\frac{n-1}{2}} I_{4,m} \cup \bigcup_{m=1}^{\frac{n-1}{2}} I_{5,m}, \\ x - 4\pi & \text{if } x \in I_{6,1}, \\ x - 6\pi & \text{if } x \in \bigcup_{m=2}^{\frac{n-1}{2}} I_{6,m}, \\ x + 2\pi & \text{if } x \in I_1. \end{cases}$$

(ii)
$$\delta_{\alpha_n-2\pi}: W^- \longrightarrow [2(\alpha_n - 2\pi), \alpha_n - 2\pi),$$
 where $W^- \equiv I_1$, is defined by
 $\delta_{\alpha_n-2\pi}(x) = x.$

(iii) $\delta_{\alpha_1}: W^+ \longrightarrow [\alpha_1, 2\alpha_1)$, where $W^+ \equiv W - W^-$, is defined by

$$\delta_{\alpha_1}(x) = \begin{cases} x & \text{if } x \in \bigcup_{m=1}^{\frac{n-1}{2}} I_{2,m} \cup I_3, \\ \frac{x}{2} & \text{if } x \in \bigcup_{m=1}^{\frac{n-1}{2}} I_{4,m} \cup \bigcup_{m=1}^{\frac{n-1}{2}} I_{5,m}, \\ \frac{x}{4} & \text{if } x \in \bigcup_{m=1}^{\frac{n-1}{2}} I_{6,m}. \end{cases}$$

Next, assume that n is an even natural number greater than 2. Translate the intervals $[\alpha_n, \alpha_1 + 2\pi)$ and $[\alpha_{n-2}, \alpha_{n-1})$ by -2π and intervals $[\alpha_1, \alpha_2)$, $[\alpha_3, \alpha_4), [\alpha_5, \alpha_6), \ldots, [\alpha_{n-3}, \alpha_{n-2})$, each by 2π , to have

$$S = [\alpha_{n-2} - 2\pi, \alpha_{n-1} - 2\pi) \cup [\alpha_n - 2\pi, \alpha_1] \cup \bigcup_{m=1}^{\frac{n-4}{2}} [\alpha_{2m}, \alpha_{2m+1}] \cup [\alpha_{n-1}, \alpha_n] \cup \bigcup_{m=1}^{\frac{n-2}{2}} [\alpha_{2m-1} + 2\pi, \alpha_{2m} + 2\pi].$$

The requirement that $S \subset 2S$ for S to be a scaling set holds if the following conditions are satisfied:

- (i) $2\alpha_n = \alpha_{n-2} + 2\pi$,
- (ii) $\alpha_n \leq 2\alpha_1$,
- (iii) $2\alpha_{n-1} \le \alpha_{n-3} + 2\pi$,
- (iv) $2\alpha_{2m} \le \alpha_{2m-1} + 2\pi$,
- (v) $\alpha_{2m} + 2\pi \leq 2\alpha_{2m+1}$,

where $m \in \{1, 2, 3, ..., \frac{n-4}{2}\}$. In case n = 4, we require (i), (ii) and (iii), as others do not arise. By construction, S is 2π -translation congruent to $[\alpha, \alpha + 2\pi)$. Hence, by Result 2.5, it follows that S is a scaling set.

Note that

$$W = \begin{bmatrix} 2(\alpha_{n-2} - 2\pi), \ 2(\alpha_{n-1} - 2\pi) \end{bmatrix} \cup \begin{bmatrix} \alpha_{n-1} - 2\pi, \ \alpha_n - 2\pi \end{bmatrix} \cup \\ \bigcup_{m=1}^{\frac{n-4}{2}} \begin{bmatrix} \alpha_{2m-1}, \ \alpha_{2m} \end{bmatrix} \cup \begin{bmatrix} \alpha_{n-3}, \ \alpha_{n-1} \end{bmatrix} \cup \begin{bmatrix} \alpha_n, \ 2\alpha_1 \end{bmatrix} \cup \\ \bigcup_{m=1}^{\frac{n-4}{2}} \begin{bmatrix} 2\alpha_{2m}, \ \alpha_{2m-1} + 2\pi \end{bmatrix} \cup \begin{bmatrix} 2\alpha_{n-1}, \ \alpha_{n-3} + 2\pi \end{bmatrix} \cup \\ \bigcup_{m=1}^{\frac{n-4}{2}} \begin{bmatrix} \alpha_{2m} + 2\pi, \ 2\alpha_{2m+1} \end{bmatrix} \cup \bigcup_{m=1}^{\frac{n-2}{2}} \begin{bmatrix} 2(\alpha_{2m-1} + 2\pi), \ 2(\alpha_{2m} + 2\pi) \end{bmatrix}.$$

