Mariola Marciniak, Institute of Mathematics, Kazimierz Wielki University, Pl. Weyssenhoffa 11, 85-072 Bydgoszcz, Poland. email: marmac@ukw.edu.pl

ON THE PATH DARBOUX PROPERTY

Abstract

In this paper we introduce a notion of the path Darboux property. We examine the basic properties and investigate relationships between the path Darboux property and path continuity.

We apply standard symbols and notions. By \mathbb{R} , we denote the set of real numbers, $\widetilde{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}, \widetilde{\mathbb{R}}^+ = [0, \infty]$. The symbol int(A) $(cl(A), \ell(A))$ stands for the interior (the closure, the family of all components, respectively) of a set $A \subset \mathbb{R}$. For $x \in \mathbb{R}$ let $\mathcal{T}(x)$ denote the family of all open sets containing x.

We consider only real-valued functions defined on \mathbb{R} . No distinction is made between a function and its graph.

Let f be a function and $x \in \mathbb{R}$. The set of all continuity (discontinuity) points of f is denoted by $C_f(D_f)$. By $L^+(f,x)$ $(L^-(f,x))$ we denote the set of all right-side limit numbers (all left-side limit numbers respectively) of f at x.

For a set $E \subset \mathbb{R}$ we define the set of right-side limit numbers of f at x with respect to the set E: $L_E^+(f, x)$ denotes the set of all $\alpha \in \widetilde{\mathbb{R}}$ such that there exists a sequence $(x_n)_{n=1}^{\infty}$ (where $x_n > x$ and $x_n \in E$, n = 1, 2...) for which $\lim_{n \to \infty} x_n = x$ and $\lim_{n \to \infty} f(x_n) = \alpha$. Similarly $L_E^-(f, x)$ denotes the set of all $\alpha \in \widetilde{\mathbb{R}}$ such that there exists a sequence $(x_n)_{n=1}^{\infty}$ (where $x_n < x$ and $x_n \in E$, n = 1, 2...) for which $\lim_{n \to \infty} x_n = x$ and $\lim_{n \to \infty} f(x_n) = \alpha$. Of course

$$L^{+}_{\mathbb{R}}(f,x) = L^{+}(f,x) \text{ and } L^{-}_{\mathbb{R}}(f,x) = L^{-}(f,x).$$

Mathematical Reviews subject classification: Primary: 26A15, 26A21 Key words: path, Darboux property

Received by the editors July 7, 2007

Communicated by: Brian S. Thomson

We say that a function f has the Darboux property if the image of an arbitrary connected set is connected.

In [3] Bruckner and Ceder described what it means for a real function to be Darboux at a point. We say that a function f is Darboux from the right side (from the left side) at a point x if and only if

$$\forall_{\alpha \in L^+(f,x) \setminus \{f(x)\}} \forall_{\beta \in I_{(f(x),\alpha)}} \forall_{\sigma > 0} f^{-1}(\beta) \cap [x, x + \sigma] \neq \emptyset$$

$$(f^{-1}(\beta) \cap (x - \sigma, x] \neq \emptyset \text{ respectively})$$

where (for $a, b \in \widetilde{\mathbb{R}}$) $I_{(a,b)} = (\min\{a, b\}, \max\{a, b\}).$

In [4] Császár showed that a real function f has the Darboux property on interval if and only if it is Darboux at each point.

It is easy to show that if a function f is Darboux from the right side (from the left side), then $L^+(f, x)$ ($L^-(f, x)$ respectively) is a closed interval and $f(x) \in L^+(f, x)$ ($f(x) \in L^-(f, x)$ respectively).

Let $x \in \mathbb{R}$. As in [2], a path (a bilateral path) leading to x is a set E such that $x \in E$ and x is a point of accumulation (bilateral accumulation respectively) of E.

A family of (bilateral) paths at $x \in \mathbb{R}$ is a nonempty family \mathcal{F} of subsets of \mathbb{R} such that E is a (bilateral) path leading to x, for each $E \in \mathcal{F}$.

A system of families of (bilateral) paths on \mathbb{R} is a collection $\mathcal{E} = \{\mathcal{E}(x) : x \in \mathbb{R}\}$ such that $\mathcal{E}(x)$ is a family of (bilateral) paths leading to x, for $x \in \mathbb{R}$ (cf. [1]).

