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MONOTONICITY PROPERTIES OF
DARBOUX SUMS

Abstract

Let f : [a, b] → R be a continuous function. Dividing the inter-
val [a, b] into subintervals of equal length, we obtain partitions of [a, b]
for which the upper and lower Darboux sums of f constitute two se-
quences, which converge to the definite integral of f in [a, b] from above
and below respectively. We study the monotonicity properties of these
sequence and we prove that their non-monotonicity is a generic (quasi-
sure) property in the space C([a, b]).

1 Introduction.

Let −∞ < a < b < ∞ and let f : [a, b] → R be a bounded function. By
a partition P of the interval [a, b] we understand a choice of points P =
{x0, x1, ..., xn} such that

a = x0 < x1 < x2 < ... < xn−1 < xn = b.

We denote by ‖P‖ the length of P , which is defined by

‖P‖ = max{xj − xj−1 : 1 ≤ j ≤ n}.

Given a partition P as above we denote by E a choice of points E = {ξ1, ..., ξn}
such that

xj−1 ≤ ξj ≤ xj , 1 ≤ j ≤ n.
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Given a partition P and a choice of points E as above we denote by S(f, P,E)
the corresponding Riemann sum

S(f, P,E) =
n∑
j=1

f(ξj)(xj − xj−1).

Riemann’s definition of the definite integral says that f is integrable in the
interval [a, b], if the sums S(f, P,E) converge when ‖P‖ → 0; i.e. if there is
I ∈ R, such that for every ε > 0, there is δ > 0 such that

|S(f, P,E)− I| < ε

for all choices of points E, when ‖P‖ < δ. Then I is called definite integral
of f in [a, b] and it is denoted by I =

∫ b
a
f(t)dt. Of course if f is continuous,

then f is uniformly continuous since the interval [a, b] is closed and bounded
and therefore it is integrable.

However, most of the elementary books of Analysis (see, for example [9])
introduce the Riemann integral using the Darboux modification of the above
definition. This is an equivalent definition, which does not use arbitrary Rie-
mann sums but the so called upper and lower Darboux sums, for which we are
interested here. Namely, if P is a partition of [a, b] as above, let us set

mP,j(f) = inf{f(x) : xj−1 ≤ x ≤ xj}, MP,j(f) = sup{f(x) : xj−1 ≤ x ≤ xj}.

Then the sums

S(f, P ) =
n∑
j=1

mP,j(xj − xj−1), S(f, P ) =
n∑
j=1

MP,j(xj − xj−1)

are called lower and upper Darboux sums respectively. Note that

S(f, P ) ≤ S(f, P,E) ≤ S(f, P ).

Also, if P1, P2 are any two partitions, then by considering a common refinement
P of P1, P2, for example by taking P = P1 ∪ P2, we can easily see that

S(f, P1) ≤ S(f, P ) ≤ S(f, P ) ≤ S(f, P2).

The lower integral I and the upper integral I are defined by

I = sup
P
S(f, P ), I = inf

P
S(f, P ).
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We say that f is Riemann integrable if I = I and then the number I = I = I
is defined as the definite integral of f in [a, b].

Let us now consider equipartitions Pn, n ∈ N of length b−a
n ; that is

Pn = {xj = a+ j
b− a
n

, 0 ≤ j ≤ n}, n ∈ N

and let us set

mn,j = inf{f(x) : xj−1 ≤ x ≤ xj}, Mn,j = sup{f(x) : xj−1 ≤ x ≤ xj}

and

Sn(f) =Sn(f, Pn) =
b− a
n

∑
1≤j≤n

mn,j ,

Sn(f) =Sn(f, Pn) =
b− a
n

∑
1≤j≤n

Mn,j .

Then we can show that f is Riemann integrable, if and only if the limits
limSn(f) and limSn(f) exist and

limSn(f) = limSn(f) = I. (1.1)

Thus another way to define the definite integral is by using (1.1).
Let us observe that if f is continuous, then

mn,j = min{f(x) : xj−1 ≤ x ≤ xj}, Mn,j = max{f(x) : xj−1 ≤ x ≤ xj}.

Thus, if we want to talk only about continuous (or piecewise continuous)
functions, then the definition (1.1) is more elementary because it defines the
integral as a limit of sequences and avoids the notion of infimum and supre-
mum. This is the reason why a lot of elementary books define the integral
using (1.1). Two of the most common examples that are given, in order to
illustrate this definition, are the functions f(x) = x and f(x) = x2 in the
interval [0, 1]. In both of these examples the sequences Sn(f) and Sn(f) are
increasing and decreasing respectively (see section 6). Since we obviously have
Sn(f) ≤ S2n(f) and Sn(f) ≥ S2n(f), the reader is left with the impression
that the sequences Sn(f) and Sn(f) are monotone, which is not always the
case.

