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ON THE PATH DARBOUX PROPERTY

Abstract

In this paper we introduce a notion of the path Darboux property.
We examine the basic properties and investigate relationships between
the path Darboux property and path continuity.

We apply standard symbols and notions. By R, we denote the set of real
numbers, R̃ = R∪ {+∞,−∞}, R̃+ = [0,∞]. The symbol int(A) (cl(A), `(A))
stands for the interior (the closure, the family of all components, respectively)
of a set A ⊂ R. For x ∈ R let T (x) denote the family of all open sets containing
x.

We consider only real-valued functions defined on R. No distinction is
made between a function and its graph.

Let f be a function and x ∈ R. The set of all continuity (discontinuity)
points of f is denoted by Cf (Df ). By L+(f, x) (L−(f, x)) we denote the set
of all right-side limit numbers (all left-side limit numbers respectively) of f at
x.

For a set E ⊂ R we define the set of right-side limit numbers of f at x with
respect to the set E: L+

E(f, x) denotes the set of all α ∈ R̃ such that there
exists a sequence (xn)∞n=1 (where xn > x and xn ∈ E, n = 1, 2 . . . ) for which
lim
n→∞

xn = x and lim
n→∞

f(xn) = α. Similarly L−E(f, x) denotes the set of all

α ∈ R̃ such that there exists a sequence (xn)∞n=1 (where xn < x and xn ∈ E,
n = 1, 2 . . .) for which lim

n→∞
xn = x and lim

n→∞
f(xn) = α. Of course

L+
R (f, x) = L+(f, x) and L−R (f, x) = L−(f, x).
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We say that a function f has the Darboux property if the image of an
arbitrary connected set is connected.

In [3] Bruckner and Ceder described what it means for a real function to
be Darboux at a point. We say that a function f is Darboux from the right
side (from the left side) at a point x if and only if

∀α∈L+(f,x)\{f(x)}∀β∈I(f(x),α)∀σ>0f
−1(β) ∩ [x, x+ σ) 6= ∅(

f−1(β) ∩ (x− σ, x] 6= ∅ respectively
)

where (for a, b ∈ R̃) I(a,b) = (min{a, b},max{a, b}).
In [4] Császár showed that a real function f has the Darboux property on

interval if and only if it is Darboux at each point.
It is easy to show that if a function f is Darboux from the right side (from

the left side), then L+(f, x) (L−(f, x) respectively) is a closed interval and
f(x) ∈ L+(f, x) (f(x) ∈ L−(f, x) respectively).

Let x ∈ R. As in [2], a path (a bilateral path) leading to x is a set E
such that x ∈ E and x is a point of accumulation (bilateral accumulation
respectively) of E.

A family of (bilateral) paths at x ∈ R is a nonempty family F of subsets
of R such that E is a (bilateral) path leading to x, for each E ∈ F .

A system of families of (bilateral) paths on R is a collection E = {E(x) :
x ∈ R} such that E(x) is a family of (bilateral) paths leading to x, for x ∈ R
(cf. [1]).

Let E be a system of families of paths on R. We say that a function f is
E-continuous at x (or x is an E-continuity point of f), if there exists a path
E ∈ E(x) such that f � E is continuous at x (cf. [1]).

The set of all E-continuity points of f will be denoted by Cεf . The function
f is E-continuous if and only if it is E-continuous at each point.

We introduce now a notion of path Darboux property.

Definition 1. Let E be a system of families of paths on R. We say that a
function f is E-Darboux from the right side at a point x if and only if there
exists δ > 0 and E ∈ E(x) such that:

(D1) f(x) ∈ L+
E(f, x),

(D2) ∀α∈L+
E(f,x)\{f(x)}∀β∈I(f(x),α)∩f([x,x+δ))∀0<σ≤δ∀C∈`(E∩[x,x+σ))

f−1(β) ∩ C 6= ∅,

(D3) ∀0<σ≤δ∀C∈`(E∩[x,x+σ))f(C) is connected.
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Analogously we define what it means for f to be E-Darboux from the left
side at x. We will say that a function f is E-Darboux at a point x ∈ R if f is
E-Darboux from the right side and from the left side at x.

