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DIVERGENCE IN MEASURE OF
REARRANGED MULTIPLE ORTHOGONAL
FOURIER SERIES

Abstract

Let {¢n(z), n =1,2,...} be an arbitrary complete orthonormal sys-
tem (ONS) on the interval I := [0,1) that consists of a.e. bounded
functions. Then there exists a rearrangement {¢,,(n), n = 1,2,...}
of the system {p,(z), n = 1,2,...} that has the following property:
for arbitrary nonnegative, continuous and nondecreasing on [0, co) func-
tion ¢(u) such that u¢p(u) is a convex function on [0,00) and ¢(u) =
o(Inu), u — oo, there exists a function f € L(I?) such that [}, |f(z,y)]
o(|f(z,y)]) de dy < co and the sequence of the square partial sums of
the Fourier series of f with respect to the double system {©, (m) (Z)@o, (n) (¥),
m,n € N} on I? is essentially unbounded in measure on I*.

1 Introduction.

In the theory of orthogonal series A. Olevskii’s fundamental method for inves-
tigating arbitrary complete ONS and bases in function spaces, based on some
special properties of the Haar system, is well known ([4]-[6]). In particular,
the following theorem holds ([4], p.60, see also [3], p. 294).

Theorem 1 (A. Olevskii). For any complete ONS {p;(z), | € N} on I there
exists a Haar-type system {x;(x), 1 =0,1,2,...} and polynomials with respect
to the system {p(z), | € N} with

k(m—+1)

Qm(z) = Z arpi(z), formeN, 0=Fk(0) < k(1) <k(2)<..., (1)
I=k(m)+1
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such that

Xm(l') = Qm(z) + ’Ym(fli), fO’I‘ m e N (2)
[ymlF2 <3277, form € N. (3)

In the present paper we use A. Olevskii’s method to study convergence
in measure of the Fourier series with respect to rearranged multiple complete
ONS.

We start with the following definition. Let (X, X, v) be o-finite measurable
space, £ € ¥ and v(E) > 0. Let also a sequence of measurable real-valued
functions {f,(z)}22, be defined and a.e. finite on E. Then we say that
the sequence {f,(x)}22, is essentially divergent in measure on F if for every
E, C E, E; € ¥ and v(E;7) > 0, the sequence is divergent in measure (that
is, does not converge in measure to an a.e. finite and measurable function) on
Ei. Let uy, N € N, denote Lebesgue measure in the Euclidean space RY.
If F is a Lebesgue measurable set in R?, with 0 < puaF < 0o, then let LO(F)
denote the set of all Lebesgue measurable functions on F C R? that are finite
a.e. on F.

A sequence {fn(z,y), n € N} of functions from L°(F) is called bounded
in measure on F if for any € > 0 there is a constant R; > 0 such that
wa{(z,y) € F : |fu(z,y)] > R1} < € for any n € N. A sequence {f,(z,y),
n € N} of functions from L°(F) is called essentially unbounded in measure on
F' if for any Lebesgue measurable set £ C F', uoF > 0, the sequence is not
bounded in measure on E. It is clear that any sequence of measurable a.e.
finite functions that is essentially unbounded in measure on a measurable set
FE is essentially divergent in measure on the same set.

We shall denote the set of all non-negative integers by Z.

By a dyadic interval in I := [0,1) we shall mean an interval of the form
AP = (k27" (k4 1)27™), with (0 < k < 2", n, k € Zp). (4)

The Haar system {x;(x), | € Zo} is defined as follows. Set xo(z) := 1. For
n,k € Zp with 0 < k < 2™ define x;(x) on I by

2%, ifz e APY

n+1
Xoin(z) = xP(2) = ¢ 2%, ifz e AP (5)

0, otherwise.

Let B (0 <k <2" nk € Zy) be a family of measurable sets, where

EF c 1, m{EP}y = & EFnEY =0itk #1, and B = ECP) UECHY.
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A Haar-type system {X;(x), l € Zo} on I is defined as follows. Set xo(x) := 1.
For n,k € Zy with 0 < k < 2™ define x;(x) on I by

2%, ifz e B?)
o (@) = XP(2) = { 2%, ifae BEY

0, otherwise.