In this paper we shall investigate the monotone behavior of the sequences
Sn(f) and Sn(f). We shall show that monotone behavior is an exception and
not a general phenomenon.
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More precisely, let us set for simplification [a, b] = [0, 1] and let us denote
by X the space C([0, 1]) of continuous, real-valued functions on [0, 1] endowed
with the norm

‖f‖∞ = sup{|f(x)|, x ∈ [0, 1]}.

Note that X is complete as a metric space (actually it is a Banach space). We
set

U = {f ∈ X : Sn+1(f) < Sn(f) < Sn(f) < Sn+1(f),
for an infinite number of n ∈ N}.

We recall that a subset of a metric space is called Gδ if it can be written
as a countable intersection of open subsets.

Theorem 1. Let X and U be as above. Then U is a dense Gδ subset of X.

The above result shows that generically, the sequences Sn(f) and Sn(f)
do not have any monotonicity properties. The following result shows that if
we restrict our attention to monotone functions f , then we still have the same
phenomenon.

Let us denote by X↑ and X↓ the closed subsets of X containing the in-
creasing and decreasing functions respectively and set

U↑ = {f ∈ X↑ : Sn(f) < Sn+1(f) for an infinite number of n ∈ N and
Sm+1(f) < Sm(f) for an infinite number of m ∈ N},

U↓ = {f ∈ X↓ : Sn(f) < Sn+1(f) for an infinite number of n ∈ N and
Sm+1(f) < Sm(f) for an infinite number of m ∈ N}.

Theorem 2. Let X↑, X↓, U↑ and U↓ be as above. Then U↑ and U↓ are
Gδ-dense subsets of X↑ and X↓, respectively.

Note that in Theorem 2, the required inequalities are valid for indices which
are not necessarily the same, while in Theorem 1 these inequalities hold for
the same indices. So a natural question is whether it is possible to have a
similar stronger version of Theorem 2. As we will show in Proposition 1 in
section 6, this is not possible.

The proofs of the above results are based on Baire’s category theorem (see
for example [8], Chapter 5), which we have in our disposal, since X, X↑ and
X↓ are complete metric spaces. For the role of Baire’s theorem and the im-
portance of generic results in Complex, Harmonic and Functional Analysis we
refer to [5] and [6]. A property which holds for a dense Gδ subset is called
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topologically generic or quasi-sure, because, in a complete metric space, count-
able intersections of open dense sets are large sets. So the above results show
that the non-monotonicity of the sequences Sn(f) and Sn(f) is a topologically
generic or quasi-sure property.

As we mentioned earlier X is a Banach space. A subset S ⊆ X is called a
positive cone if af+bg ∈ S for all f, g ∈ S and a, b > 0. As we can see the sets
X↑, X↓ are positive cones. If f ∈ U↑ and a > 0, then af ∈ U↑. It is not clear
though that if f, g ∈ U↑, then f + g ∈ U↑. So the question is whether the sets
U↑ and U↓ contain a positive cone which is dense in X↑ and X↓ respectively.
The following result gives an answer to this question.

We set

U↑ =
{
f ∈ X↑ : Sn(f) < Sn+1(f) for an infinite number of n ∈ N

}
,

U↑ =
{
f ∈ X↑ : Sn+1(f) < Sn(f) for an infinite number of n ∈ N

}
,

U↓ =
{
f ∈ X↓ : Sn(f) < Sn+1(f) for an infinite number of n ∈ N

}
,

U↓ =
{
f ∈ X↓ : Sn+1(f) < Sn(f) for an infinite number of n ∈ N

}
.

Theorem 3. The sets U↑, U↑, U↓, U↓ contain a positive cone which is dense
in their corresponding space.

In the context of Banach spaces Bayart [1] (see also [3]) introduced another
type of genericity: a property on a Banach space X is said to be algebraically
generic if it holds for every non-zero vector of a dense subspace of X. So
the above result shows that the non-monotonicity property of the sequences
Sn(f) and Sn(f) is also algebraically generic, not in a Banach space but in a
complete metric space which is a cone.

2 Approximation Lemmas.

In the proof of Theorems 1 and 2 we shall need the following approximation
lemmas.

Lemma 1. Let f : [0, 1] → R be a continuous function and let ε > 0. Then
there is n0 = n0(ε) ∈ N such that for every n ≥ n0 there is a continuous and
piecewise linear function g : [0, 1]→ R satisfying

‖f − g‖∞ < ε (2.1)

and
Sn+1(g) < Sn(g) < Sn(g) < Sn+1(g). (2.2)
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Proof. Since the interval [0, 1] is bounded and closed the function f is uni-
formly continuous and therefore there is δ = δ(ε) > 0 such that

|x− y| < δ(ε) =⇒ |f(x)− f(y)| < ε

5
.