If f is E-Darboux at every point, then we say that f has the E-Darboux
property. The family of all functions with the E-Darboux property is denoted
by DE .

Remark 1. Let E be a system of families of bilateral paths on R and f be a
function. If there exists a path E ∈ E(x) and δ > 0 such that f � (E∩[x, x+δ))
(f � (E ∩ (x − δ, x])) is continuous, then f is E-Darboux from the right side
(from the left side respectively) at x.

Proof. Suppose that E ∈ E(x), δ > 0 and f � (E ∩ [x, x+ δ)) is continuous.
Because f � E is continuous at x, thus L+

E(f, x) = {f(x)}. Consequently
condition (D1) and (D2) hold. Let σ ∈ (0, δ] and C ⊂ E ∩ [x, x + σ) be a
connected set. Then f � C is continuous. Thus f(C) is connected. That is
the condition (D3) is true.

Corollary 1. If there exists a path E ∈ E(x) and a neighborhood U of x such
that f � (E ∩ U) is continuous, then f is E-Darboux at x.

Let Ee be a system of families of paths defined on R as

Ee(x) = {E ⊂ R : ∃δ>0(x− δ, x+ δ) ⊂ E}.

Lemma 1. If a function f is Ee-Darboux from the right side (from the left
side) at a point x, then f is Darboux from the right side (from the left side
respectively) at x.

Proof. Suppose that f is Ee-Darboux from the right side at x. Let α ∈
L+(f, x) \ {f(x)}, β ∈ I(f(x),α), τ > 0. We can assume that f(x) < β < α.
Let E ∈ Ee(x) and δ ∈ R̃+ be such that conditions (D1), (D2), (D3) of
Definition 1 hold. Let 0 < σ ≤ min{δ, τ} be such that [x, x+σ) ⊂ E. Observe
that β ∈ f([x, x+ δ)). Indeed, C = [x, x + σ) ∈ `(E ∩ [x, x + σ)). Because
α ∈ L+(f, x) and α > β, hence there exists t ∈ C such, that f(t) > β. We
have that f(x) < β < f(t) and f(x), f(t) ∈ f(C). From (D3) we obtain that
f(C) is connected, and β ∈ f(C) ⊂ f([x, x+ δ)). Condition (D2) implies that
∅ 6= f−1(β) ∩ C ⊂ f−1(β) ∩ [x, x+ τ). This completes the proof.
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Lemma 2. If f has the Darboux property, then it has the Ee-Darboux property.

Proof. Suppose that f has the Darboux property. Let x ∈ R. We show
that for E = R and δ = ∞ conditions (D1), (D2), (D3) are satisfied. In fact,
because f is Darboux from the right side at x, then f(x) ∈ L+(f, x). This
means that condition (D1) holds. Let α ∈ L+(f, x) \ {f(x)}, β ∈ I(f(x),α) ∩
f([x,∞)) and σ > 0. Observe, that `(E∩[x, x+σ)) = {[x, x+σ)} and (because
f is Darboux at x) [x, x + σ) ∩ f−1(β) 6= ∅. Thus the condition (D2) holds.
Because f has the Darboux property f(C) is connected for every connected
C ⊂ R. Therefore condition (D3) is satisfied. So f is Ee-Darboux from the
right side at x. Analogously we can show that f is Ee-Darboux from the left
side at x.

According to Lemmas 1 and 2 we have:

Theorem 1. The function f has the Darboux property if and only if it has
the Ee-Darboux property.

Remark 2. There exists a function f continuous at 0, but not Ee-Darboux at
0.

Proof. Define:

f(x) =


0 for x ∈ (−∞, 0],
1
n for x ∈ ( 1

n+1 ,
1
n ], n = 1, 2, . . . ,

1 for x ∈ (1,∞).