Let {¢n(z), n € N} be an arbitrary ONS on the interval I. Fourier co-
efficients of a function f € L(I) with respect to the system are denoted by

bgf)( f) and the partial sums by S](f)( f,x). Fourier coefficients of a function
h € L(I?) in the system {¢y, (2)¢m(y), n,m € Zo}, (z,y) € I?, are denoted by
bgﬂl(h) and the rectangular partial sums by Sgﬂw(h, x,y). The partial sums

S](\f%\,(h, x,y) are called square partial sums.

Let (X, p) be a metric space. It is said that a double sequence {z, .} of
elements of X converges by rectangles to an element a € X if for any number
€ > 0 there exists a number N, such that p(z,,n,a) < € whenever m > N,
and n > N..

It is well-known that (see, for example [3], p. 71) the Fourier-Haar series of
any function f € L(I) is unconditionally convergent (that is, it converges for
every ordering of the terms) in measure on I. In integral classes of functions
wider than LLn™ L(I?) there are no product bases that are unconditional with
respect to the convergence in measure by rectangles [7].

For any f € LLnTL(I) the series Y% 3% ei,ja%)(f)xi(z)xj(y) con-

verges by rectangles for any €; ; = e;e; with e;, e; = +1or —1 in LP(I?) metric
for every p € (0,1) (see the Remark 1 after Theorem 1 in [7]). It is known
also that the double Fourier-Haar series of any Lebesgue integrable function
on I? is convergent in the metric L(I?) by rectangles. In this paper we prove
first the following theorem.

Theorem 2. There exists a rearrangement {1 (x) = Xo(n)(2), n € Zo} of
the one-dimensional Haar system that has the following property: for arbitrary
nonnegative, continuous and nondecreasing on [0,00) function ¢(u) such that
up(u) is a convex function on [0,00) and

d(u) = o(lnu), u — oo, (6)

there exists a function g € L(I1?) such that [, | g(x,y) | ¢(| g(z,y) |) dz dy <
oo and the sequence of the square partial sums of the Fourier series of g with
respect to the double system {Xq(m)(T)Xo(n)(y), m,n € Zo} on I? is essentially
unbounded in measure on I? .
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Using the A.Olevskii’s method we generalize this theorem in the general
case, namely we prove that:

Theorem 3. Let {¢,(z), n € N} be an arbitrary complete ONS on the interval
I that consists of a.e. bounded functions. Then there exists a rearrangement
{00, (n), n € N} of the system {pn(x), n € N} that has the following property:
for arbitrary nonnegative, continuous and nondecreasing on [0,00) function
¢(u) such that up(u) is a convez function on [0,00) and ¢(u) = o(lnu), u —
oo, there exists a function f € L(I?) such that [.. | f(z,y) | o(| f(z,y) |
) dx dy < oo and the sequence of the square partial sums of the Fourier series
of [ with respect to the double system {@q, (m)(%)Po, (n)(y), m,n € N} on I?
is essentially unbounded in measure on I>.

Taking in account Tkebuchava’s [7] positive result mentioned above, one
can see easily that Theorems 2 and 3 are sharp: the condition (6) cannot be
replaced by ¢(u) = O(Inu).

2 The Proof of Theorem 2.

For a number h € (0,1), I}, denotes the interval [0,1 — h]. For each pair of
numbers (0,7) € I? and a number h € (0,1), introduce the function of two
variables (z,y) defined on I? by

h=2 if (z,y) € [0,0 + h] x [n,n+ h;
0, otherwise on I2.