Let us set

n0 = n0(ε) =
[

1
δ(ε)

]
+ 3,

which implies that 1/n0 < δ. Let us fix an integer n ≥ n0 and consider the
partitions

Pn = {xj =
j

n
, 0 ≤ j ≤ n}, Pn+1 = {yj =

j

n+ 1
, 0 ≤ j ≤ n+ 1}.

Note that
xj−1 < yj < xj , 1 ≤ j ≤ n.

The function g(x) is constructed as follows:
First we write n = 3q + ν, for some q ∈ N and ν ∈ {0, 1, 2} and we set

am = f(x3m), 1 ≤ m ≤ q.

We want to have a0 6= a1, so we set

a0 =

{
f(0), if f(0) 6= a1(= f(x3)),
f(0)− ε

10 , if f(0) = a1.

Next we set

g(x3m) = am, 0 ≤ m ≤ q and g(t) = a3q, x3q ≤ t ≤ 1.

In each interval Im = [x3(m−1), x3m], 1 ≤ m ≤ q, the function g(t) is
defined as follows.

We choose points z3(m−1)+2, z3m, 1 ≤ m ≤ q, such that

x3(m−1) <y3(m−1)+1 < x3(m−1)+1

<y3(m−1)+2 < z3(m−1)+2

<x3(m−1)+2 < y3m < z3m < x3m.

These points divide the interval Im = [x3(m−1), x3m] into smaller sub-intervals.
We choose numbers bm such that

max(am−1, am) < bm < max(am−1, am) +
ε

5
, 1 ≤ m ≤ q.
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The function g(t) is defined as the continuous function which takes the
values

g(x3(m−1)) = g(y3(m−1)+1) = g(x3(m−1)+1) = am−1

g(y3(m−1)+2) = bm, g(z3(m−1)+2) = am−1, g(x3(m−1)+2) = bm

g(y3m) = am, g(z3m) = bm, g(x3m) = am

and which is linear in the sub-intervals that these points divide Im.

As we can easily see, by construction we have

‖f − g‖∞ < ε.

So it remains to prove (2.2).

Let us prove first that

Sn(g) < Sn+1(g). (2.3)

To this end let us set

Sn(g)|I1 = a0(x1 − x0) + b1(x2 − x1) + b1(x3 − x2)
= a0(y1 − x0) + a0(x1 − y1) + b1(y2 − x1) + b1(x2 − y2)

+ b1(y3 − x2) + b1(x3 − y3),

Sn+1(g)|I1 = a0(y1 − x0) + b1(y2 − y1) + b1(y3 − y2) + b1(x3 − y3)
= a0(y1 − x0) + b1(x1 − y1) + b1(y2 − x1) + b1(x2 − y2)

+ b1(y3 − x2) + b1(x3 − y3).

Then we have

Sn(g)|I1 − Sn+1(g)|I1 = (b1 − a0)(x1 − y1) > 0. (2.4)
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Let us also set for 2 ≤ m ≤ q,

Sn(g)|Im
= am−1(x3(m−1)+1 − x3(m−1))

+ bm(x3(m−1)+2 − x3(m−1)+1) + bm(x3m − x3(m−1)+2)
= am−1(y3(m−1)+1 − x3(m−1)) + am−1(x3(m−1)+1 − y3(m−1)+1)

+ bm(y3(m−1)+2 − x3(m−1)+1) + bm(x3(m−1)+2 − y3(m−1)+2)
+ bm(y3m − x3(m−1)+2) + bm(x3m − y3m),

Sn+1(g)|Im = bm−1(y3(m−1)+1 − x3(m−1))
+ bm(y3(m−1)+2 − y3(m−1)+1) + bm(y3m − y3(m−1)+2)
+ bm(x3m − y3m)

= bm−1(y3(m−1)+1 − x3(m−1))
+ bm(x3(m−1)+1 − y3(m−1)+1) + bm(y3(m−1)+2 − x3(m−1)+1)
+ bm(x3(m−1)+2 − y3(m−1)+2) + bm(y3m − x3(m−1)+2)
+ bm(x3m − y3m).

Then we have

Sn+1(g)|Im − Sn(g)|Im = (bm−1 − am−1)(y3(m−1)+1 − x3(m−1))
+ (bm − am−1)(x3(m−1)+1 − y3(m−1)+1)

> 0.
(2.5)

Now we observe that

Sn(g) =
q∑

m=1

Sn(g)|Im
+ aq(1− x3q),

Sn+1(g) =
q∑

m=1

Sn+1(g)|Im + bq(y3q+1 − x3q) + aq(1− y3q+1).

