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HOW TO CONCENTRATE IDEMPOTENTS

Abstract

Call a sum of exponentials of the form f(x) = exp (2πiN1x) +
exp (2πiN2x) + · · ·+ exp (2πiNmx), where the Nk are distinct integers,
an idempotent. We have Lp interval concentration if there is a positive
constant a, depending only on p, such that for each interval I ⊂ [0, 1]
there is an idempotent f so that

R
I
|f (x)|p dx�

R 1

0
|f (x)|p dx > a. We

will explain how to produce such concentration for each p > 0. The
origin of this question and the history of the development of its solution
will be surveyed.

1 Idempotents.

An idempotent is a function

ι (x) =
∑
n∈S

e (nx) ,

where S is a finite set of integers and e (x) = e2πix. It takes its name from the
identity

(ι ∗ ι) (x) =
∫ 1

0

ι (y) ι (x− y) dy = ι (x) .

Another reason for the term “idempotent” is that the operator Aι defined on
L1 (T) by Aι : f → ι∗f maps the function with Fourier series

∑∞
n=−∞ ane (nx)

to
∑
n∈S ane (nx). So Aι is a projection operator onto the finite dimensional

subspace spanned by {e (nx) : n ∈ S}and A2
ι = Aι.
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The absolute value of an idempotent is an even function since∣∣∣∣∣∑
n∈S

e (n (−x))

∣∣∣∣∣ =

∣∣∣∣∣∑
n∈S

e (nx)

∣∣∣∣∣ =

∣∣∣∣∣∑
n∈S

e (nx)

∣∣∣∣∣ .
Write ∑

n∈S
e (nx) = zm

(∑
n∈S

zn−m

)
where m = min {n : n ∈ S} and z = e2πix and apply the fundamental theorem
of algebra to see that the set where an idempotent is zero must be finite.

2 Concentration.

Fix a real number p > 0 and consider only functions in Lp (T). These are all
measurable complex valued functions f on the torus T satisfying

∫
T |f (x)|p dx <

∞, where we take T to be the interval
[
− 1

2 ,
1
2

]
with the endpoints identified.

We consider a series of four questions.
Question 1. Given an open interval I ⊂ T , can you fully concentrate

some function on I? In other words, can you find f = fI so that∫
I
|f (x)|p dx∫

T |f (x)|p dx
= 1?

The characteristic function of I, χI (x) =
{

1 if x ∈ I
0 if x ∈ T \ I instantly shows

the answer to be yes.
Question 2. Given an open interval I ⊂ T , can you find an even function

of concentration .5 on I? In other words, can you find an even f = fI so that∫
I
|f (x)|p dx∫

T |f (x)|p dx
= .5?

If I = [.1, .2], it is clear that the best possible even function is χ[−.2,−.1]∪[.1,.2].
Looking at this example also makes it clear why we lowered the bar to only
demand a concentration of .5.

Question 3. Given an open interval I ⊂ T , can you find an even almost
everywhere non zero function of concentration .5 on I?

The answer is just barely no; for example given I = [.1, .2] again and

defining f (x) =
{

1 if x ∈ [−.2, .1] ∪ [.1, .2]
ε if x ∈ T� ([−.2, .1] ∪ [.1, .2]) produces a function of
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concentration less than .5. However f can be made to have concentration as
close to .5 as desired by choosing ε small enough.

This example motivates us to slightly change the definition of concentra-
tion.

Definition 1. A set of Lp functions I has concentration c on I if given any
ε > 0, there is an f ∈ I so that∫

I
|f (x)|p dx∫

T |f (x)|p dx
> c− ε.

Now the answer to Question 3 is yes.
Our last question is the real issue of this paper.
Question 4. Does there exist a positive number cp (depending only on p)

such that for any open interval I ⊂ T, the set of idempotents has concentration
cp on I?