Let \mathcal{E} be a system of families of paths on \mathbb{R} . We say that a function f is \mathcal{E} -continuous at x (or x is an \mathcal{E} -continuity point of f), if there exists a path $E \in \mathcal{E}(x)$ such that $f \upharpoonright E$ is continuous at x (cf. [1]).

The set of all \mathcal{E} -continuity points of f will be denoted by C_f^{ε} . The function f is \mathcal{E} -continuous if and only if it is \mathcal{E} -continuous at each point.

We introduce now a notion of path Darboux property.

Definition 1. Let \mathcal{E} be a system of families of paths on \mathbb{R} . We say that a function f is \mathcal{E} -Darboux from the right side at a point x if and only if there exists $\delta > 0$ and $E \in \mathcal{E}(x)$ such that:

- (D1) $f(x) \in L_E^+(f, x),$
- (D2) $\forall_{\alpha \in L_E^+(f,x) \setminus \{f(x)\}} \forall_{\beta \in I_{(f(x),\alpha)} \cap f([x,x+\delta))} \forall_{0 < \sigma \le \delta} \forall_{C \in \ell(E \cap [x,x+\sigma))}$ $f^{-1}(\beta) \cap C \neq \emptyset,$
- (D3) $\forall_{0 < \sigma \leq \delta} \forall_{C \in \ell(E \cap [x, x + \sigma))} f(C)$ is connected.

Analogously we define what it means for f to be \mathcal{E} -Darboux from the left side at x. We will say that a function f is \mathcal{E} -Darboux at a point $x \in \mathbb{R}$ if f is \mathcal{E} -Darboux from the right side and from the left side at x.

If f is \mathcal{E} -Darboux at every point, then we say that f has the \mathcal{E} -Darboux property. The family of all functions with the \mathcal{E} -Darboux property is denoted by $\mathcal{D}_{\mathcal{E}}$.

Remark 1. Let \mathcal{E} be a system of families of bilateral paths on \mathbb{R} and f be a function. If there exists a path $E \in \mathcal{E}(x)$ and $\delta > 0$ such that $f \upharpoonright (E \cap [x, x+\delta))$ $(f \upharpoonright (E \cap (x - \delta, x]))$ is continuous, then f is \mathcal{E} -Darboux from the right side (from the left side respectively) at x.

PROOF. Suppose that $E \in \mathcal{E}(x)$, $\delta > 0$ and $f \upharpoonright (E \cap [x, x + \delta))$ is continuous. Because $f \upharpoonright E$ is continuous at x, thus $L_E^+(f, x) = \{f(x)\}$. Consequently condition (D1) and (D2) hold. Let $\sigma \in (0, \delta]$ and $C \subset E \cap [x, x + \sigma)$ be a connected set. Then $f \upharpoonright C$ is continuous. Thus f(C) is connected. That is the condition (D3) is true.

Corollary 1. If there exists a path $E \in \mathcal{E}(x)$ and a neighborhood U of x such that $f \upharpoonright (E \cap U)$ is continuous, then f is \mathcal{E} -Darboux at x.

Let \mathcal{E}_e be a system of families of paths defined on \mathbb{R} as

$$\mathcal{E}_e(x) = \{ E \subset \mathbb{R} : \exists_{\delta > 0} (x - \delta, x + \delta) \subset E \}.$$

Lemma 1. If a function f is \mathcal{E}_e -Darboux from the right side (from the left side) at a point x, then f is Darboux from the right side (from the left side respectively) at x.