So the inequality (2.3) follows from (2.4), (2.5).
Let us now prove the inequality

Sn+1(g) < Sn(g). (2.6)

Arguing in a similar way, we set
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Sn(g)|I1 = a0(x1 − x0) + a0(x2 − x1) + a1(x3 − x2)
= a0(y1 − x0) + a0(x1 − y1) + a0(y2 − x1) + a0(x2 − y2)

+ a1(y3 − x2) + a1(x3 − y3),
Sn+1(g)|I1 = a0(y1 − x0) + a0(y2 − y1) + min(a0, a1)(y3 − y2) + a1(x3 − y3)

= a0(y1 − x0) + a0(x1 − y1) + a0(y2 − x1)
+ min(a0, a1)(x2 − y2) + min(a0, a1)(y3 − x2) + a1(x3 − y3).

Then we have

Sn(g)|I1 − Sn+1(g)|I1 =
(
a0 −min(a0, a1)

)
(x2 − y2)

+
(
a1 −min(a0, a1)

)
(y3 − x2) > 0.

(2.7)

We also set for 2 ≤ m ≤ q,

Sn(g)|Im
= am−1(x3(m−1)+1 − x3(m−1))

+ am−1(x3(m−1)+2 − x3(m−1)+1) + am(x3m − x3(m−1)+2)
= am−1(y3(m−1)+1 − x3(m−1)) + am−1(x3(m−1)+1 − y3(m−1)+1)

+ am−1(y3(m−1)+2 − x3(m−1)+1)
+ am−1(x3(m−1)+2 − y3(m−1)+2)
+ am(y3m − x3(m−1)+2) + am(x3m − y3m),

Sn+1(g)|Im = am−1(y3(m−1)+1 − x3(m−1)) + am−1(y3(m−1)+2 − y3(m−1)+1)
+ min(am−1, am)(y3m − y3(m−1)+2) + am(x3m − y3m)

= am−1(y3(m−1)+1 − x3(m−1)) + am−1(x3(m−1)+1 − y3(m−1)+1)
+ am−1(y3(m−1)+2 − x3(m−1)+1)
+ min(am−1, am)(x3(m−1)+2 − y3(m−1)+2)
+ min(am−1, am)(y3m − x3(m−1)+2) + am(x3m − y3m).

Then we have

Sn(g)|Im
−Sn+1(g)|Im

=
(
am−1 −min(am−1, am)

)
(x3(m−1)+2 − y3(m−1)+2)

+
(
am −min(am−1, am)

)
(y3m − x3(m−1)+2) ≥ 0.

(2.8)
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Now we observe that

Sn(g) =
q∑

m=1

Sn(g)|Im
+ aq(1− x3q),

Sn+1(g) =
q∑

m=1

Sn+1(g)|Im
+ aq(1− x3q).

So the inequality (2.6) follows from (2.7) and (2.8).

Lemma 2. Let f : [0, 1]→ R be a non-constant, increasing (resp. decreasing)
and continuous function and let ε > 0. Then there is n0 = n0(ε) ∈ N such
that for every n ≥ n0 there is an increasing (resp. decreasing) continuous and
piecewise linear function g : [0, 1]→ R satisfying

‖f − g‖∞ < ε (2.9)

and
Sn(g) < Sn+1(g). (2.10)

Proof. As in the proof of Lemma 1, we observe that f is uniformly continuous
since [0, 1] is a bounded and closed interval and therefore there is δ = δ(ε) > 0
such that

|x− y| < δ(ε) =⇒ |f(x)− f(y)| < ε

5
.

Let us set

n0 = n0(ε) =
[

1
δ(ε)

]
+ 3,

and let us fix an integer n ≥ n0. Also since f is not constant, by taking a
larger value for n0 if necessary, we can assume that

f(
1
n

) 6= f(1), f(0) 6= f(
n− 1
n

). (2.11)

We consider the partitions

Pn = {xj =
j

n
, 0 ≤ j ≤ n}, Pn+1 = {yj =

j

n+ 1
, 0 ≤ j ≤ n+ 1}.

Note that
xj−1 < yj < xj , 1 ≤ j ≤ n.
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We set
aj = f(xj), 0 ≤ j ≤ n.

The function g(x) is constructed as follows:
Case 1: f is increasing.
Then function g(x) is defined as the continuous function which takes the values

g(yj) = g(xj) = aj , j = 0, 1, ..., n

and which is linear in the intervals [xj−1, yj ] and [yj , xj ], j = 1, ..., n.
As we can easily see, by construction g is increasing and satisfies

‖f − g‖∞ < ε.