Another phrasing of Question 4: Does there exist a positive number cp such
that for each interval I and each ε > 0, there is an idempotent ι (x) = ιI,p,ε (x)
such that ∫

I
|ι (x)|p dx∫

T |ι (x)|p dx
> cp − ε? (2.1)

If the answer to Question 4 is yes, we say that Lp concentration holds. From
the above discussion we already know that the largest conceivable value for cp
is .5. If cp can be .5, then we say that full Lp concentration holds. The answer
to Question 4 is this.

Theorem 1. Lp concentration holds for all p > 0. Full concentration fails
only when p is an even integer.

Actually, even for p an even integer, the concentration is substantial. The
maximum possible value for c2n is between .25 and a lower bound quite close to
.25 for each even integer 2n; the maximal value for c2 is exactly maxx>0

sin2 x
πx =

.2306....

3 The History of the Concentration Question.

The question of concentration originated with a problem in functional analysis.
Because of Plancherel’s Theorem, we may define L2 (Z) by

L2 (Z) =

{
f : T→ C : ‖f‖ =

√∫
T
|f (x)|2 dx <∞

}
.
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Let T be an operator defined from a subset S of L2 (Z) into L2 (Z) in such a way
that Tf (x) =

∫
T K (y) f (x− y) dy for some measurable function K : T→ C

and
‖Tf‖ ≤ C ‖f‖ (3.1)

for every f ∈ S for some constant C. Then T is called a convolution operator
and the function K is called the kernel of T . When S is equal to all of L2 (Z),
say that T is strong type (2, 2), or, equivalently, that T is bounded on all of
L2 (Z). If, however, inequality (3.1) is only known to be true for functions
f ∈ S, where S is the set of all idempotents, say that T is restricted type
(2, 2). Obviously, if T is strong type (2, 2), then T is restricted type (2, 2).
The primal functional analysis question referred to at the beginning of this
section is this possible converse: If T is restricted type (2, 2), is T necessarily
also strong type (2, 2)?

When I looked at this question in the middle 1970s, I was unable to solve
it, but I was able to formulate an almost equivalent question. Here is that
equivalence.

Theorem 2. If restricted type (2, 2) implies strong type (2, 2), then L2 concen-
tration for intervals holds. If L2 concentration for sets holds (i.e., if inequality
(2.1) continues to hold when p = 2, even if I is allowed to vary over all sets
of positive Lebesgue measure), then restricted type (2, 2) implies strong type
(2, 2).

At about the same time, Michael Cowling, working in a much more general
context, proved that an even weaker assumption than T being restricted type
(2, 2) was sufficient to force T to be strong type (2, 2) [11]. This provided
a non-constructive proof that L2 concentration for intervals was true. So I
published a paper pointing out that L2 concentration for intervals was true,
but the amount of concentration was unknown [5]. The connections with
functional analysis are surveyed in some detail in [7].

There followed a series of direct proofs producing quantitative estimates
for c2.

(1) The referee of paper [5] pointed out that
√
c2 must be at least 1/8 = .125,

so c2 ≥ 1/64 = .0016.

This is a good place to bring up a notational point. In determining concen-
trations it is equally natural (and obviously equivalent) to study the ratios∫

I
|ι (x)|p dx∫

T |ι (x)|p dx
and

(∫
I
|ι (x)|p dx∫

T |ι (x)|p dx

)1/p

.
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In comparing concentrations announced in the references to this article, the
reader must note which of these two definitions is used in each paper.

(2) S. Pichorides [18] obtained
√
c2 ≥ .14, or c2 ≥ .0196.

(3) H. L. Montgomery [17], and

(4) J.-P. Kahane [16] obtained several better lower bounds. (The ideas of H.
L. Montgomery were “deterministic” while those of J.-P. Kahane used
probabilistic methods from [15].)