PROOF. Suppose that f is \mathcal{E}_e -Darboux from the right side at x. Let $\alpha \in L^+(f,x) \setminus \{f(x)\}, \beta \in I_{(f(x),\alpha)}, \tau > 0$. We can assume that $f(x) < \beta < \alpha$. Let $E \in \mathcal{E}_e(x)$ and $\delta \in \mathbb{R}^+$ be such that conditions (D1), (D2), (D3) of Definition 1 hold. Let $0 < \sigma \leq \min\{\delta, \tau\}$ be such that $[x, x + \sigma) \subset E$. Observe that $\beta \in f([x, x + \delta))$. Indeed, $C = [x, x + \sigma) \in \ell(E \cap [x, x + \sigma))$. Because $\alpha \in L^+(f, x)$ and $\alpha > \beta$, hence there exists $t \in C$ such, that $f(t) > \beta$. We have that $f(x) < \beta < f(t)$ and $f(x), f(t) \in f(C)$. From (D3) we obtain that f(C) is connected, and $\beta \in f(C) \subset f([x, x + \delta))$. Condition (D2) implies that $\emptyset \neq f^{-1}(\beta) \cap C \subset f^{-1}(\beta) \cap [x, x + \tau)$. This completes the proof. **Lemma 2.** If f has the Darboux property, then it has the \mathcal{E}_e -Darboux property.

PROOF. Suppose that f has the Darboux property. Let $x \in \mathbb{R}$. We show that for $E = \mathbb{R}$ and $\delta = \infty$ conditions (D1), (D2), (D3) are satisfied. In fact, because f is Darboux from the right side at x, then $f(x) \in L^+(f, x)$. This means that condition (D1) holds. Let $\alpha \in L^+(f, x) \setminus \{f(x)\}, \beta \in I_{(f(x),\alpha)} \cap$ $f([x,\infty))$ and $\sigma > 0$. Observe, that $\ell(E \cap [x, x+\sigma)) = \{[x, x+\sigma)\}$ and (because f is Darboux at x) $[x, x + \sigma) \cap f^{-1}(\beta) \neq \emptyset$. Thus the condition (D2) holds. Because f has the Darboux property f(C) is connected for every connected $C \subset \mathbb{R}$. Therefore condition (D3) is satisfied. So f is \mathcal{E}_e -Darboux from the right side at x. Analogously we can show that f is \mathcal{E}_e -Darboux from the left side at x.

According to Lemmas 1 and 2 we have:

Theorem 1. The function f has the Darboux property if and only if it has the \mathcal{E}_e -Darboux property.

Remark 2. There exists a function f continuous at 0, but not \mathcal{E}_e -Darboux at 0.

PROOF. Define:

$$f(x) = \begin{cases} 0 & for \ x \in (-\infty, 0], \\ \frac{1}{n} & for \ x \in (\frac{1}{n+1}, \frac{1}{n}], n = 1, 2, \dots, \\ 1 & for \ x \in (1, \infty). \end{cases}$$

Let $E \in \mathcal{E}_e(0)$ and $\delta \in \mathbb{R}^+$. Because E is a neighborhood of 0 then there exists $0 < \sigma \leq \delta$ such, that $[x, x + \sigma) \subset E$. Then $f([x, x + \sigma))$ is not connected so condition (D3) is not satisfied.

Denote by $b\mathcal{D}^0$ $[b\mathcal{D}_e^0]$ the family of all bounded functions which are Darboux $[\mathcal{E}_e$ -Darboux respectively] at 0. From lemma 1 we have $b\mathcal{D}_e^0 \subset b\mathcal{D}^0$. Of course if f is continuous at x, then f is Darboux at x. According to Remark 2 we obtain that $b\mathcal{D}^0 \setminus b\mathcal{D}_e^0 \neq \emptyset$. Moreover we have:

Theorem 2. The set $b\mathcal{D}_e^0$ is boundary and dense in $b\mathcal{D}^0$ (with the uniform convergence metric).

ON THE PATH DARBOUX PROPERTY

PROOF. Let $f \in b\mathcal{D}^0$ and $\epsilon > 0$. We define a functions h_1, g_1 such that $h_1(0) = g_1(0) = f(0), |g_1(x) - f(x)| < \epsilon, |h_1(x) - f(x)| < \epsilon$ for $x \in \mathbb{R}, g_1$ is \mathcal{E}_e -Darboux from the right side at 0, h_1 is Darboux from the right at 0 but is not \mathcal{E}_e -Darboux from the right side at 0.