To prove (2.10), we observe that

Sn(g) =
n∑
j=1

g(xj)(xj − xj−1) =
1
n

(
g(x1) + ...+ g(xn)

)
=

1
n

(a1 + ...+ an),

Sn+1(g) =
n+1∑
j=1

g(yj)(yj − yj−1)

=
1

n+ 1
(
g(y1) + ...+ g(yn) + g(yn+1)

)
=

1
n+ 1

(a1 + ...+ an + an).

Hence, by (2.11)

Sn+1(g)− Sn(g) =
1

n+ 1
(a1 + ...+ an + an)− 1

n
(a1 + ...+ an)

=
1

n+ 1
an + (

1
n+ 1

− 1
n

)(a1 + ...+ an)

=
1

n+ 1
an −

1
n(n+ 1)

(a1 + ...+ an)

>
1

n+ 1
an −

1
n(n+ 1)

nan = 0,

which proves (2.10).
Case 2: f is decreasing.
In this case, the function g(t) is defined as the continuous function which takes
the values

g(yj) = g(xj−1) = aj−1, j = 1, 1, ..., n+ 1

and which is linear in the intervals [xj−1, yj ] and [yj , xj ], j = 1, ..., n.
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By construction g is decreasing and satisfies

‖f − g‖∞ < ε.

Arguing in the same way as in the previous case we have

Sn(g) =
n∑
j=1

g(xj−1)(xj − xj−1)

=
1
n

(
g(x0) + ...+ g(xn−1)

)
=

1
n

(a0 + ...+ an−1),

Sn+1(g) =
n+1∑
j=1

g(yj)(yj − yj−1)

=
1

n+ 1
(
g(y0) + g(y1) + ...+ g(yn))

)
=

1
n+ 1

(a0 + a0 + ...+ an−1)

and hence, by (2.11)

Sn+1(g)− Sn(g) =
1

n+ 1
(a0 + a0 + ...+ an−1)− 1

n
(a0 + ...+ an−1)

=
1

n+ 1
a0 + (

1
n+ 1

− 1
n

)(a0 + ...+ an−1)

=
1

n+ 1
a0 −

1
n(n+ 1)

(a0 + ...+ an−1)

>
1

n+ 1
a0 −

1
n(n+ 1)

na0 = 0,

which proves (2.10).

3 Proof of Theorem 1.

As mentioned in the introduction the proof of Theorem 1 is based on Baire’s
category theorem, and it is inspired from [7].

Let

Vn =
{
g ∈ X : Sn+1(g) < Sn(g) < Sn(g) < Sn+1(g)

}
, n ∈ N

and

Um =
+∞⋃
n=m

Vn, m ∈ N.
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Then the set U can be written as

U =
⋂
m∈N

Um.

The sets Vn, n ∈ N (hence the sets Um, m ∈ N) are open subsets of X. So U
is Gδ since it is a countable intersection of open sets.

We shall prove that the sets Um, m ∈ N are dense in X. Then, Baire’s cat-
egory theorem gives that U is dense in X because it is a countable intersection
of open dense sets and X is complete.

Let f ∈ X and let ε > 0. Then, by Lemma 1 there is n0 ∈ N such that for
every n ≥ n0 there is g ∈ Vn satisfying ‖f − g‖∞ < ε. This shows that the
sets Um, m ∈ N are dense and the theorem follows.

4 Proof of Theorem 2.

The proof of Theorem 2 is also based on Baire’s category theorem. The sets
X↑ and X↓ are closed subsets of X and so they are themselves complete metric
spaces. We set

U↑ ={f ∈ X↑ : Sn(f) < Sn+1(f) for an infinite number of n ∈ N},
U↑ ={f ∈ X↑ : Sm+1(f) < Sm(f) for an infinite number of n ∈ N},
U↓ ={f ∈ X↓ : Sn(f) < Sn+1(f) for an infinite number of n ∈ N},
U↓ ={f ∈ X↓ : Sm+1(f) < Sm(f) for an infinite number of n ∈ N}.

Then

U↑ = U↑
⋂
U↑ , U↓ = U↓

⋂
U↓.

Since the intersection of two Gδ-dense subsets of a complete metric space
is also a Gδ-dense subset, it is enough to prove that the sets U↑, U↓, U↑, U↓
are Gδ-dense. We shall give the proof only for U↑. The proof for U↓, U↑, U↓
is similar.

We set

Vn =
{
g ∈ X↑ : Sn(g) < Sn+1(g)

}
, n ∈ N, Um =

+∞⋃
n=m

Vn, m ∈ N.