Finally, in [4], together with Roger Jones and Bahman Saffari, I achieved the
lower bound maxx>0

sin x√
πx

= .4802...for
√
c2: which, in [12], was proved to be

best possible, thus c2 = maxx>0
sin2 x
πx = .2306.... (See [13] for a more detailed

exposition of the contents of [12].)
The next step was to try to generalize by demonstrating Lp concentration

for values of p other than 2. Unfortunately, it appears that there is no longer
any simple connection with functional analysis when p 6= 2. Nevertheless a
group of five of us found that Lp concentration was true when p > 1. The
main idea of our approach will be sketched in the next section. We delayed
the publication of [1] and [2] for some years because we felt that we ought to
resolve the case of p = 1. We finally gave up and finished publishing in 2007.
We ended by conjecturing that concentration fails when p = 1.

In 2008, Bonami and Révész overturned our conjecture for p = 1 in a very
nice paper which contains Theorem 1 as well as excellent results for the more
general problem of concentrating idempotents onto sets of positive measure
[8]. The main idea of their approach is sketched in Section 6. Some remaining
open questions are raised in the last section.

A lot of things have happened in the last year or two that I have not
been able to touch on here. The best source for keeping up to date on this
quickly evolving field is probably on the website of Szilárd Révész1 I will briefly
comment on two of the items to be found there.

First, Bonami and Révész extend the results of [8] in a companion paper [9]
wherein they demonstrate that L1 concentration for sets of positive measure is
quite large, in particular it is much larger than L2 concentration for intervals.
On the other hand, they prove a discrete version of our original L1 conjecture
involving the groups Z/qZ, with q a prime number. As they remark, this is in
a way a positive answer to the original conjecture.

Second, the very clearly written and comprehensive Chapter 3 of Révész’s
dissertation for the “Doctor of the Academy” degree [19], mentions further

1http://www.renyi.hu/˜revesz/preprints.html.
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applications of concentration results and techniques to other areas of classical
harmonic analysis. Another thing in Chapter 3 is Révész’s telling of the story
of how Terry Tao suggested the crucial step that enabled Bonami and Révész
to push past the seemingly impenetrable concentration barrier between the
cases of p > 1 and p ≤ 1. I heartily recommend Chapter 3 of [19] to any
reader interested in pursuing this subject beyond what I have written in this
survey.

4 How to Show Lp Concentration for p > 1.

The Dirichlet kernel, Dn (x), is the only idempotent important enough to have
its own name; it is the one corresponding to the set S = {0, 1, 2, 3, . . . , n− 1}.
(This notation is nonstandard in that S is not symmetrical about 0. In
this subject only the absolute values of functions are ever considered so the
distinction is harmless since

∣∣∣∑m
µ=−m e (µx)

∣∣∣ = |e (−mx)|
∣∣∣∑2m

µ=0 e (µx)
∣∣∣ =∣∣∣∑2m

µ=0 e (µx)
∣∣∣.) Here are some of its properties. First, note Dn is a geo-

metric sum with ratio e2πix, apply the geometric sum formula, and use the
identity

∣∣e2iθ − 1
∣∣ =

∣∣eiθ∣∣ ∣∣eiθ − e−iθ∣∣ =
∣∣eiθ − e−iθ∣∣ to derive

|Dn (x)| =
∣∣∣∣ sinπnxsinπx

∣∣∣∣ . (4.1)

Here is the graph of |D10 (x)|



How to Concentrate Idempotents 7

And here is the graph of |D100 (x)|.

