Mariola Marciniak, Institute of Mathematics, Kazimierz Wielki University, Pl. Weyssenhoffa 11, 85-072 Bydgoszcz, Poland. email:
marmac@ukw.edu.pl

ON THE PATH DARBOUX PROPERTY

Abstract

In this paper we introduce a notion of the path Darboux property. We examine the basic properties and investigate relationships between the path Darboux property and path continuity.

We apply standard symbols and notions. By \mathbb{R}, we denote the set of real numbers, $\widetilde{\mathbb{R}}=\mathbb{R} \cup\{+\infty,-\infty\}, \widetilde{\mathbb{R}}^{+}=[0, \infty]$. The symbol $\operatorname{int}(A)(c l(A), \ell(A))$ stands for the interior (the closure, the family of all components, respectively) of a set $A \subset \mathbb{R}$. For $x \in \mathbb{R}$ let $\mathcal{T}(x)$ denote the family of all open sets containing x.

We consider only real-valued functions defined on \mathbb{R}. No distinction is made between a function and its graph.

Let f be a function and $x \in \mathbb{R}$. The set of all continuity (discontinuity) points of f is denoted by $C_{f}\left(D_{f}\right)$. By $L^{+}(f, x)\left(L^{-}(f, x)\right)$ we denote the set of all right-side limit numbers (all left-side limit numbers respectively) of f at x.

For a set $E \subset \mathbb{R}$ we define the set of right-side limit numbers of f at x with respect to the set $E: L_{E}^{+}(f, x)$ denotes the set of all $\alpha \in \widetilde{\mathbb{R}}$ such that there exists a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ (where $x_{n}>x$ and $x_{n} \in E, n=1,2 \ldots$) for which $\lim _{n \rightarrow \infty} x_{n}=x$ and $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\alpha$. Similarly $L_{E}^{-}(f, x)$ denotes the set of all $\alpha \in \widetilde{\mathbb{R}}$ such that there exists a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ (where $x_{n}<x$ and $x_{n} \in E$, $n=1,2 \ldots$) for which $\lim _{n \rightarrow \infty} x_{n}=x$ and $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\alpha$. Of course

$$
L_{\mathbb{R}}^{+}(f, x)=L^{+}(f, x) \text { and } L_{\mathbb{R}}^{-}(f, x)=L^{-}(f, x)
$$

[^0]We say that a function f has the Darboux property if the image of an arbitrary connected set is connected.

In [3] Bruckner and Ceder described what it means for a real function to be Darboux at a point. We say that a function f is Darboux from the right side (from the left side) at a point x if and only if

$$
\begin{gathered}
\forall_{\alpha \in L^{+}(f, x) \backslash\{f(x)\}} \forall_{\beta \in I_{(f(x), \alpha)}} \forall_{\sigma>0} f^{-1}(\beta) \cap[x, x+\sigma) \neq \emptyset \\
\left(f^{-1}(\beta) \cap(x-\sigma, x] \neq \emptyset \text { respectively }\right)
\end{gathered}
$$

where $($ for $a, b \in \widetilde{\mathbb{R}}) I_{(a, b)}=(\min \{a, b\}, \max \{a, b\})$.
In [4] Császár showed that a real function f has the Darboux property on interval if and only if it is Darboux at each point.

It is easy to show that if a function f is Darboux from the right side (from the left side), then $L^{+}(f, x)\left(L^{-}(f, x)\right.$ respectively) is a closed interval and $f(x) \in L^{+}(f, x)\left(f(x) \in L^{-}(f, x)\right.$ respectively $)$.

Let $x \in \mathbb{R}$. As in [2], a path (a bilateral path) leading to x is a set E such that $x \in E$ and x is a point of accumulation (bilateral accumulation respectively) of E.

A family of (bilateral) paths at $x \in \mathbb{R}$ is a nonempty family \mathcal{F} of subsets of \mathbb{R} such that E is a (bilateral) path leading to x, for each $E \in \mathcal{F}$.

A system of families of (bilateral) paths on \mathbb{R} is a collection $\mathcal{E}=\{\mathcal{E}(x)$: $x \in \mathbb{R}\}$ such that $\mathcal{E}(x)$ is a family of (bilateral) paths leading to x, for $x \in \mathbb{R}$ (cf. [1]).

Let \mathcal{E} be a system of families of paths on \mathbb{R}. We say that a function f is \mathcal{E}-continuous at x (or x is an \mathcal{E}-continuity point of f), if there exists a path $E \in \mathcal{E}(x)$ such that $f \upharpoonright E$ is continuous at x (cf. [1]).