Suppose that f is right-hand continuous at 0. Let $\delta > 0$ be such that $f([0,\delta)) \subset (f(0) - \frac{\epsilon}{2}, f(0) + \frac{\epsilon}{2})$ and let $t_0 \in (0,\delta)$. Let $g_1(x) = f(x)$ if $x \in (-\infty, 0] \cup [t_0, \infty)$ and g_1 be linear on $[0, t_0]$. We define h_1 as:

$$h_1(x) = \begin{cases} f(x) & \text{if } x \in (-\infty, 0] \cup (t_0, \infty), \\ f(0) + \frac{\epsilon}{2n} & \text{if } x \in (\frac{t_0}{n+1}, \frac{t_0}{n}], n = 1, 2, \dots \end{cases}$$

Then g_1 is continuous on $[0, t_0]$, therefore 0 (according to Remark 1) g_1 is \mathcal{E}_e -Darboux from the right side at 0. The function h_1 is right-hand continuous at 0 but for every $0 < \sigma \leq t_0$, the set $h_1([0, \sigma))$ is not connected. Thus h_1 is Darboux from the right side at 0 but is not \mathcal{E}_e -Darboux from the right side at 0.

Suppose now that f is not right-hand continuous at 0. Because f is bounded and Darboux at 0 then $L^+(f,0)$ is a non-degenerate and bounded closed interval. Thus there exists $a, b \in \mathbb{R}$ such that a < b and $[a, b] = L^+(f, 0)$. Let $\tau > 0$ be such that $f([0, \tau)) \subset (a - \frac{\epsilon}{2}, b + \frac{\epsilon}{2})$. Define:

$$g_1(x) = \begin{cases} b & \text{if } x \in (0,\tau) \& f(x) \in (b,\infty), \\ a & \text{if } x \in (0,\tau) \& f(x) \in (-\infty,a), \\ f(x) & \text{otherwise.} \end{cases}$$

Let $c \in (a, b) \cap (b - \frac{\epsilon}{2}, b) \setminus \{f(0)\}$. There exists a sequence $(x_n)_{n=1}^{\infty} \subset (0, \tau)$ such that $x_n \searrow 0$ and $f(x_n) = c$ (for n = 1, 2...). Define:

$$h_1(x) = \begin{cases} b & \text{if } x \in (0,\tau) \& f(x) \in (b,\infty), \\ a & \text{if } x \in (0,\tau) \& f(x) \in (-\infty,a), \\ b + \frac{\epsilon}{2k} & \text{if } x = x_{2k}, k = 1, 2, \dots, \\ f(x) & otherwise. \end{cases}$$

Observe that:

$$L^+(g_1, 0) = [a, b]. \tag{1}$$

Let $\gamma \in (a, b)$. Then (because $\gamma \in L^+(f, 0)$) there exists sequence $s_n \searrow 0$ such that $f(s_n) \in (a, b)$ (for n = 1, 2, ...) and $\lim_{n \to \infty} f(s_n) = \gamma$. Then $g_1(s_n) = f(s_n)$, for n = 1, 2, ..., so $\lim_{n \to \infty} g_1(s_n) = \gamma$. Hence $\gamma \in L^+(g_1, 0)$. Because $L^+(g_1, 0)$ is closed then $[a, b] \subset L^+(g_1, 0)$. But $g_1([0, \tau)) \subset [a, b]$, so $L^+(g_1, 0) \subset [a, b]$. Hence (1) is true. Now we show that:

$$\forall_{\mu>0} \ (a,b) \setminus \{f(0)\} \subset g_1((0,\mu)).$$
(2)

Let $\mu > 0$ and $\eta \in (a, b) \setminus \{f(0)\}$. Then, because f is Darboux at 0, there exists $t \in (0, \mu)$ such that $f(t) = \eta$. Because $f(t) \in (a, b)$, so $g_1(t) = f(t) = \eta$ and consequently $\eta \in g_1((0, \mu))$.

We show that for g_1 , the set $E = \mathbb{R}$ and $\delta = \tau$ conditions (D1), (D2), (D3) are fulfilled. Observe first that (according to (1)) $g_1(0) = f(0) \in [a, b] = L^+(g_1, 0)$. Let $\alpha \in [a, b] \setminus \{f(0)\}$ and $\beta \in I_{(f(0),\alpha)}$. We have $\beta \in (a, b) \setminus \{f(0)\}$, so (according to (2)) for every $0 < \sigma \leq \tau$, $g_1^{-1}(\beta) \cap [0, \sigma) \neq \emptyset$. Thus (D2) is true. According to $g_1(0) = f(0)$ and inclusion (2) for every $0 < \sigma \leq \tau$, $(a, b) \subset g_1([0, \sigma)) \subset [a, b]$, so $g_1([0, \sigma))$ is connected. This means that (D3) is true.