We have

|Dn (x)| ≤
n−1∑
k=0

|e (kx)| =
∑

1 = n, (4.2)

and from 2x ≤ sinπx for x ∈
[
0, 1

2

]
, we have

|Dn (x)| ≤ 1
|2x|

for x ∈
[
−1

2
,

1
2

]
. (4.3)

Somewhat more sophisticated standard estimates give constants cp so that

as n→∞,
∫ 1/2

−1/2

|Dn (x)|p dx '

 cpn
p−1 if p > 1

c1 lnn if p = 1
. (4.4)

Fix p > 1. We will show how to concentrate onto any open interval I ⊂
[−1/2, 1/2). We will consider three cases: Case 0 when 0 ∈ I, Case 1 when
I contains an interval centered at 1

q and having length at least 2
q2 for some

(large) prime q, and Case 2 when I contains a small interval centered at a
q and

having length at least 2
q2 for some prime q and some integer a, 0 < |a| < q

2 .
Notice that picking the prime q very large assures that the grid of points
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{j/q : j ∈ Z, |j| < q/2} is so fine that 3 consecutive elements, say a−1
q , aq ,

a+1
q ,

with a 6= 0 are all in I. This means that cases 0, 1, and 2 cover all possibilities.
In fact, Case 0 is extraneous. Even if I is a small interval symmetric about
x = 0, I is still an instance of Case 1 for q big enough. We only do Case 0
because it is so simple.

Case 0. Simply pick the concentrated function to be Dn (x) for a very
large value of n. For p > 1, the Lp mass of Dn is concentrated near 0 more
and more as n increases, as one might guess from our graph of |D100|. (This
is not quite obvious when p ≤ 1; in fact it is not even true when p < 1.)

From estimates (4.4),
∫ 1/2

−1/2
|Dn (x)|p dx → ∞ as n → ∞ for each p ≥ 1;

but for each fixed ε > 0,
∫
|x|≥ε

|Dn (x)|p dx ≤ 2
∫ 1/2

ε
1

(2x)p dx = C (ε). Thus for

each ε > 0, ∫
|x|<ε |Dn|p∫ 1/2

−1/2
|Dn|p

≥

∫ 1/2

−1/2
|Dn|p − C (ε)∫ 1/2

−1/2
|Dn|p

→ 1 as n→∞.

Case 1. We concentrate Lp mass on the interval J1, where Ja =
[
a
q −

1
q2 ,

a
q + 1

q2

]
, by considering the idempotent

i (x) = Dq2 (qx)D q−1
2

(x) . (4.5)

First we check that i is an idempotent. The general term of the first
factor is e (mqx) where 0 ≤ m < q2, the general term of the second factor is
e (nx) where 0 ≤ n < q/2. Since e (mqx) e (nx) = e ((mq + n)x), all nonzero
coefficients are positive integers. Further they are all 1 since mq+n = m′q+n′

implies q divides n− n′ implies n = n′ implies m = m′.
We have to understand why∫

J1
fgdx∫ 1/2

−1/2
fgdx

, where f =
∣∣Dq2 (qx)

∣∣p and g =
∣∣∣D q−1

2
(x)
∣∣∣p

is bounded below with a bound that is independent of q. To see this, we will
first consider as a model for |Dn (x)| a narrow, tall flat pulse centered at the
origin and having period 1. In what follows, we will often repeat this process of
replacing a function by a simpler function which shares the most immediately
relevant property of the original function.
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Since |Dn (qx)| has period 1/q, we approximate f as

(q−1)/2∑
a=−(q−1)/2

cχ
Ja

(x)

where for each a, χ
Ja

is the characteristic function of the interval Ja,

χ
Ja

=

 1 if x ∈ Ja

0 if x /∈ Ja
.

The first factor of i (x) (see (4.5)) is concentrated near x = 0 and has
period 1/q so we think of it as being roughly

c

(q−1)/2∑
j=−(q−1)/2

χh
j
q−

1
q2 ,

j
q + 1

q2

i (x) ,
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in other words as a series of q equal pulses.

We think of the last factor of i (x) (see (4.5) as being even and having decay
like 1/x on [1/q, 1/2].
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Multiplying the above two functions together gives this model for i (x):

Now Lp concentration follows, since

∫ 1
q + 1

q2
1
q−

1
q2
|i (x)|p dx∫ 1/2

−1/2
|i (x)|p dx

≈
∑1
j=1

1
jp

1 + 2
∑(q−1)/2
j=1

1
jp

≥ 1
1 + 2

∑∞
j=1

1
jp

> 0.