The set of all \mathcal{E}-continuity points of f will be denoted by C_{f}^{ε}. The function f is \mathcal{E}-continuous if and only if it is \mathcal{E}-continuous at each point.

We introduce now a notion of path Darboux property.
Definition 1. Let \mathcal{E} be a system of families of paths on \mathbb{R}. We say that a function f is \mathcal{E}-Darboux from the right side at a point x if and only if there exists $\delta>0$ and $E \in \mathcal{E}(x)$ such that:
(D1) $f(x) \in L_{E}^{+}(f, x)$,
(D2) $\forall_{\alpha \in L_{E}^{+}(f, x) \backslash\{f(x)\}} \forall_{\beta \in I_{(f(x), \alpha)} \cap f([x, x+\delta))} \forall_{0<\sigma \leq \delta} \forall_{C \in \ell(E \cap[x, x+\sigma))}$
$f^{-1}(\beta) \cap C \neq \emptyset$,
(D3) $\forall_{0<\sigma \leq \delta} \forall_{C \in \ell(E \cap[x, x+\sigma))} f(C)$ is connected.

Analogously we define what it means for f to be \mathcal{E}-Darboux from the left side at x. We will say that a function f is \mathcal{E}-Darboux at a point $x \in \mathbb{R}$ if f is \mathcal{E}-Darboux from the right side and from the left side at x.

If f is \mathcal{E}-Darboux at every point, then we say that f has the \mathcal{E}-Darboux property. The family of all functions with the \mathcal{E}-Darboux property is denoted by $\mathcal{D}_{\mathcal{E}}$.

Remark 1. Let \mathcal{E} be a system of families of bilateral paths on \mathbb{R} and f be a function. If there exists a path $E \in \mathcal{E}(x)$ and $\delta>0$ such that $f \upharpoonright(E \cap[x, x+\delta))$ ($f \upharpoonright(E \cap(x-\delta, x]))$ is continuous, then f is \mathcal{E}-Darboux from the right side (from the left side respectively) at x.

Proof. Suppose that $E \in \mathcal{E}(x), \delta>0$ and $f \upharpoonright(E \cap[x, x+\delta))$ is continuous. Because $f \upharpoonright E$ is continuous at x, thus $L_{E}^{+}(f, x)=\{f(x)\}$. Consequently condition (D1) and (D2) hold. Let $\sigma \in(0, \delta]$ and $C \subset E \cap[x, x+\sigma)$ be a connected set. Then $f \upharpoonright C$ is continuous. Thus $f(C)$ is connected. That is the condition (D3) is true.

Corollary 1. If there exists a path $E \in \mathcal{E}(x)$ and a neighborhood U of x such that $f \upharpoonright(E \cap U)$ is continuous, then f is \mathcal{E}-Darboux at x.

Let \mathcal{E}_{e} be a system of families of paths defined on \mathbb{R} as

$$
\mathcal{E}_{e}(x)=\left\{E \subset \mathbb{R}: \exists_{\delta>0}(x-\delta, x+\delta) \subset E\right\}
$$

Lemma 1. If a function f is \mathcal{E}_{e}-Darboux from the right side (from the left side) at a point x, then f is Darboux from the right side (from the left side respectively) at x.

Proof. Suppose that f is \mathcal{E}_{e}-Darboux from the right side at x. Let $\alpha \in$ $L^{+}(f, x) \backslash\{f(x)\}, \beta \in I_{(f(x), \alpha)}, \tau>0$. We can assume that $f(x)<\beta<\alpha$. Let $E \in \mathcal{E}_{e}(x)$ and $\delta \in \widetilde{\mathbb{R}}^{+}$be such that conditions (D1), (D2), (D3) of Definition 1 hold. Let $0<\sigma \leq \min \{\delta, \tau\}$ be such that $[x, x+\sigma) \subset E$. Observe that $\beta \in f([x, x+\delta))$. Indeed, $C=[x, x+\sigma) \in \ell(E \cap[x, x+\sigma))$. Because $\alpha \in L^{+}(f, x)$ and $\alpha>\beta$, hence there exists $t \in C$ such, that $f(t)>\beta$. We have that $f(x)<\beta<f(t)$ and $f(x), f(t) \in f(C)$. From (D3) we obtain that $f(C)$ is connected, and $\beta \in f(C) \subset f([x, x+\delta))$. Condition (D2) implies that $\emptyset \neq f^{-1}(\beta) \cap C \subset f^{-1}(\beta) \cap[x, x+\tau)$. This completes the proof.