Let E ∈ Ee(0) and δ ∈ R̃+. Because E is a neighborhood of 0 then there
exists 0 < σ ≤ δ such, that [x, x+σ) ⊂ E. Then f([x, x+σ)) is not connected
so condition (D3) is not satisfied.

Denote by bD0 [bD0
e ] the family of all bounded functions which are Darboux

[Ee-Darboux respectively] at 0. From lemma 1 we have bD0
e ⊂ bD0. Of course

if f is continuous at x, then f is Darboux at x. According to Remark 2 we
obtain that bD0 \ bD0

e 6= ∅. Moreover we have:

Theorem 2. The set bD0
e is boundary and dense in bD0 (with the uniform

convergence metric).
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Proof. Let f ∈ bD0 and ε > 0. We define a functions h1, g1 such that
h1(0) = g1(0) = f(0), |g1(x) − f(x)| < ε, |h1(x) − f(x)| < ε for x ∈ R, g1 is
Ee-Darboux from the right side at 0, h1 is Darboux from the right side at 0
but is not Ee-Darboux from the right side at 0.

Suppose that f is right-hand continuous at 0. Let δ > 0 be such that
f([0, δ)) ⊂ (f(0) − ε

2 , f(0) + ε
2 ) and let t0 ∈ (0, δ). Let g1(x) = f(x) if

x ∈ (−∞, 0] ∪ [t0,∞) and g1 be linear on [0, t0]. We define h1 as:

h1(x) =
{

f(x) if x ∈ (−∞, 0] ∪ (t0,∞),
f(0) + ε

2n if x ∈ ( t0
n+1 ,

t0
n ], n = 1, 2, . . . .

Then g1 is continuous on [0, t0], therefore 0 (according to Remark 1) g1 is
Ee-Darboux from the right side at 0. The function h1 is right-hand continuous
at 0 but for every 0 < σ ≤ t0, the set h1([0, σ)) is not connected. Thus h1 is
Darboux from the right side at 0 but is not Ee-Darboux from the right side at
0.

Suppose now that f is not right-hand continuous at 0. Because f is
bounded and Darboux at 0 then L+(f, 0) is a non-degenerate and bounded
closed interval. Thus there exists a, b ∈ R such that a < b and [a, b] = L+(f, 0).
Let τ > 0 be such that f([0, τ)) ⊂ (a− ε

2 , b+ ε
2 ). Define:

g1(x) =

 b if x ∈ (0, τ) & f(x) ∈ (b,∞),
a if x ∈ (0, τ) & f(x) ∈ (−∞, a),

f(x) otherwise.

Let c ∈ (a, b) ∩ (b − ε
2 , b) \ {f(0)}. There exists a sequence (xn)∞n=1 ⊂ (0, τ)

such that xn ↘ 0 and f(xn) = c (for n = 1, 2 . . . ).
Define:

h1(x) =


b if x ∈ (0, τ) & f(x) ∈ (b,∞),
a if x ∈ (0, τ) & f(x) ∈ (−∞, a),

b+ ε
2k if x = x2k, k = 1, 2, . . . ,

f(x) otherwise.

Observe that:
L+(g1, 0) = [a, b]. (1)

Let γ ∈ (a, b). Then (because γ ∈ L+(f, 0)) there exists sequence sn ↘ 0
such that f(sn) ∈ (a, b) (for n = 1, 2, . . . ) and lim

n→∞
f(sn) = γ. Then

g1(sn) = f(sn), for n = 1, 2, . . . , so lim
n→∞

g1(sn) = γ. Hence γ ∈ L+(g1, 0).

Because L+(g1, 0) is closed then [a, b] ⊂ L+(g1, 0). But g1([0, τ)) ⊂ [a, b], so
L+(g1, 0) ⊂ [a, b]. Hence (1) is true.
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Now we show that:

∀µ>0 (a, b) \ {f(0)} ⊂ g1((0, µ)). (2)

Let µ > 0 and η ∈ (a, b) \ {f(0)}. Then, because f is Darboux at 0, there
exists t ∈ (0, µ) such that f(t) = η. Because f(t) ∈ (a, b), so g1(t) = f(t) = η
and consequently η ∈ g1((0, µ)).