This completes our heuristic discussion for Case 1.
Case 2. Our goal is to find an idempotent concentrated on Ja. We

have assumed that the integer a 6= 0 so that 1 ≤ |a| ≤ (q − 1) /2. Start
with the idempotent i (x) of Case 1 which is concentrated on J1. The set
Z∗q = {n ∈ Z : 0 < |n| ≤ (q − 1) /2} is a group under multiplication modulo q.
Thus a has a unique inverse b ∈ Z∗q so that ab ≡ 1 (mod q) , that is ab = 1 + rq
for some integer r. Form j (x) = i (bx) where i (x) is the idempotent that was
concentrated at 1/q to solve Case 1. Then j is concentrated near a/q since for
small x, in other words for x much smaller than 1/q we have

j (a/q + x) = i (ab/q + bx)
= i ((1 + rq) /q + bx)
= i (1/q + r + bx)
= i (1/q + bx) .
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In other words, the behavior of j near a/q is the same as that of i near 1/q.
A similar argument shows that the amounts of concentration of j at the q− 2
points of the set

{
c/q : c ∈ Z∗q\ {a}

}
are the same as those of i at the q − 2

points of the set
{
c/q : c ∈ Z∗q\ {1}

}
. Thus Case 2 has been reduced to Case

1.

5 How to Get p Down to 1.

Let p = 1. Recall that we only have to deal with Case 1 and Case 2. The
deduction of Case 2 from Case 1 is treated as before. So we are faced with
trying to concentrate at 1/q. We can’t do what we did before, since when
p = 1 we are faced with

∑1
j=1

1
j

1 + 2
∑(q−1)/2
j=1

1
j

≈ 1
ln q

which is not bounded away from 0. A natural candidate seems to be

Dq2 (qx)D q−1
2

(x)2 .

Now the concentration is fine since where we had a single 1/x factor we now
have two 1/x factors and the ratio becomes

∑1
j=1

1
j2

1 + 2
∑(q−1)/2
j=1

1
j2

.

What goes wrong is that we do not have an idempotent. In fact,

D q−1
2

(x)2 = (1 + e (x) + e (2x) + . . . ) (1 + e (x) + e (2x) + . . . )

= 1 + 2e (x) + 3e (2x) + . . .

A quick fix for this is to replace this function by D q−1
2

(x)D q−1
2

((q + 1)x).
As in checking that i(x) was an idempotent, we have to check that if m +
n (q + 1) = m′+n′ (q + 1) , where m,n,m′, n′ all are in

[
0, q−1

2

]
, then m = m′

and n = n′. But this is immediate from thinking of m + n (q + 1) as a two
digit base q + 1 integer.
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Note that if x is a grid point j
q where |j| ≤ q−1

2 ,

D q−1
2

((q + 1)x) = D q−1
2

(
(q + 1)

(
j

q

))
= D q−1

2

(
j +

j

q

)
= D q−1

2

(
j

q

)
= D q−1

2
(x) ,

so that we may still think of each factor as being approximately 1/x and we
still have the right concentration, namely∑1

j=1
1
j2

1 + 2
∑(q−1)/2
j=1

1
j2

. (5.1)

But when we multiply by Dq2 (qx) there is lots of repetition and we no
longer have an idempotent. No obvious manipulation of Dirichlet kernels seems
to do any good. A new idea is needed. We need an idempotent t (x) so that
on the one hand, t (qx) can produce the pulses near 0,±1/q,±2/q, . . . that
Dq2 (qx) did, while on the other hand t (qx)D q−1

2
(x)D q−1

2
(qx) remains an

idempotent. So we want

1. t is an idempotent,

2. t is L1 concentrated near 0,

3. t has very large gaps between frequencies.