Lemma 2. If f has the Darboux property, then it has the \mathcal{E}_{e}-Darboux property.

Proof. Suppose that f has the Darboux property. Let $x \in \mathbb{R}$. We show that for $E=\mathbb{R}$ and $\delta=\infty$ conditions (D1), (D2), (D3) are satisfied. In fact, because f is Darboux from the right side at x, then $f(x) \in L^{+}(f, x)$. This means that condition (D1) holds. Let $\alpha \in L^{+}(f, x) \backslash\{f(x)\}, \beta \in I_{(f(x), \alpha)} \cap$ $f([x, \infty))$ and $\sigma>0$. Observe, that $\ell(E \cap[x, x+\sigma))=\{[x, x+\sigma)\}$ and (because f is Darboux at $x)[x, x+\sigma) \cap f^{-1}(\beta) \neq \emptyset$. Thus the condition (D2) holds. Because f has the Darboux property $f(C)$ is connected for every connected $C \subset \mathbb{R}$. Therefore condition (D3) is satisfied. So f is \mathcal{E}_{e}-Darboux from the right side at x. Analogously we can show that f is \mathcal{E}_{e}-Darboux from the left side at x.

According to Lemmas 1 and 2 we have:
Theorem 1. The function f has the Darboux property if and only if it has the \mathcal{E}_{e}-Darboux property.

Remark 2. There exists a function f continuous at 0 , but not \mathcal{E}_{e}-Darboux at 0.

Proof. Define:

$$
f(x)= \begin{cases}0 & \text { for } x \in(-\infty, 0] \\ \frac{1}{n} & \text { for } x \in\left(\frac{1}{n+1}, \frac{1}{n}\right], n=1,2, \ldots \\ 1 & \text { for } x \in(1, \infty)\end{cases}
$$

Let $E \in \mathcal{E}_{e}(0)$ and $\delta \in \widetilde{\mathbb{R}}^{+}$. Because E is a neighborhood of 0 then there exists $0<\sigma \leq \delta$ such, that $[x, x+\sigma) \subset E$. Then $f([x, x+\sigma))$ is not connected so condition (D3) is not satisfied.

Denote by $b \mathcal{D}^{0}\left[b \mathcal{D}_{e}^{0}\right]$ the family of all bounded functions which are Darboux [\mathcal{E}_{e}-Darboux respectively] at 0 . From lemma 1 we have $b \mathcal{D}_{e}^{0} \subset b \mathcal{D}^{0}$. Of course if f is continuous at x, then f is Darboux at x. According to Remark 2 we obtain that $b \mathcal{D}^{0} \backslash b \mathcal{D}_{e}^{0} \neq \emptyset$. Moreover we have:

Theorem 2. The set $b \mathcal{D}_{e}^{0}$ is boundary and dense in $b \mathcal{D}^{0}$ (with the uniform convergence metric).

Proof. Let $f \in b \mathcal{D}^{0}$ and $\epsilon>0$. We define a functions h_{1}, g_{1} such that $h_{1}(0)=g_{1}(0)=f(0),\left|g_{1}(x)-f(x)\right|<\epsilon,\left|h_{1}(x)-f(x)\right|<\epsilon$ for $x \in \mathbb{R}, g_{1}$ is \mathcal{E}_{e}-Darboux from the right side at $0, h_{1}$ is Darboux from the right side at 0 but is not \mathcal{E}_{e}-Darboux from the right side at 0 .

Suppose that f is right-hand continuous at 0 . Let $\delta>0$ be such that $f([0, \delta)) \subset\left(f(0)-\frac{\epsilon}{2}, f(0)+\frac{\epsilon}{2}\right)$ and let $t_{0} \in(0, \delta)$. Let $g_{1}(x)=f(x)$ if $x \in(-\infty, 0] \cup\left[t_{0}, \infty\right)$ and g_{1} be linear on $\left[0, t_{0}\right]$. We define h_{1} as:

$$
h_{1}(x)=\left\{\begin{array}{cl}
f(x) & \text { if } x \in(-\infty, 0] \cup\left(t_{0}, \infty\right), \\
f(0)+\frac{\epsilon}{2 n} & \text { if } x \in\left(\frac{t_{0}}{n+1}, \frac{t_{0}}{n}\right], n=1,2, \ldots
\end{array} .\right.
$$

Then g_{1} is continuous on $\left[0, t_{0}\right]$, therefore 0 (according to Remark 1) g_{1} is \mathcal{E}_{e}-Darboux from the right side at 0 . The function h_{1} is right-hand continuous at 0 but for every $0<\sigma \leq t_{0}$, the set $h_{1}([0, \sigma))$ is not connected. Thus h_{1} is Darboux from the right side at 0 but is not \mathcal{E}_{e}-Darboux from the right side at 0 .