We show that for g1, the set E = R and δ = τ conditions (D1), (D2),
(D3) are fulfilled. Observe first that (according to (1)) g1(0) = f(0) ∈ [a, b] =
L+(g1, 0). Let α ∈ [a, b]\{f(0)} and β ∈ I(f(0),α). We have β ∈ (a, b)\{f(0)},
so (according to (2)) for every 0 < σ ≤ τ , g−1

1 (β) ∩ [0, σ) 6= ∅. Thus (D2)
is true. According to g1(0) = f(0) and inclusion (2) for every 0 < σ ≤ τ ,
(a, b) ⊂ g1([0, σ)) ⊂ [a, b], so g1([0, σ)) is connected. This means that (D3) is
true.

We show next that h1 is Darboux from the right side at 0. Observe that
h1(x2k+1) = c (for k = 1, 2, . . . ), lim

k→∞
h1(x2k) = b and if g1(t) 6= c (for

t ∈ [0, τ)), then h1(t) = g1(t). Consequently L+(h1, 0) = L+(g1, 0) = [a, b]. It
is enough to show that for every ν ∈ (a, b) \ {h1(0)} and λ > 0 there exists
u ∈ (0, λ) such that h1(u) = ν. Because h1(x2k+1) = c (for k = 1, 2, . . . ), we
can assume that ν 6= c. Because f is Darboux at 0 there exists u ∈ (0, λ) such
that f(u) = ν. Then f(u) ∈ (a, b) \ {c} so h1(u) = f(u). Therefore h1(u) = ν.

Observe that for every 0 < σ ≤ τ , h1([0, σ)) is not connected so h1 is not
Ee-Darboux at 0.

According to the construction of g1 and h1 we have that h1(0) = g1(0) =
f(0), |g1(x)− f(x)| < ε and |h1(x)− f(x)| < ε for x ∈ R.

Similarly we can define functions g2, h2 such that g2(0) = h2(0) = f(0),
|g2(x) − f(x)| < ε, |h2(x) − f(x)| < ε for x ∈ R and such that g2 is Ee-
Darboux from the left side at 0, h2 is Darboux from the left side at 0 but is
not Ee-Darboux from the left side at 0.

Finally let g, h be such functions that g(x) = h1(x) and h(x) = g1(x)
for x ∈ [0,∞), g(x) = g2(x) and h(x) = h2(x) for x ∈ (−∞, 0). Then
|g(x)− f(x)| < ε, |h(x)− f(x)| < ε for x ∈ R, g ∈ bD0

e and h ∈ bD0 \ bD0
e , so

the theorem is proved.

Theorem 3. There exists a system of families of bilateral paths E such that
every E-continuous functions has a nowhere dense set of discontinuity points
and CE \ DE 6= ∅ 6= DE \ CE .

Proof. Let (for n = 1, 2, . . . ) Cn ⊂ ( 1
n+1 ,

1
n ) be a Cantor set. Denote (for

n = 1, 2, . . . ) by In the family of all components of the set [ 1
n+1 ,

1
n ] \Cn. Let
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J0,n(J1,n) (for n = 1, 2, . . . ) be a component of [ 1
n+1 ,

1
n ] \ Cn which contains

a point 1
n+1 ( 1

n ). Then (for n = 1, 2, . . . ) there exist subfamilies I1,n, I2,n of
In for which : I1,n ∪ I2,n = In, I1,n ∩ I2,n = ∅, Cn ⊂ cl(

⋃
I1,n) ∩ cl(

⋃
I2,n)

and J0,n, J1,n ∈ I2,n.
Denote:

A =
∞⋃
n=1

⋃
I∈I1,n

cl(I), C =
∞⋃
n=1

Cn.