Actually, we will do a little better by replacing the second property with L1

concentration near 1/2. This is better because with Dq2 (qx) the three most
central pulses were centered at −1/q, 0, and 1/q. Consequently, in attempting
to concentrate at 1/q, we were forced to accept some wasted concentration at
0. With t (x) being concentrated at 1/2, the two most central pulses of t (qx)
will be centered at − 1

2q and 1
2q with the next two pulses centered at ± 3

2q , a
neater situation.

We now replace D q−1
2

((q + 1)x) by D q−1
2

((2q + 1)x) since we are now

concentrating on the grid . . . ,− 3
2q ,−

1
2q ,

1
2q ,

3
2q , . . . and D q−1

2

(
(2q + 1) j

2q

)
=

D q−1
2

(
j
2q

)
. Thus our winning idempotent will be

t (x)D q−1
2

(x)D q−1
2

((2q + 1)x) .
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The sum of a frequency appearing in D q−1
2

(x) and one appearing in

D q−1
2

((2q + 1)x) is at most
(
q−1
2 − 1

)
(1 + (2q + 1)) so adjusting the gaps of

t to be larger than that will keep our final function an idempotent.
Here is the required idempotent:

t (x) = [e (0) + e (Rx) + e ((2R+ 1)x)]
[
e (0) + e

(
R2x

)
+ e

((
2R2 + 1

)
x
)]
· · ·[

e (0) + e
(
RJ−1x

)
+ e

((
2RJ−1 + 1

)
x
)] [

e (0) + e
(
RJx

)
+e
((

2RJ + 1
)
x
)]

Whatever the value of J , t is an idempotent with gap size at least R
provided R > max {J, 3} . Fully expand t (x) into 3J terms. A typical term
has the form

e ((α1 + · · ·+ αJ)x)

where each αj = 0, Rj , or 2Rj + 1. Write αj = βjR
j + δj where βj is 0, 1, or

2 and δj is 0 or 1. Idempotency requires that distinct terms in the expansion
of t (x) have distinct frequencies. This is clear since

α1 + · · ·+ αJ =

 J∑
j=1

δj

R0 +
J∑
j=1

βjR
j .

Also from this representation it is not hard to verify that all gaps are at least
R.

It remains to show that picking J large will L1 concentrate t (x) near 1
2 .

Let I =
[
− 1

2 ,−
1
2 + ε

]
∪
[
1
2 − ε,

1
2

]
be a small interval centered at 1

2 . Then∫
I

∣∣1 + e
(
R1x

)
+ e

((
2R1 + 1

)
x
)∣∣ · · · ∣∣1 + e

(
RJx

)
+ e

((
2RJ + 1

)
x
)∣∣ dx ≈

(5.2)∫
I

{∫
T

|1 + e (y) + e (2y + x)| dy
}
. . .

{∫
T

|1 + e (y) + e (2y + x)| dy
}
dx =∫

I

{F (x)}J dx

where
F (x) =

∫
T

|1 + e (y) + e (2y + x)| dy.

It turns out that the continuous even function F (x) is monotone and increasing
on
[
0, 1

2

]
. (I can give no motivation for this fact, but a straightforward proof

of it is found in [8].) Thus F (x) has a unique maximum at 1
2 . From this it
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is immediate that sufficiently large J will make F J as concentrated as desired
at 1

2 .
So we will have seen that t (x) has both large gaps and excellent L1 concen-

tration at 1
2 as soon as we tie up one last loose end: Why is the approximation

(5.2) true? We start by observing that for ϕ (x, y) continuous and I an interval,
as R becomes large∫

I

ϕ (x,Rx) dx ≈
∫
I

(∫
T
ϕ (x, y) dy

)
dx.

To see this, first expand ϕ (x, y) into a Fourier series in y with coefficients in x
and then use a density argument to truncate that series. Thus we may assume
that

ϕ (x, y) =
∑
|m|≤M

ϕm (x) e (my) .