We show next that h_1 is Darboux from the right side at 0. Observe that $h_1(x_{2k+1}) = c$ (for k = 1, 2, ...), $\lim_{k \to \infty} h_1(x_{2k}) = b$ and if $g_1(t) \neq c$ (for $t \in [0, \tau)$), then $h_1(t) = g_1(t)$. Consequently $L^+(h_1, 0) = L^+(g_1, 0) = [a, b]$. It is enough to show that for every $\nu \in (a, b) \setminus \{h_1(0)\}$ and $\lambda > 0$ there exists $u \in (0, \lambda)$ such that $h_1(u) = \nu$. Because $h_1(x_{2k+1}) = c$ (for k = 1, 2, ...), we can assume that $\nu \neq c$. Because f is Darboux at 0 there exists $u \in (0, \lambda)$ such that $f(u) = \nu$. Then $f(u) \in (a, b) \setminus \{c\}$ so $h_1(u) = f(u)$. Therefore $h_1(u) = \nu$.

Observe that for every $0 < \sigma \leq \tau$, $h_1([0, \sigma))$ is not connected so h_1 is not \mathcal{E}_e -Darboux at 0.

According to the construction of g_1 and h_1 we have that $h_1(0) = g_1(0) = f(0), |g_1(x) - f(x)| < \epsilon$ and $|h_1(x) - f(x)| < \epsilon$ for $x \in \mathbb{R}$.

Similarly we can define functions g_2, h_2 such that $g_2(0) = h_2(0) = f(0)$, $|g_2(x) - f(x)| < \epsilon$, $|h_2(x) - f(x)| < \epsilon$ for $x \in \mathbb{R}$ and such that g_2 is \mathcal{E}_{e^-} Darboux from the left side at 0, h_2 is Darboux from the left side at 0 but is not \mathcal{E}_e -Darboux from the left side at 0.

Finally let g, h be such functions that $g(x) = h_1(x)$ and $h(x) = g_1(x)$ for $x \in [0, \infty)$, $g(x) = g_2(x)$ and $h(x) = h_2(x)$ for $x \in (-\infty, 0)$. Then $|g(x) - f(x)| < \epsilon, |h(x) - f(x)| < \epsilon$ for $x \in \mathbb{R}, g \in b\mathcal{D}_e^0$ and $h \in b\mathcal{D}^0 \setminus b\mathcal{D}_e^0$, so the theorem is proved.

Theorem 3. There exists a system of families of bilateral paths \mathcal{E} such that every \mathcal{E} -continuous functions has a nowhere dense set of discontinuity points and $C_{\mathcal{E}} \setminus D_{\mathcal{E}} \neq \emptyset \neq D_{\mathcal{E}} \setminus C_{\mathcal{E}}$.

PROOF. Let (for n = 1, 2, ...) $C_n \subset (\frac{1}{n+1}, \frac{1}{n})$ be a Cantor set. Denote (for n = 1, 2, ...) by \mathcal{I}_n the family of all components of the set $[\frac{1}{n+1}, \frac{1}{n}] \setminus C_n$. Let

536

 $J_{0,n}(J_{1,n})$ (for n = 1, 2, ...) be a component of $[\frac{1}{n+1}, \frac{1}{n}] \setminus C_n$ which contains a point $\frac{1}{n+1}$ $(\frac{1}{n})$. Then (for n = 1, 2, ...) there exist subfamilies $\mathcal{I}_{1,n}, \mathcal{I}_{2,n}$ of \mathcal{I}_n for which : $\mathcal{I}_{1,n} \cup \mathcal{I}_{2,n} = \mathcal{I}_n, \mathcal{I}_{1,n} \cap \mathcal{I}_{2,n} = \emptyset, C_n \subset cl(\bigcup \mathcal{I}_{1,n}) \cap cl(\bigcup \mathcal{I}_{2,n})$ and $J_{0,n}, J_{1,n} \in \mathcal{I}_{2,n}$. Denote:

$$A = \bigcup_{n=1}^{\infty} \bigcup_{I \in \mathcal{I}_{1,n}} cl(I), \quad C = \bigcup_{n=1}^{\infty} C_n.$$