Suppose now that f is not right-hand continuous at 0 . Because f is bounded and Darboux at 0 then $L^{+}(f, 0)$ is a non-degenerate and bounded closed interval. Thus there exists $a, b \in \mathbb{R}$ such that $a<b$ and $[a, b]=L^{+}(f, 0)$. Let $\tau>0$ be such that $f([0, \tau)) \subset\left(a-\frac{\epsilon}{2}, b+\frac{\epsilon}{2}\right)$. Define:

$$
g_{1}(x)=\left\{\begin{array}{cl}
b & \text { if } x \in(0, \tau) \& f(x) \in(b, \infty) \\
a & \text { if } x \in(0, \tau) \& f(x) \in(-\infty, a), \\
f(x) & \text { otherwise }
\end{array}\right.
$$

Let $c \in(a, b) \cap\left(b-\frac{\epsilon}{2}, b\right) \backslash\{f(0)\}$. There exists a sequence $\left(x_{n}\right)_{n=1}^{\infty} \subset(0, \tau)$ such that $x_{n} \searrow 0$ and $f\left(x_{n}\right)=c$ (for $n=1,2 \ldots$).
Define:

$$
h_{1}(x)=\left\{\begin{array}{cl}
b & \text { if } x \in(0, \tau) \& f(x) \in(b, \infty), \\
a & \text { if } x \in(0, \tau) \& f(x) \in(-\infty, a), \\
b+\frac{\epsilon}{2 k} & \text { if } x=x_{2 k}, k=1,2, \ldots, \\
f(x) & \text { otherwise }
\end{array}\right.
$$

Observe that:

$$
\begin{equation*}
L^{+}\left(g_{1}, 0\right)=[a, b] . \tag{1}
\end{equation*}
$$

Let $\gamma \in(a, b)$. Then (because $\left.\gamma \in L^{+}(f, 0)\right)$ there exists sequence $s_{n} \searrow 0$ such that $f\left(s_{n}\right) \in(a, b)$ (for $n=1,2, \ldots$) and $\lim _{n \rightarrow \infty} f\left(s_{n}\right)=\gamma$. Then $g_{1}\left(s_{n}\right)=f\left(s_{n}\right)$, for $n=1,2, \ldots$, so $\lim _{n \rightarrow \infty} g_{1}\left(s_{n}\right)=\gamma$. Hence $\gamma \in L^{+}\left(g_{1}, 0\right)$. Because $L^{+}\left(g_{1}, 0\right)$ is closed then $[a, b] \subset L^{+}\left(g_{1}, 0\right)$. But $g_{1}([0, \tau)) \subset[a, b]$, so $L^{+}\left(g_{1}, 0\right) \subset[a, b]$. Hence (1) is true.

Now we show that:

$$
\begin{equation*}
\forall_{\mu>0} \quad(a, b) \backslash\{f(0)\} \subset g_{1}((0, \mu)) . \tag{2}
\end{equation*}
$$

Let $\mu>0$ and $\eta \in(a, b) \backslash\{f(0)\}$. Then, because f is Darboux at 0 , there exists $t \in(0, \mu)$ such that $f(t)=\eta$. Because $f(t) \in(a, b)$, so $g_{1}(t)=f(t)=\eta$ and consequently $\eta \in g_{1}((0, \mu))$.

We show that for g_{1}, the set $E=\mathbb{R}$ and $\delta=\tau$ conditions (D1), (D2), (D3) are fulfilled. Observe first that (according to (1)) $g_{1}(0)=f(0) \in[a, b]=$ $L^{+}\left(g_{1}, 0\right)$. Let $\alpha \in[a, b] \backslash\{f(0)\}$ and $\beta \in I_{(f(0), \alpha)}$. We have $\beta \in(a, b) \backslash\{f(0)\}$, so (according to (2)) for every $0<\sigma \leq \tau, g_{1}^{-1}(\beta) \cap[0, \sigma) \neq \emptyset$. Thus (D2) is true. According to $g_{1}(0)=f(0)$ and inclusion (2) for every $0<\sigma \leq \tau$, $(a, b) \subset g_{1}([0, \sigma)) \subset[a, b]$, so $g_{1}([0, \sigma))$ is connected. This means that $(\mathrm{D} 3)$ is true.