Then ∫
T
ϕ (x, y) dy =

∑
ϕm (x)

∫
T
e (my) dy = ϕ0 (x) ,∫

I

(∫
T
ϕ (x, y) dy

)
dx =

∫
I

ϕ0 (x) dx,

while

ϕ (x,Rx) =
∑
n

ϕn (x) e (nRx)

= ϕ0 (x) +
∑
|n|≥1

ϕn (x) e (nRx) .

Integrate over I and observe that for each fixed n, if R is very large,∫
I

ϕn (x) e (nRx) dx

is the integral of a very rapidly oscillating function over an interval and hence
is very small. (In fact, we have here the −nR Fourier coefficient of the function
χIϕn, which tends to zero as R→∞ by the Riemann-Lebesgue Theorem.)

A very similar argument shows that∫
I

ϕ (x,Rx)ϕ
(
x,R2x

)
dx ≈

∫
I

(∫
T
ϕ (x, y) dy

)2

dx.
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Use the same expansion for ϕ. The right side becomes
∫
I
ϕ0 (x)2 dx, while

the left side becomes

∫
I

ϕ0 (x)2 +
∑

|m|,|n|≤M
(m,n)6=(0,0)

ϕm (x)ϕn (x) e
((
mR+ nR2

)
x
) dx.

Integrate over I and observe that for each fixed (m,n) 6= (0, 0), if R is very
large, ∫

I

ϕm (x)ϕn (x) e
((
mR+ nR2

)
x
)
dx

is small, being the −
(
mR+ nR2

)
Fourier coefficient of the function χIϕmϕn.

Notice that we have just done the J = 1 and J = 2 cases of the approximation
(5.2) when

ϕ (x, y) = |1 + e (y) + e (2y + x)| .
The proof for larger J is no different. This completes the argument for L1

concentration.
The motivation for picking 1 + e (y) + e (x) e (2y) is produced by the argu-

ment just given. Everything flows quite naturally once F maximizes at x = 1
2 .

If one were to study very simple sums of the form∑
e (mx) e (ny)

trying to find one where

F (x) =
∫

T

∣∣∣∑ e (mx) e (ny)
∣∣∣ dx

is maximal at 0 or 1
2 , 1 + e (y) + e (x) e (2y) would show up early in the search.

Notice that the amount of concentration of t at x = 1/2 actually approaches
1 as J increases. For an even function, concentration exceeding 1/2 is possible
only at x = 0 and x = 1/2, the latter because −1/2 and 1/2 are identified
in the definition of the torus T. In other words, 0 and 1/2 are the only self-
symmetric points of T since every point a ∈ (−1/2, 1/2] \ {0, 1/2} satisfies
a 6= −a.

6 How to Get p Down to All Small Positive Values.

It turns out that for 0 < p < 2,

Fp (x) =
∫

T
|1 + e (y) + e (2y + x)|p dy
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is also maximized at x = 1
2 . (For p > 2, Fp is maximized at x = 0; Parseval’s

equality gives F2 (x) ≡ 12 + 12 + |e (x)|2 = 3.) This allows a similar argument
to be concocted for any p ∈ (0, 2). The idempotent

t (qx)D q−1
2

(x)D q−1
2

((2q + 1)x) (6.1)

not only concentrates near 1
q in the L1 sense, it also concentrates there nicely

in the Lp sense when p ∈
(

1
2 , 2
)

since the p-analogue of estimate (5.1) is∑1
j=1

1
j2p

1 + 2
∑(q−1)/2
j=1

1
j2p

which is bounded below, uniformly in q, by
(

1 + 2
∑∞
j=1 j

−2p
)−1

so long as

p > 1
2 . To push p down as close to zero as you like, just keep adjoining

more factors on the right side of definition (6.1) while widening the gaps of t
appropriately. For example,

t (qx)D q−1
2

(x)D q−1
2

((2q + 1)x)D q−1
2

((
(2q)2 + 1

)
x
)

will concentrate at 1
q in the Lp sense so long as p > 1

3 .