Let \mathcal{E} be a system of families of bilateral paths defined as:

$$\mathcal{E}(x) = \begin{cases} \{\mathbb{R}\} & for \quad x = 0, \\ \{A\} & for \quad x \in A, \\ \{\mathbb{R} \setminus A\} & for \quad x \in \mathbb{R} \setminus (A \cup \{0\}). \end{cases}$$

Observe that:

if
$$x \notin C$$
 and $E \in \mathcal{E}(x)$, then E is a neighborhood of x (3)

In fact let $x \in \mathbb{R} \setminus C$. Of course if x = 0 then (3) is true. If $x \in A \setminus C$ then $\mathcal{E}(x) = \{A\}$ and there exists an open interval $I \in \bigcup_{n=1}^{\infty} \mathcal{I}_{1,n}$ such that $x \in I$. Then $x \in I \subset A$, so A is a neighborhood of x. Let $I_1 = J_{1,1} \cup (1,\infty)$ and $I_n = J_{1,n} \cup J_{0,n-1}$ (for n = 2, 3...). Denote $G = (-\infty, 0) \cup \bigcup_{n=1}^{\infty} I_n$. Then G is an open set and $G \subset \mathbb{R} \setminus A$. For every $x \in G$ we obtain that $\mathcal{E}(x) = \{\mathbb{R} \setminus A\}$ and $\mathbb{R} \setminus A$ is a neighborhood of x. If there exists n_0 such that $x \in (\frac{1}{n_0+1}, \frac{1}{n_0}) \setminus (C \cup A \cup G)$, then there exists an open interval $I \in \bigcup \mathcal{I}_{2,n_0}$ such that $x \in I$. Then $\mathcal{E}(x) = \{\mathbb{R} \setminus A\}$ and $I \subset \mathbb{R} \setminus A$, so $\mathbb{R} \setminus A$ is a neighborhood of x.

According to (3) we obtain that if $x \notin C$ and $E \in \mathcal{E}(x)$, then x is a point of bilateral accumulation of E. Suppose now, that $x \in C$. Then there exists n_0 such that $x \in (\frac{1}{n_0+1}, \frac{1}{n_0})$. If $x \in A$ then $\mathcal{E}(x) = \{A\}$ and x is a point of bilateral accumulation of $\bigcup \mathcal{I}_{1,n_0} \subset A$. Similarly if $x \in C \setminus A$, then $\mathcal{E}(x) = \{\mathbb{R} \setminus A\}$ and x is a point of bilateral accumulation of the set $\bigcup \mathcal{I}_{2,n_0} \subset \mathbb{R} \setminus A$. This proves that if $x \in \mathbb{R}$ and $E \in \mathcal{E}(x)$, then x is a point of bilateral accumulation of E.

Observe that C is nowhere dense. In fact let U be an open subset of \mathbb{R} . We can assume, that $U \cap (0,1) \neq \emptyset$. Then there exists $n_0 \in \{1,2,\ldots\}$ such that $U \cap (\frac{1}{n_0+1}, \frac{1}{n_0}) \neq \emptyset$. The set C_{n_0} is nowhere dense so there exists an open nonempty set $V \subset U \cap (\frac{1}{n_0+1}, \frac{1}{n_0}) \setminus C_{n_0}$. Observe that $C \cap (\frac{1}{n_0+1}, \frac{1}{n_0}) = C_{n_0}$, so $V \subset U \setminus C$. According to (3) we have that if $h \in \mathcal{C}_{\mathcal{E}}$ and $x \in \mathbb{R} \setminus C$, then x is a continuity point of h. Thus $D_h \subset C$, so D_h is nowhere dense. We show now that $\mathcal{C}_{\mathcal{E}} \setminus \mathcal{D}_{\mathcal{E}} \neq \emptyset$. In fact, let

$$f(x) = \begin{cases} 0 & if \quad x \in \mathbb{R} \setminus A, \\ \frac{1}{n} & if \quad x \in (\frac{1}{n+1}, \frac{1}{n}) \cap A, \quad n = 1, 2, 3 \dots \end{cases}$$