We show next that h_{1} is Darboux from the right side at 0 . Observe that $h_{1}\left(x_{2 k+1}\right)=c$ (for $k=1,2, \ldots$), $\lim _{k \rightarrow \infty} h_{1}\left(x_{2 k}\right)=b$ and if $g_{1}(t) \neq c$ (for $t \in[0, \tau))$, then $h_{1}(t)=g_{1}(t)$. Consequently $L^{+}\left(h_{1}, 0\right)=L^{+}\left(g_{1}, 0\right)=[a, b]$. It is enough to show that for every $\nu \in(a, b) \backslash\left\{h_{1}(0)\right\}$ and $\lambda>0$ there exists $u \in(0, \lambda)$ such that $h_{1}(u)=\nu$. Because $h_{1}\left(x_{2 k+1}\right)=c($ for $k=1,2, \ldots)$, we can assume that $\nu \neq c$. Because f is Darboux at 0 there exists $u \in(0, \lambda)$ such that $f(u)=\nu$. Then $f(u) \in(a, b) \backslash\{c\}$ so $h_{1}(u)=f(u)$. Therefore $h_{1}(u)=\nu$.

Observe that for every $0<\sigma \leq \tau, h_{1}([0, \sigma))$ is not connected so h_{1} is not \mathcal{E}_{e}-Darboux at 0 .

According to the construction of g_{1} and h_{1} we have that $h_{1}(0)=g_{1}(0)=$ $f(0),\left|g_{1}(x)-f(x)\right|<\epsilon$ and $\left|h_{1}(x)-f(x)\right|<\epsilon$ for $x \in \mathbb{R}$.

Similarly we can define functions g_{2}, h_{2} such that $g_{2}(0)=h_{2}(0)=f(0)$, $\left|g_{2}(x)-f(x)\right|<\epsilon,\left|h_{2}(x)-f(x)\right|<\epsilon$ for $x \in \mathbb{R}$ and such that g_{2} is $\mathcal{E}_{e^{-}}$ Darboux from the left side at $0, h_{2}$ is Darboux from the left side at 0 but is not \mathcal{E}_{e}-Darboux from the left side at 0 .

Finally let g, h be such functions that $g(x)=h_{1}(x)$ and $h(x)=g_{1}(x)$ for $x \in[0, \infty), g(x)=g_{2}(x)$ and $h(x)=h_{2}(x)$ for $x \in(-\infty, 0)$. Then $|g(x)-f(x)|<\epsilon,|h(x)-f(x)|<\epsilon$ for $x \in \mathbb{R}, g \in b \mathcal{D}_{e}^{0}$ and $h \in b \mathcal{D}^{0} \backslash b \mathcal{D}_{e}^{0}$, so the theorem is proved.

Theorem 3. There exists a system of families of bilateral paths \mathcal{E} such that every \mathcal{E}-continuous functions has a nowhere dense set of discontinuity points and $\mathcal{C}_{\mathcal{E}} \backslash \mathcal{D}_{\mathcal{E}} \neq \emptyset \neq \mathcal{D}_{\mathcal{E}} \backslash \mathcal{C}_{\mathcal{E}}$.

Proof. Let (for $n=1,2, \ldots$) $C_{n} \subset\left(\frac{1}{n+1}, \frac{1}{n}\right)$ be a Cantor set. Denote (for $n=1,2, \ldots)$ by \mathcal{I}_{n} the family of all components of the set $\left[\frac{1}{n+1}, \frac{1}{n}\right] \backslash C_{n}$. Let
$J_{0, n}\left(J_{1, n}\right)$ (for $n=1,2, \ldots$) be a component of $\left[\frac{1}{n+1}, \frac{1}{n}\right] \backslash C_{n}$ which contains a point $\frac{1}{n+1}\left(\frac{1}{n}\right)$. Then (for $\left.n=1,2, \ldots\right)$ there exist subfamilies $\mathcal{I}_{1, n}, \mathcal{I}_{2, n}$ of \mathcal{I}_{n} for which : $\mathcal{I}_{1, n} \cup \mathcal{I}_{2, n}=\mathcal{I}_{n}, \mathcal{I}_{1, n} \cap \mathcal{I}_{2, n}=\emptyset, C_{n} \subset \operatorname{cl}\left(\bigcup \mathcal{I}_{1, n}\right) \cap \operatorname{cl}\left(\bigcup \mathcal{I}_{2, n}\right)$ and $J_{0, n}, J_{1, n} \in \mathcal{I}_{2, n}$.
Denote:

$$
A=\bigcup_{n=1}^{\infty} \bigcup_{I \in \mathcal{I}_{1, n}} c l(I), \quad C=\bigcup_{n=1}^{\infty} C_{n}
$$