Let E be a system of families of bilateral paths defined as:

E(x) =

 {R} for x = 0,
{A} for x ∈ A,
{R \A} for x ∈ R \ (A ∪ {0}).

Observe that:

if x 6∈ C and E ∈ E(x), then E is a neighborhood of x (3)

In fact let x ∈ R \ C. Of course if x = 0 then (3) is true. If x ∈ A \ C
then E(x) = {A} and there exists an open interval I ∈

∞⋃
n=1
I1,n such that

x ∈ I. Then x ∈ I ⊂ A, so A is a neighborhood of x. Let I1 = J1,1 ∪ (1,∞)

and In = J1,n ∪ J0,n−1 (for n = 2, 3 . . . ). Denote G = (−∞, 0) ∪
∞⋃
n=1

In.

Then G is an open set and G ⊂ R \ A. For every x ∈ G we obtain that
E(x) = {R \A} and R \A is a neighborhood of x. If there exists n0 such that
x ∈ ( 1

n0+1 ,
1
n0

)\(C∪A∪G), then there exists an open interval I ∈
⋃
I2,n0 such

that x ∈ I. Then E(x) = {R \ A} and I ⊂ R \ A, so R \ A is a neighborhood
of x.

According to (3) we obtain that if x 6∈ C and E ∈ E(x), then x is a point of
bilateral accumulation of E. Suppose now, that x ∈ C. Then there exists n0

such that x ∈ ( 1
n0+1 ,

1
n0

). If x ∈ A then E(x) = {A} and x is a point of bilateral
accumulation of

⋃
I1,n0 ⊂ A. Similarly if x ∈ C \A, then E(x) = {R \A} and

x is a point of bilateral accumulation of the set
⋃
I2,n0 ⊂ R \ A. This proves

that if x ∈ R and E ∈ E(x), then x is a point of bilateral accumulation of E.
Observe that C is nowhere dense. In fact let U be an open subset of R.

We can assume, that U ∩ (0, 1) 6= ∅. Then there exists n0 ∈ {1, 2, . . .} such
that U ∩ ( 1

n0+1 ,
1
n0

) 6= ∅. The set Cn0 is nowhere dense so there exists an open
nonempty set V ⊂ U ∩ ( 1

n0+1 ,
1
n0

) \ Cn0 . Observe that C ∩ ( 1
n0+1 ,

1
n0

) = Cn0 ,
so V ⊂ U \C. According to (3) we have that if h ∈ CE and x ∈ R \C, then x
is a continuity point of h. Thus Dh ⊂ C, so Dh is nowhere dense.
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We show now that CE \ DE 6= ∅. In fact, let

f(x) =
{

0 if x ∈ R \A,
1
n if x ∈ ( 1

n+1 ,
1
n ) ∩A, n = 1, 2, 3 . . . .

The function f is E-continuous. Indeed, f is continuous (so E-continuous) at
0. For every n ∈ {1, 2, . . .} the set ( 1

n+1 ,
1
n ) ∩ A is open on A, and f � A is

constant on ( 1
n+1 ,

1
n ) ∩ A. Thus (because A ⊂ (0, 1) \ { 1

k : k ∈ N}) f � A is
continuous. Finally observe that f � (R \ A) is constant. Because for every
σ > 0, f([0, σ)) is not connected then f is not E-Darboux from the right side
at 0.

Now we show, that DE \ CE 6= ∅. Let B be the set of all points of bilateral
accumulation of C1. Define:

g(x) =
{

1 if x ∈ B,
0 otherwise.

Observe that g is constant (with value 0) on A and on an open set
⋃
I2,1 ∪

(R \ [ 12 , 1]), thus g is E-Darboux on A ∪
⋃
I2,1 ∪ (R \ [ 12 , 1]). It is enough to

show that if x ∈ C1 \A, then g is E-Darboux at x.
Let x ∈ C1 \ A. We show that g is E-Darboux from the right side at x.