The function f is \mathcal{E} -continuous. Indeed, f is continuous (so \mathcal{E} -continuous) at 0. For every $n \in \{1, 2, ...\}$ the set $(\frac{1}{n+1}, \frac{1}{n}) \cap A$ is open on A, and $f \upharpoonright A$ is constant on $(\frac{1}{n+1}, \frac{1}{n}) \cap A$. Thus (because $A \subset (0, 1) \setminus \{\frac{1}{k} : k \in \mathbb{N}\}$) $f \upharpoonright A$ is continuous. Finally observe that $f \upharpoonright (\mathbb{R} \setminus A)$ is constant. Because for every $\sigma > 0$, $f([0, \sigma))$ is not connected then f is not \mathcal{E} -Darboux from the right side at 0.

Now we show, that $\mathcal{D}_{\mathcal{E}} \setminus \mathcal{C}_{\mathcal{E}} \neq \emptyset$. Let *B* be the set of all points of bilateral accumulation of C_1 . Define:

$$g(x) = \begin{cases} 1 & if \ x \in B, \\ 0 & otherwise. \end{cases}$$

Observe that g is constant (with value 0) on A and on an open set $\bigcup \mathcal{I}_{2,1} \cup (\mathbb{R} \setminus [\frac{1}{2}, 1])$, thus g is \mathcal{E} -Darboux on $A \cup \bigcup \mathcal{I}_{2,1} \cup (\mathbb{R} \setminus [\frac{1}{2}, 1])$. It is enough to show that if $x \in C_1 \setminus A$, then g is \mathcal{E} -Darboux at x.

Let $x \in C_1 \setminus A$. We show that g is \mathcal{E} -Darboux from the right side at x. Let $E = \mathbb{R} \setminus A$, $\delta = \infty$. If $x \in B$, then g(x) = 1 and x is a point of bilateral accumulation of B. Similarly if $x \notin B$ then g(x) = 0 and (because x is a point of bilateral accumulation of $\bigcup \mathcal{I}_{2,n}$) x is a point of bilateral accumulation of $\mathbb{R} \setminus (A \cup B)$. Thus $g(x) \in L_E^+(g, x)$. Observe that $L_E^+(g, x) \subset \{0, 1\}$ and $g(\mathbb{R}) \cap (0, 1) = \emptyset$, so (D2) is true.

Let $S \subset E$ be a connected set. Because every point of B is a point of bilateral accumulation of A, we have that if $S \cap B \neq \emptyset$, then S is singleton, so g(S) is connected. If $S \subset \mathbb{R} \setminus B$, then $g(S) = \{0\}$ so g(S) is connected too. Consequently (D3) holds.

Analogously we can show, that for every $x \in C_1 \setminus A$, g is \mathcal{E} -Darboux from the left side at x. Thus $g \in \mathcal{D}_{\mathcal{E}}$.

Let $t \in B$. Then $L_E^+(g,t) = \{0,1\}$ and the only path at t is E, so g is not \mathcal{E} -continuous at t (i.e. $g \notin C_{\mathcal{E}}$).

In [1] K.Banaszewski considered \mathcal{E} -continuity with respect to, so called, *c*-systems. We show now that then \mathcal{E} -continuity implies the \mathcal{E} -Darboux property.

Let \mathcal{E} be a system of families of bilateral paths and $x \in \mathbb{R}$. We denote $\mathcal{E}^+(x) = \{E \cap [x,\infty); E \in \mathcal{E}(x)\}$ and $\mathcal{E}^-(x) = \{E \cap (-\infty, x]; E \in \mathcal{E}(x)\}.$

Definition 2. [1] Let \mathcal{E} be a system of families of bilateral paths such that for any $x \in \mathbb{R}$, $E^+ \in \mathcal{E}^+(x)$ and $E^- \in \mathcal{E}^-(x)$ we have $E^+ \cup E^- \in \mathcal{E}(x)$.