Let \mathcal{E} be a system of families of bilateral paths defined as:

$$
\mathcal{E}(x)=\left\{\begin{array}{lll}
\{\mathbb{R}\} & \text { for } & x=0 \\
\{A\} & \text { for } & x \in A \\
\{\mathbb{R} \backslash A\} & \text { for } & x \in \mathbb{R} \backslash(A \cup\{0\}) .
\end{array}\right.
$$

Observe that:

$$
\begin{equation*}
\text { if } x \notin C \text { and } E \in \mathcal{E}(x) \text {, then } E \text { is a neighborhood of } x \tag{3}
\end{equation*}
$$

In fact let $x \in \mathbb{R} \backslash C$. Of course if $x=0$ then (3) is true. If $x \in A \backslash C$ then $\mathcal{E}(x)=\{A\}$ and there exists an open interval $I \in \bigcup_{n=1}^{\infty} \mathcal{I}_{1, n}$ such that $x \in I$. Then $x \in I \subset A$, so A is a neighborhood of x. Let $I_{1}=J_{1,1} \cup(1, \infty)$ and $I_{n}=J_{1, n} \cup J_{0, n-1}$ (for $n=2,3 \ldots$). Denote $G=(-\infty, 0) \cup \bigcup_{n=1}^{\infty} I_{n}$. Then G is an open set and $G \subset \mathbb{R} \backslash A$. For every $x \in G$ we obtain that $\mathcal{E}(x)=\{\mathbb{R} \backslash A\}$ and $\mathbb{R} \backslash A$ is a neighborhood of x. If there exists n_{0} such that $x \in\left(\frac{1}{n_{0}+1}, \frac{1}{n_{0}}\right) \backslash(C \cup A \cup G)$, then there exists an open interval $I \in \bigcup \mathcal{I}_{2, n_{0}}$ such that $x \in I$. Then $\mathcal{E}(x)=\{\mathbb{R} \backslash A\}$ and $I \subset \mathbb{R} \backslash A$, so $\mathbb{R} \backslash A$ is a neighborhood of x.

According to (3) we obtain that if $x \notin C$ and $E \in \mathcal{E}(x)$, then x is a point of bilateral accumulation of E. Suppose now, that $x \in C$. Then there exists n_{0} such that $x \in\left(\frac{1}{n_{0}+1}, \frac{1}{n_{0}}\right)$. If $x \in A$ then $\mathcal{E}(x)=\{A\}$ and x is a point of bilateral accumulation of $\bigcup \mathcal{I}_{1, n_{0}} \subset A$. Similarly if $x \in C \backslash A$, then $\mathcal{E}(x)=\{\mathbb{R} \backslash A\}$ and x is a point of bilateral accumulation of the set $\bigcup \mathcal{I}_{2, n_{0}} \subset \mathbb{R} \backslash A$. This proves that if $x \in \mathbb{R}$ and $E \in \mathcal{E}(x)$, then x is a point of bilateral accumulation of E.

Observe that C is nowhere dense. In fact let U be an open subset of \mathbb{R}. We can assume, that $U \cap(0,1) \neq \emptyset$. Then there exists $n_{0} \in\{1,2, \ldots\}$ such that $U \cap\left(\frac{1}{n_{0}+1}, \frac{1}{n_{0}}\right) \neq \emptyset$. The set $C_{n_{0}}$ is nowhere dense so there exists an open nonempty set $V \subset U \cap\left(\frac{1}{n_{0}+1}, \frac{1}{n_{0}}\right) \backslash C_{n_{0}}$. Observe that $C \cap\left(\frac{1}{n_{0}+1}, \frac{1}{n_{0}}\right)=C_{n_{0}}$, so $V \subset U \backslash C$. According to (3) we have that if $h \in \mathcal{C}_{\mathcal{E}}$ and $x \in \mathbb{R} \backslash C$, then x is a continuity point of h. Thus $D_{h} \subset C$, so D_{h} is nowhere dense.