The above discussion is summed up below:

Result 5.1. Let $\alpha_1, \alpha_2, \alpha_3, ..., \alpha_n$ in S^1 , or equivalently, in $[0, 2\pi)$ be such that $0 < \alpha_1 < \alpha_2 < \alpha_3 < ... < \alpha_n < 2\pi$, where *n* is a natural number. Then

- (a) for n=1, $[\alpha_1 2\pi, \alpha_1)$ is a scaling set,
- (b) for odd n > 1,

$$S = \left[\alpha_n - 2\pi, \,\alpha_1\right) \cup \bigcup_{m=1}^{\frac{n-1}{2}} \left[\alpha_{2m}, \,\alpha_{2m+1}\right) \cup \bigcup_{m=1}^{\frac{n-1}{2}} \left[\alpha_{2m-1} + 2\pi, \,\alpha_{2m} + 2\pi\right),$$

is a scaling set under the conditions:

- (i) $\alpha_n \leq 2\alpha_1$,
- (ii) $2\alpha_{2m} \le \alpha_{2m-1} + 2\pi$,
- (iii) $\alpha_{2m} + 2\pi \le 2\alpha_{2m+1},$

where $m \in \{1, 2, 3, ..., \frac{n-1}{2}\}.$

(c) for even n > 2,

$$S = [\alpha_{n-2} - 2\pi, \alpha_{n-1} - 2\pi) \cup [\alpha_n - 2\pi, \alpha_1) \cup \bigcup_{m=1}^{\frac{n-4}{2}} [\alpha_{2m}, \alpha_{2m+1}] \cup [\alpha_{n-1}, \alpha_n] \cup \bigcup_{m=1}^{\frac{n-2}{2}} [\alpha_{2m-1} + 2\pi, \alpha_{2m} + 2\pi],$$

is a scaling set under the conditions:

- (i) $2\alpha_n = \alpha_{n-2} + 2\pi$,
- (ii) $\alpha_n \leq 2\alpha_1$,
- (iii) $2\alpha_{n-1} \le \alpha_{n-3} + 2\pi$,
- (iv) $2\alpha_{2m} \le \alpha_{2m-1} + 2\pi$,
- (v) $\alpha_{2m} + 2\pi \le 2\alpha_{2m+1}$,

where $m \in \{1, 2, 3, ..., \frac{n-4}{2}\}$. In case n = 4, (iv) and (v) do not arise.

Remark 5.2. In case n = 2, the condition $S \subset 2S$ is not satisfied and hence there is no two-interval scaling set.

Acknowledgment. The authors thank the referee for his valuable remarks and suggestions. They also thank their supervisor Professor K.K. Azad for his help and encouragement.

References

- L. Baggett, H. Medina and K. D. Merrill, Generalized multiresolution analyses, and a construction procedure for all wavelet sets in Rⁿ, J. Fourier Anal. Appl., 5 (1999), 563–573.
- [2] M. Bownik, Z. Rzeszotnik and D. Speegle, A characterization of dimension functions of wavelets, Appl. Comput. Harmon. Anal., 10 (2001), 71–92.
- [3] X. Dai and D. Larson, Wandering vectors for unitary systems and orthogonal wavelets, (English summary) Mem. Amer. Math. Soc., 134(640) (1998).
- [4] X. Dai, D. Larson and D. Speegle, Wavelet sets in Rⁿ, J. Fourier Anal. Appl., 3 (1997), 451–456.
- [5] X. Dai, D. Larson and D. Speegle, Wavelet sets in ℝⁿ, II, Contemp. Math., 216 (1998), 15–40.
- [6] Qing Gu and Deguang Han, On Multiresolution Analysis (MRA) Wavelets in \mathbb{R}^n , J. Fourier Anal. Appl., **6** (2000), 437–447.
- [7] Young-Hwa Ha, Hyeonbae Kang, Jungseob Lee and Jin Keun Seo, Unimodular wavelets for L² and the Hardy Space H², Michigan Math. J., 41 (1994), 345–361.

- [8] E. Hernández and G. L. Weiss, A first course on wavelets, English summary, With a foreword by Yves Meyer, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1996.
- [9] E. Ionascu, D. Larson and C. Pearcy, On wavelet sets, J. Fourier Anal. Appl., 4 (1998), 711–721.
- [10] K. D. Merrill, Simple wavelet sets for scalar dilations in ℝ², (English summary), Representations, wavelets, and frames, 177–192, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 2008.

N. K. Shukla and G. C. S. Yadav