Then
U↑ =

⋂
m∈N

Um.
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Arguing as in the proof of Theorem 1, we observe that the sets Vn, n ∈ N,
hence the sets Um, m ∈ N, are open and therefore U↑ is Gδ. In order to prove
that U↑ is dense, by Baire’s category theorem, it is enough to prove that the
sets Um, m ∈ N are dense in X↑. This follows from Lemma 2. Indeed, let
f ∈ X↑ and let ε > 0. Then, by Lemma 2 there is n0 ∈ N such that for every
n ≥ n0 there is g ∈ Vn satisfying ‖f − g‖∞ < ε, which shows that the sets Um,
m ∈ N are dense.

5 Proof of Theorem 3.

We shall give the proof only for U↑. The proof for U↓, U↑, U↓ is similar. Our
method is based on [2].

Given an infinite subset M of N, we set

U
M

↑ =
{
f ∈ X↑ : Sn(f) < Sn+1(f) for an infinite number of n ∈M

}
.

We shall need the following lemmas.

Lemma 3. U
M

↑ is a Gδ-dense subset of X↑.

Proof. Let

Vn =
{
g ∈ X↑ : Sn(f) < Sn+1(f)

}
, n ∈ N, Um =

⋃
n≥m, n∈M

Vn, m ∈ N.

Then
U
M

↑ =
⋂
m∈N

Um.

The sets Vn, n ∈ N and Um, m ∈ N are open, Also, if f ∈ X↑ and ε > 0, then
by Lemma 2, there is n0 ∈ N such that for every n ≥ n0, n ∈ M , there is
g ∈ Vn satisfying ‖f−g‖∞ < ε. This shows that the sets Um, m ∈ N are dense.
So, by Baire’s category theorem, U

M

↑ is Gδ-dense, since it can be written as a
countable intersection of dense open subsets of X↑.

Lemma 4. There is a sequence gk, k ∈ N of elements of U↑ and a sequence
Mk, k ∈ N of subsets of N such that

1. the set {gk, k ∈ N} is dense in X↑,

2. the sets Mk, k ∈ N have an infinite number of elements and satisfy

Mk ⊇Mk+1, k ∈ N,
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3. we have
Sn(gk) < Sn+1(gk), n ∈Mk, k ∈ N.

Proof. Since X↑ is a separable space we can consider a countable dense
subset {φk, k ∈ N} of X↑. The sequences gk, k ∈ N and Mk, k ∈ N can be
chosen inductively in the following way.

As g1 we take any element of U↑ satisfying

‖φ1 − g1‖∞ < 1

and we set
M1 = {n ∈ N : Sn(g1) < Sn+1(g1)}.

Such an element g1 exists, because by Theorem 2, U↑ is dense in X↑. Also
by the way U↑ was defined, the set M1 has an infinite number of elements.

Assume now that gk ∈ U↑ and Mk have been chosen. Then, as gk+1 we
take any element of U

Mk

↑ satisfying

‖φk+1 − gk+1‖∞ <
1

k + 1

and we set
Mk+1 = {n ∈Mk : Sn(gk+1) < Sn+1(gk+1)}.

By Lemma 3 such an element gk+1 exists and the set Mk+1 has an infinite
number of elements.

Clearly the sequences gk, k ∈ N and Mk, k ∈ N chosen in this way satisfy
the requirements of the lemma.

Now we come to the proof of Theorem 3. First we recall that the positive
cone generated by a set Y ⊆ X is defined as the smallest positive cone that
contains Y and that it is equal to the set

{a1f1 + a2f2 + ...+ amfm : a1, a2, ..., am > 0, f1, f2, ..., fm ∈ Y, m ∈ N} .

Let the sequences gk, k ∈ N and Mk, k ∈ N be as in Lemma 4. Then the
cone C generated the set {gk, k ∈ N} is dense in X↑ and C ⊆ U↑.

Indeed, the fact that C is dense inX↑ follows from the fact that {gk, k ∈ N}
is dense in X↑.

Let now w ∈ C. Then, w can be written as

w = ak1gk1 + ak2gk2 + ...+ akm
gkm

,
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with k1 < k2 < ... < km, ak1 , ak2 , ..., akm > 0 and m ∈ N.
We want to prove that w ∈ U↑. To this end let us observe that

Sn(af + bg) = aSn(f) + bSn(g), f, g ∈ X↑, a, b > 0, n ∈ N.

Since
Mk1 ⊇Mk2 ⊇ ... ⊇Mkm

we have that for all n ∈Mkm

Sn(w) = ak1Sn(gk1) + ak2Sn(gk2) + ...+ akmSn(gkm)

< ak1Sn+1(gk1) + ak2Sn+1(gk2) + ...+ akmSn+1(gkm) = Sn+1(w).

It follows that w ∈ U↑ and this completes the proof of Theorem 3.

6 Final Comments and Examples.

As we mentioned in the introduction, it is not possible to have a stronger
version of Theorem 2 in which the required inequalities are valid for the same
indices. This follows from the following proposition:

Proposition 1. Let f : [0, 1] → R be a continuous, monotone function and
let us assume that for some n ∈ N we have Sn(f) < Sn+1(f). Then Sn(f) <
Sn+1(f).