We show now that $\mathcal{C}_{\mathcal{E}} \backslash \mathcal{D}_{\mathcal{E}} \neq \emptyset$. In fact, let

$$
f(x)=\left\{\begin{array}{lll}
0 & \text { if } & x \in \mathbb{R} \backslash A \\
\frac{1}{n} & \text { if } & x \in\left(\frac{1}{n+1}, \frac{1}{n}\right) \cap A, \quad n=1,2,3 \ldots
\end{array}\right.
$$

The function f is \mathcal{E}-continuous. Indeed, f is continuous (so \mathcal{E}-continuous) at 0 . For every $n \in\{1,2, \ldots\}$ the set $\left(\frac{1}{n+1}, \frac{1}{n}\right) \cap A$ is open on A, and $f \upharpoonright A$ is constant on $\left(\frac{1}{n+1}, \frac{1}{n}\right) \cap A$. Thus (because $\left.A \subset(0,1) \backslash\left\{\frac{1}{k}: k \in \mathbb{N}\right\}\right) f \upharpoonright A$ is continuous. Finally observe that $f \upharpoonright(\mathbb{R} \backslash A)$ is constant. Because for every $\sigma>0, f([0, \sigma))$ is not connected then f is not \mathcal{E}-Darboux from the right side at 0 .

Now we show, that $\mathcal{D}_{\mathcal{E}} \backslash \mathcal{C}_{\mathcal{E}} \neq \emptyset$. Let B be the set of all points of bilateral accumulation of C_{1}. Define:

$$
g(x)= \begin{cases}1 & \text { if } x \in B \\ 0 & \text { otherwise }\end{cases}
$$

Observe that g is constant (with value 0) on A and on an open set $\bigcup \mathcal{I}_{2,1} \cup$ $\left(\mathbb{R} \backslash\left[\frac{1}{2}, 1\right]\right)$, thus g is \mathcal{E}-Darboux on $A \cup \bigcup \mathcal{I}_{2,1} \cup\left(\mathbb{R} \backslash\left[\frac{1}{2}, 1\right]\right)$. It is enough to show that if $x \in C_{1} \backslash A$, then g is \mathcal{E}-Darboux at x.

Let $x \in C_{1} \backslash A$. We show that g is \mathcal{E}-Darboux from the right side at x. Let $E=\mathbb{R} \backslash A, \delta=\infty$. If $x \in B$, then $g(x)=1$ and x is a point of bilateral accumulation of B. Similarly if $x \notin B$ then $g(x)=0$ and (because x is a point of bilateral accumulation of $\left.\bigcup \mathcal{I}_{2, n}\right) x$ is a point of bilateral accumulation of $\mathbb{R} \backslash(A \cup B)$. Thus $g(x) \in L_{E}^{+}(g, x)$. Observe that $L_{E}^{+}(g, x) \subset\{0,1\}$ and $g(\mathbb{R}) \cap(0,1)=\emptyset$, so (D2) is true.

Let $S \subset E$ be a connected set. Because every point of B is a point of bilateral accumulation of A, we have that if $S \cap B \neq \emptyset$, then S is singleton, so $g(S)$ is connected. If $S \subset \mathbb{R} \backslash B$, then $g(S)=\{0\}$ so $g(S)$ is connected too. Consequently (D3) holds.

Analogously we can show, that for every $x \in C_{1} \backslash A, g$ is \mathcal{E}-Darboux from the left side at x. Thus $g \in \mathcal{D}_{\mathcal{E}}$.

Let $t \in B$. Then $L_{E}^{+}(g, t)=\{0,1\}$ and the only path at t is E, so g is not \mathcal{E}-continuous at t (i.e. $g \notin \mathcal{C}_{\mathcal{E}}$).

In [1] K.Banaszewski considered \mathcal{E}-continuity with respect to, so called, c systems. We show now that then \mathcal{E}-continuity implies the \mathcal{E}-Darboux property.

Let \mathcal{E} be a system of families of bilateral paths and $x \in \mathbb{R}$. We denote $\mathcal{E}^{+}(x)=\{E \cap[x, \infty) ; E \in \mathcal{E}(x)\}$ and $\mathcal{E}^{-}(x)=\{E \cap(-\infty, x] ; E \in \mathcal{E}(x)\}$.

Definition 2. [1] Let \mathcal{E} be a system of families of bilateral paths such that for any $x \in \mathbb{R}, E^{+} \in \mathcal{E}^{+}(x)$ and $E^{-} \in \mathcal{E}^{-}(x)$ we have $E^{+} \cup E^{-} \in \mathcal{E}(x)$.