7 An Extension and Remaining Questions.

Although we have not tracked the amount of concentration carefully, as we
mentioned above, the method of the last two sections can produce full concen-
tration of .5 whenever p > 0 is not an even integer. Furthermore the maximum
amount of concentration when p = 2 is exactly maxx>0

sin2 x
πx = .2306.... In

particular, since .2306... < .5, this means that the existence of a function sim-
ilar to t, that is, for a given ε > 0, an idempotent tε (x) with large gaps and
concentration > 1 − ε in the L2 sense at x = 1/2, is impossible. Otherwise
a simple extension of the argument given above would produce L2 concentra-
tions close to .5 on all open intervals, contradicting .2306... < .5.

The amount of concentrations for p = 4, 6, 8, . . . is fairly well estimated in
[8] but remains unknown. This is the first open question.

We have asked about concentrating an idempotent on an interval. A more
general question involves replacing “interval” by “set of positive measure.”
Now less is known. All the results found for intervals still hold here (with the
same concentrations) when p > 1. For p ∈ (1/2, 1], concentration is known to
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be positive, but whether concentration of .5 can be achieved is unknown. For
p ∈ (0, 1/2], whether even positive concentration holds is unknown.

In all the extensions to sets of positive measure achieved so far, metric
number theory has played an interesting role. For example, in [2], we start
with a subset E ⊂ T of positive measure. We pick a point of density ξ ∈ E.
Next we pick a large prime q and look at the grid of mesh 1

q where a
q is the grid

point closest to ξ. Finally we concentrate a lot of Lp mass near a
q , say within

I =
[
a
q −

1
q2 ,

a
q + 1

q2

]
. The mass must be fairly evenly distributed within I

and this turns out to be the case for the constructions just described in Section
4, provided a

q is a very good approximation of ξ, say∣∣∣∣ξ − a

q

∣∣∣∣ < 1
q2
. (7.1)

So it is very convenient that there is a theorem of metric number theory stating
that for almost every ξ, there are infinitely many primes q for which inequality
(7.1) holds for some integer a. (See [14].) Choosing q to be prime is somewhat
convenient, but not at all crucial. If one takes that path, earlier work done
by Szüsz ([21]) and generalized by Schmidt ([20]) is applicable. I would also
like to mention that extending concentration from intervals to sets of positive
measure in [2] also required other ideas suggested to us by Fedja Nazarov.
One of these suggestions is worked out in [6]. A more general version of the
result of [6] can be found in [3].

Acknowledgment. The referee made a lot of careful corrections and also
suggested improving the bibliography and its discussion to provide the inter-
ested reader an easier path to the recent work in this area, most of which was
done by A. Bonami and Sz. Révész.
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[13] M. Dé Champs-Gondim, F. Piquard-Lust, and H. Queffelec, Estima-
tions locales de sommes d’exponentielles, (French) [Local estimates
of exponential sums] Harmonic analysis: study group on translation-
invariant Banach spaces, Exp. No. 1, 16 pp., Publ. Math. Orsay, 84-1,
Univ. Paris XI, Orsay, 1984.



20 J. Marshall Ash

[14] G. Harman, Metric Number Theory, London Mathematical Society
Monographs, New Series, 18, The Clarendon Press, Oxford Univer-
sity Press, New York, 1998.

[15] J.-P. Kahane, Some random series of functions, Second edition, Cam-
bridge Studies in Advanced Mathematics, textbf5, Cambridge Uni-
versity Press, Cambridge, 1985.

[16] J.-P. Kahane, personal communication, November 1982.

[17] H. L. Montgomery, personal communications, November 1980 and
October 1982.

[18] S. K. Pichorides, personal communication, April 1980.
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