Proof. We shall assume that f is increasing. The case when f is decreasing
can be treated either by arguing in the same way, or by considering the function
−f .

Since f is increasing we have

Sn(f) =
1
n

(
f(

1
n

) + ...+ f(
n− 1
n

) + f(1)
)
,

Sn(f) =
1
n

(
f(0) + f(

1
n

) + ...+ f(
n− 1
n

)
)
.

The assumption that Sn(f) < Sn+1(f) implies

1
n

(
f(

1
n

) + ...+ f(
n− 1
n

) + f(1)
)
<

1
n+ 1

(
f(

1
n+ 1

) + ...+ f(
n

n+ 1
) + f(1)

)
,

which in turn implies that

f(1) < n
(
f(

1
n+ 1

) + ...+ f(
n

n+ 1
)
)
− (n+ 1)

(
f(

1
n

) + ...+ f(
n− 1
n

)
)
. (6.1)
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If we had Sn+1(f) ≤ Sn(f), then we would have

1
n+ 1

(
f(0) + f(

1
n+ 1

) + ...+ f(
n

n+ 1
)
)
≤ 1
n

(
f(0) + f(

1
n

) + ...+ f(
n− 1
n

)
)
,

which implies that

n
(
f(

1
n+ 1

) + ...+ f(
n

n+ 1
)
)
− (n+ 1)

(
f(

1
n

) + ...+ f(
n− 1
n

)
)
≤ f(0). (6.2)

Combining (6.1) and (6.2) we obtain that f(1) < f(0), which is a contradiction
as f is increasing.

As we mentioned in the introduction two of the most common examples
that are given, in order to illustrate the definition of the definite integral, are
the functions f(x) = x and g(x) = x2 defined in the interval [0, 1]. Both of
these functions are increasing in [0, 1].

Concerning the function f(x) = x we have

Sn(f) =
1
n

(
f(

1
n

) + ...+ f(
n− 1
n

) + f(1)
)

=
1
n2

(1 + 2 + ...+ n) =
n(n+ 1)

2n2
=

1
2

+
1

2n
,

Sn(f) =
1
n

(
f(0) + f(

1
n

) + ...+ f(
n− 1
n

)
)

=
1
n2

(1 + 2 + ...+ (n− 1)) =
(n− 1)n

2n2
=

1
2
− 1

2n
.

So the sequence Sn(f) is decreasing and the sequence Sn(f) is increasing.
Concerning the function f(x) = x2 we have

Sn(g) =
1
n

(
g(

1
n

) + ...+ g(
n− 1
n

) + f(1)
)

=
1
n3

(1 + 22 + ...+ n2) =
n(n+ 1)(2n+ 1)

6n3
=

1
6

(1 +
1
n

)(2 +
1
n

),

Sn(g) =
1
n

(
g(0) + g(

1
n

) + ...+ g(
n− 1
n

)
)

=
1
n2

(1 + 22 + ...+ (n− 1)2) =
(n− 1)n(2n− 1)

6n3
=

1
6

(1− 1
n

)(2− 1
n

).

So the sequence Sn(g) is decreasing and the sequence Sn(g) is increasing.
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A natural question is whether there is a class of functions for which the
sequences Sn(f) and Sn(f) are monotone. The following proposition gives an
answer to a question posed to us by D. Betsakos and shows that such a class
is the convex monotone functions.

Proposition 2. Let f : [0, 1]→ R be a continuous monotone function and let
us assume that it is either convex or concave. Then the sequences Sn(f) and
Sn(f) are monotone.

Proof. We shall assume that f is convex and increasing. The case when f
is convex and decreasing can be treated either by arguing in the similar way
and the cases when f is concave and increasing or decreasing can be treated
either by arguing in the similar way, or by considering the function −f .

We set

xk =
k

n
, yk =

k

n+ 1
, 0 ≤ k ≤ n+ 1

Since f is increasing we have

Sn(f) =
1
n

(
f(x0) + f(x1) + ...+ f(xn−1)

)
,

Sn+1(f) =
1

n+ 1
(
f(y0) + f(y1) + ...+ f(yn)

)
.

We observe that

xk =
n− k
n

yk +
k

n
yk+1, 0 ≤ k ≤ n.