We say that \mathcal{E} is a bilateral σ-system if for every $x \in \mathbb{R}$, sequence $\left(x_{n}\right)_{n=1}^{\infty}$, such that $x_{n} \searrow x,\left(x_{n} \nearrow x\right)$ and sequence of sets $\left(U_{n}\right)_{n=1}^{\infty},\left(E_{n}\right)_{n=1}^{\infty}$, such that, for $n=1,2, \ldots, U_{n} \in \mathcal{T}\left(x_{n}\right)$ and $E_{n} \in \mathcal{E}\left(x_{n}\right)$, there exists $E \in \mathcal{E}^{+}(x)$, $\left(E \in \mathcal{E}^{-}(x)\right.$ respectively), such that $E \subset\{x\} \cup \bigcup_{n=1}^{\infty}\left(E_{n} \cap U_{n}\right)$.

We say that \mathcal{E} is a c-system if it is a bilateral σ-system and for every $x \in \mathbb{R}$ and a Cantor set C such that x is a point of bilateral accumulation of C, we have $C \in \mathcal{E}(x)$.

Theorem 4. Suppose that \mathcal{E} is a c-system and $x \in \mathbb{R}$. If f is a function \mathcal{E}-continuous at x, then f is \mathcal{E}-Darboux at x.

Proof. Let $x \in \mathbb{R}$ and f be \mathcal{E}-continuous at x. We show that f is \mathcal{E}-Darboux from the right side at x (analogously we can show, that f is \mathcal{E}-Darboux from the left side at $x)$. Let $E \in \mathcal{E}(x)$ be such that $f \upharpoonright E$ is continuous at x. We consider two cases:

1. There exists $\delta>0$ such that $\operatorname{int}(E \cap[x, x+\delta))=\emptyset$.

Because $f \upharpoonright E$ is continuous at x, so $L_{E}(f, x)=\{f(x)\}$. Thus (D1) and (D2) from Definition 1 are true. Observe that all components of $E \cap[x, x+\delta)$ are singletons so (D3) holds.
2. There exist sequences $\left(x_{n}\right)_{n=1}^{\infty}$ and $\left(\sigma_{n}\right)_{n=1}^{\infty}$ such that $x_{n} \searrow x,\left(x_{n}-\right.$ $\left.\sigma_{n}, x_{n}+\sigma_{n}\right) \cap\left(x_{m}-\sigma_{m}, x_{m}+\sigma_{m}\right)=\emptyset($ for $m \neq n m, n \in\{1,2 \ldots\}$) and $\bigcup_{n=1}^{\infty}\left(x_{n}-\sigma_{n}, x_{n}+\sigma_{n}\right) \subset E$.

Let $\left(C_{n}\right)_{n=1}^{\infty}$ be a sequence of a Cantor sets such that $C_{n} \subset\left(x_{n}-\sigma_{n}, x_{n}+\right.$ σ_{n}) and x_{n} is a point of bilateral accumulation of C_{n} (for $n=1,2, \ldots$). Let (for $n=1,2, \ldots$) $C_{n}^{\prime}=\left\{c \in \mathbb{R}: 2 x-c \in C_{n}\right\}$. Then $C=\{x\} \cup \bigcup_{n=1}^{\infty}\left(C_{n} \cup C_{n}^{\prime}\right)$ is a Cantor set and x is a point of bilateral accumulation of C. Because \mathcal{E} is a c-system so $C \in \mathcal{E}(x)$. Let $\delta_{1}=\infty$. Observe that $L_{C}^{+}(f, x)=\{f(x)\}$ and $\operatorname{int}(C \cap[x, \infty))=\emptyset$, so all components of $C \cap[x, \infty)$ are singletons. Thus for C and δ_{1} conditions (D1), (D2), (D3) hold.

References

[1] K. Banaszewski, On E-continuous functions, Real Anal. Exchange, 21(1) (1995-1996), 203-215.
[2] A. M. Bruckner, R. J. O'Malley, and B. S. Thomson, Path derivatives: a unified view of certain generalized derivatives, Trans. Amer. Math. Soc., 283 (1984), 97-125.
[3] A. M. Bruckner and J. G. Ceder, Darboux continuity, Jber. Deutsch. Math. Verein., 67 (1965), 93-117.
[4] A. Császár, Sur la propriété de Darboux, Comptes Rendus du Premier Congres des Mathématiciens Hongrois, 27 Aoûg-2 Septembre 1950, 551560, Akadémiai Kiadó, Budapest, 1952.

[^0]: Mathematical Reviews subject classification: Primary: 26A15, 26A21
 Key words: path, Darboux property
 Received by the editors July 7, 2007
 Communicated by: Brian S. Thomson