Let E = R \ A, δ = ∞. If x ∈ B, then g(x) = 1 and x is a point of bilateral
accumulation of B. Similarly if x 6∈ B then g(x) = 0 and (because x is a point
of bilateral accumulation of

⋃
I2,n) x is a point of bilateral accumulation of

R \ (A ∪ B). Thus g(x) ∈ L+
E(g, x). Observe that L+

E(g, x) ⊂ {0, 1} and
g(R) ∩ (0, 1) = ∅, so (D2) is true.

Let S ⊂ E be a connected set. Because every point of B is a point of
bilateral accumulation of A, we have that if S ∩ B 6= ∅, then S is singleton,
so g(S) is connected. If S ⊂ R \B, then g(S) = {0} so g(S) is connected too.
Consequently (D3) holds.

Analogously we can show, that for every x ∈ C1 \A, g is E-Darboux from
the left side at x. Thus g ∈ DE .

Let t ∈ B. Then L+
E(g, t) = {0, 1} and the only path at t is E, so g is not

E-continuous at t (i.e. g 6∈ CE).

In [1] K.Banaszewski considered E-continuity with respect to, so called, c-
systems. We show now that then E-continuity implies the E-Darboux property.

Let E be a system of families of bilateral paths and x ∈ R. We denote
E+(x) = {E ∩ [x,∞);E ∈ E(x)} and E−(x) = {E ∩ (−∞, x];E ∈ E(x)}.

Definition 2. [1] Let E be a system of families of bilateral paths such that
for any x ∈ R, E+ ∈ E+(x) and E− ∈ E−(x) we have E+ ∪ E− ∈ E(x).
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We say that E is a bilateral σ-system if for every x ∈ R, sequence (xn)∞n=1,
such that xn ↘ x, (xn ↗ x) and sequence of sets (Un)∞n=1, (En)∞n=1, such
that, for n = 1, 2, . . . , Un ∈ T (xn) and En ∈ E(xn), there exists E ∈ E+(x),
(E ∈ E−(x) respectively), such that E ⊂ {x} ∪

⋃∞
n=1(En ∩ Un).

We say that E is a c-system if it is a bilateral σ-system and for every x ∈ R
and a Cantor set C such that x is a point of bilateral accumulation of C, we
have C ∈ E(x).

Theorem 4. Suppose that E is a c-system and x ∈ R. If f is a function
E-continuous at x, then f is E-Darboux at x.

Proof. Let x ∈ R and f be E-continuous at x. We show that f is E-Darboux
from the right side at x (analogously we can show, that f is E-Darboux from
the left side at x). Let E ∈ E(x) be such that f � E is continuous at x. We
consider two cases:

1. There exists δ > 0 such that int(E ∩ [x, x+ δ)) = ∅.

Because f � E is continuous at x, so LE(f, x) = {f(x)}. Thus (D1) and
(D2) from Definition 1 are true. Observe that all components of E ∩ [x, x+ δ)
are singletons so (D3) holds.

2. There exist sequences (xn)∞n=1 and (σn)∞n=1 such that xn ↘ x, (xn −
σn, xn+σn)∩ (xm−σm, xm+σm) = ∅ (for m 6= n m, n ∈ {1, 2 . . .}) and
∞⋃
n=1

(xn − σn, xn + σn) ⊂ E.

Let (Cn)∞n=1 be a sequence of a Cantor sets such that Cn ⊂ (xn−σn, xn +
σn) and xn is a point of bilateral accumulation of Cn (for n = 1, 2, . . . ). Let
(for n = 1, 2, . . . ) C ′n = {c ∈ R : 2x−c ∈ Cn}. Then C = {x}∪

⋃∞
n=1(Cn∪C ′n)

is a Cantor set and x is a point of bilateral accumulation of C. Because E is
a c-system so C ∈ E(x). Let δ1 = ∞. Observe that L+

C(f, x) = {f(x)} and
int(C ∩ [x,∞)) = ∅, so all components of C ∩ [x,∞) are singletons. Thus for
C and δ1 conditions (D1), (D2), (D3) hold.
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