Since f is convex, this implies that

f(xk) ≤ n− k
n

f(yk) +
k

n
f(yk+1), 1 ≤ k ≤ n.
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It follows that

Sn(f) =
1
n

(
f(x0) + f(x1) + f(x2) + ...+ f(xn−1)

)
≤ 1
n

(
f(y0) +

n− 1
n

f(y1) +
1
n
f(y2) +

n− 2
n

f(y2) +
2
n
f(y3)

+ ...+
n− (n− 1)

n
f(yn−1) +

n− 1
n

f(yn)
)

=
1
n

(
f(y0) +

n− 1
n

f(y1) +
n− 1
n

f(y2) + ...+
n− 1
n

f(yn)
)

=
1
n

( 1
n
f(y0) +

n− 1
n

(
f(y0) + f(y1) + ...+ f(yn)

))
=

1
n2
f(y0) +

n2 − 1
n2

1
n+ 1

(
f(y0) + f(y1) + ...+ f(yn)

)
=

1
n2
f(y0) +

n2 − 1
n2

Sn+1(f).

Since f is increasing we have

f(y0) ≤ 1
n+ 1

(
f(y0) + f(y1) + ...+ f(yn)

)
= Sn+1(f).

Therefore

Sn(f) ≤ 1
n2
Sn+1(f) +

n2 − 1
n2

Sn+1(f) = Sn+1(f).

Let us now prove that Sn(f) ≥ Sn+1(f). We observe again that since f is
increasing we have

Sn(f) =
1
n

(
f(x1) + f(x1) + ...+ f(xn)

)
,

Sn+1(f) =
1

n+ 1
(
f(y1) + f(y2) + ...+ f(yn+1)

)
.

We have

yk =
k

n+ 1
xk−1 +

n+ 1− k
n+ 1

xk, 1 ≤ k ≤ n.

Since f is convex, this implies that

f(yk) ≤ k

n+ 1
f(xk−1) +

n+ 1− k
n+ 1

f(xk), 1 ≤ k ≤ n.
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It follows that

Sn+1(f) =
1

n+ 1
(
f(y1) + f(y2) + f(y3) + ...+ f(yn) + f(yn+1)

)
≤ 1
n+ 1

( 1
n+ 1

f(x0) +
n

n+ 1
f(x1) +

2
n+ 1

f(x1)

+
n− 1
n+ 1

f(x2) +
3

n+ 1
f(x2) +

n− 2
n+ 1

f(x3)

+
4

n+ 1
f(x3) +

n− 3
n+ 1

f(x4)

+ ...+
n

n+ 1
f(xn−1) +

1
n+ 1

f(xn) + f(xn)
)

=
1

n+ 1

( 1
n+ 1

f(x0) +
n+ 2
n+ 1

(
f(x1) + f(x2) + ...+ f(xn

)))
=

1
n+ 1

( 1
n+ 1

f(x0) +
(n+ 2)n
n+ 1

Sn(f)
)
.

Since f is increasing we have

f(x0) ≤ 1
n

(
f(x1) + f(x2) + ...+ f(xn)

)
= Sn(f).

Therefore

Sn+1(f) ≤ 1
n+ 1

( 1
n+ 1

Sn(f) +
(n+ 2)n
n+ 1

Sn(f)
)

=
1

n+ 1
(n+ 1)2

n+ 1
Sn(f) = Sn(f).

We point out that although the non-monotonicity of the sequences Sn(f)
and Sn(f) is a generic property, it is difficult to give an explicit example of a
function f satisfying Theorems 1 and 2. In the case of increasing functions, we
can define such an f by a limit procedure, but still we cannot give an explicit
formula.

For the reader’s convenience, we give below two examples. In the first
example we have S4(f) < S3(f) < S3(f) < S4(f) and in the second we have
Sn+1(f) < Sn(f) < Sn(f) < Sn+1(f) for a given n ∈ N.

The first example is the function

f(x) =

{
32x3, if 0 ≤ x ≤ 1

2 ,

32(1− x)3, if 1
2 ≤ x ≤ 1.
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Then, we have

S2(f) = 0, S3(f) =
32
81
, S3(f) =

172
81

, S2(f) = 4

while
S4(f) =

1
4
, S3(f) =

32
81
, S3(f) =

172
81

, S4(f) =
9
4
.

The second example is the following. Let n ≥ 3 be a given integer and let
z2 ∈ ( 2

n+1 ,
2
n ). We consider the continuous function f which takes the values

f(0) = f(
1
n

) = f(z2) = 1, f(
2

n+ 1
) = f(

2
n

) = f(1) = 2

and it is linear in the intervals [0, 1
n ], [ 1

n ,
2

n+1 ], [ 2
n+1 , z2], [z2, 2

n ], [ 2
n , 1]. Then

Sn+1(f) = 2− 3
n+ 1

, Sn(f) = 2− 2
n
, Sn(f) = 2− 1

n
, Sn+1(f) = 2− 1

n+ 1

and since n ≥ 3, we have

Sn+1(f) < Sn(f) < Sn(f) < Sn+1(f).
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