538

ON THE PATH DARBOUX PROPERTY

We say that \mathcal{E} is a bilateral σ -system if for every $x \in \mathbb{R}$, sequence $(x_n)_{n=1}^{\infty}$, such that $x_n \searrow x$, $(x_n \nearrow x)$ and sequence of sets $(U_n)_{n=1}^{\infty}$, $(E_n)_{n=1}^{\infty}$, such that, for $n = 1, 2, \ldots, U_n \in \mathcal{T}(x_n)$ and $E_n \in \mathcal{E}(x_n)$, there exists $E \in \mathcal{E}^+(x)$, $(E \in \mathcal{E}^-(x)$ respectively), such that $E \subset \{x\} \cup \bigcup_{n=1}^{\infty} (E_n \cap U_n)$.

We say that \mathcal{E} is a *c*-system if it is a bilateral σ -system and for every $x \in \mathbb{R}$ and a Cantor set *C* such that *x* is a point of bilateral accumulation of *C*, we have $C \in \mathcal{E}(x)$.

Theorem 4. Suppose that \mathcal{E} is a c-system and $x \in \mathbb{R}$. If f is a function \mathcal{E} -continuous at x, then f is \mathcal{E} -Darboux at x.

PROOF. Let $x \in \mathbb{R}$ and f be \mathcal{E} -continuous at x. We show that f is \mathcal{E} -Darboux from the right side at x (analogously we can show, that f is \mathcal{E} -Darboux from the left side at x). Let $E \in \mathcal{E}(x)$ be such that $f \upharpoonright E$ is continuous at x. We consider two cases:

1. There exists $\delta > 0$ such that $int(E \cap [x, x + \delta)) = \emptyset$.

Because $f \upharpoonright E$ is continuous at x, so $L_E(f, x) = \{f(x)\}$. Thus (D1) and (D2) from Definition 1 are true. Observe that all components of $E \cap [x, x + \delta)$ are singletons so (D3) holds.

2. There exist sequences $(x_n)_{n=1}^{\infty}$ and $(\sigma_n)_{n=1}^{\infty}$ such that $x_n \searrow x$, $(x_n - \sigma_n, x_n + \sigma_n) \cap (x_m - \sigma_m, x_m + \sigma_m) = \emptyset$ (for $m \neq n \ m, n \in \{1, 2...\}$) and $\bigcup_{n=1}^{\infty} (x_n - \sigma_n, x_n + \sigma_n) \subset E$.

Let $(C_n)_{n=1}^{\infty}$ be a sequence of a Cantor sets such that $C_n \subset (x_n - \sigma_n, x_n + \sigma_n)$ and x_n is a point of bilateral accumulation of C_n (for n = 1, 2, ...). Let (for n = 1, 2, ...) $C'_n = \{c \in \mathbb{R} : 2x - c \in C_n\}$. Then $C = \{x\} \cup \bigcup_{n=1}^{\infty} (C_n \cup C'_n)$ is a Cantor set and x is a point of bilateral accumulation of C. Because \mathcal{E} is a c-system so $C \in \mathcal{E}(x)$. Let $\delta_1 = \infty$. Observe that $L^+_C(f, x) = \{f(x)\}$ and $int(C \cap [x, \infty)) = \emptyset$, so all components of $C \cap [x, \infty)$ are singletons. Thus for C and δ_1 conditions (D1), (D2), (D3) hold.

References

 K. Banaszewski, On E-continuous functions, Real Anal. Exchange, 21(1) (1995–1996), 203-215.

- [2] A. M. Bruckner, R. J. O'Malley, and B. S. Thomson, *Path derivatives: a unified view of certain generalized derivatives*, Trans. Amer. Math. Soc., 283 (1984), 97-125.
- [3] A. M. Bruckner and J. G. Ceder, *Darboux continuity*, Jber. Deutsch. Math. Verein., 67 (1965), 93-117.
- [4] A. Császár, Sur la propriété de Darboux, Comptes Rendus du Premier Congres des Mathématiciens Hongrois, 27 Aoûg-2 Septembre 1950, 551-560, Akadémiai Kiadó, Budapest, 1952.