00,1 (2, Y) = { (7)

Let (z,y) € I? and A(()i“),A(lil),...,Al(”), ... be the sequence of all dyadic
intervals that contain x and let A(()JO), Agjl), R Al(]’), ... be the sequence of

all dyadic intervals that contain y.
We show that if 0 < k < N, N is an arbitrary positive integer and

b ALY\ AR, (8)
then
N 2271
2241 > 137 37 ygua(@)xamn (0)] 2 250, (9)
p=0 =0

Indeed, when p > k, then (see (4), (5), (8)) 0 ¢ Ag;’”) and therefore
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X22v 1y, (0) = 0 and when p < k, then 0 € A(”p) and therefore | x22r44,,(0) |=

v22p . Thus

2
|§;)2;1X22P+l T)X22041(0)] = ’ZX22P+12P )X220 45, (6)]
p=0 =0
> |X22k 4y (T) X225 14y, (0 |ZX22P+zzp X220 415, (0)]
= 2%—1
> 2%k ,,Z::o 2% > 92h—1,
On the other hand,
N 2?71
|I;) ; Xz 41(2) X220 41(0)| = |ZX22p+z2p )X220 415, (0)]

S Z 22p S 22k+1.

p=0

Consequently the estimate (9) is proved.
We introduce ordered sets. Let

D;={2727 +1, ..., 27" — 1}, j € Z, (10)

be the j** block where the natural order is preserved. We introduce ordered
packets of blocks according to the following list

B := {D30i—20, D20i—18, - .-, D2oi—2}, i € N. (11)
Now we define the rearrangement ¢ of Zy according to the following list
07B17D17B27D37B37D57"~uB7,'7D2i717~-~' (12)

Let n be an arbitrary positive integer. Introduce numbers

n

Dn =14 Z(card(Bi) + card(Dag;—1)), n € N, (13)
i=1

where card(F') denotes the number of elements of a finite set F.
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Set

Vi () == Xo() (%), J € Zo. (14)
Now we have (see (4), (5), (10)-(14)) for all (x,0) € I? and n € N,

Pn 10n—12%P—1

1> i@ 0] = D0 D Xarei(@)xozesa(0)] — 1
j=0 =0 =0

n—12%P+l_1

*|Z Z X22P+1+m(x)x22p+1+m(0)} (15)

p=0 m=0
10n—12%P—1

> | Z Z X22P+l(x)X22P+l(9)‘ -1-2°"

p=0 =0

Introduce the set A,, := A, (x,y) to be

U (5N < (A \ A ais). (16)
250 <0
where N,, := 10n — 1. (17)
We have from (4)
10n—-1 1
—2k—202N,, +2k—2
Ho Ay > Z 2 2 > 100 220m32 (18)

49Ny, 50N,
Too~ <F< =700

Let (6,1) € A,. Then there exists a positive integer k, 490 < k < 50Va "gych

100 100
that (see (9), (16)) 2208 +1 > 92k+1 > | SN0 S0y (@) xm 10(0)] >
2261 and 22°00 1 > 92Ne-2ktl > | SN SRy () xame ()] >
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22Nn=2k=1 Then, in light of (15) and (17), we conclude that for n > 2,

Pn Pn

1> (@) (0[] i () ()
j=0 j=0

10n 12%2P -1 10n—12%P—1
Z Z Xa2r41(2) X220 41 (0 || Z Z Xazo 41 (Y X22P+l(77)|
p=0 1=0 p=0 1=0
10n—12%P -1
— 22 Y Z Xa2v+1(2) X220 41(0) (19)
p=0 1=0
10n—12%7 -1

— 22NN oY) Xz ()] + 247
. 0220; 2

8
Thus (see (18)) for all (z,y) € I?, we have

> 1220n 2 _9lTn42 >

10n —1
2, :
w2{(0,n) € I* : inequality (19) holds} > J20n42700" (20)
Introduce the functions for n € N and (z,y,0,n) € I*
Pn
Kol ,0,7) sz Bi0) S 655 (). (21)
3=0
Introduce the set
220n 22On 1 . 1 X 1 i 1
i— i j— j
On 1= U U [22071 ' 920m 2100n) x [22071 ' 920m 2100n)' (22)
i=1 j=1
It is clear that
2
,LLQ@ > 1 - 28077, (23)
Let a set E C I2, usE > 0, be arbitrary. We introduce numbers
Ry, = 272000, (24)
9 (10n — DHusE
&n =& (E) = (10n = DpzE (25)

10 2400
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From (10)-(13) it follows that

N < 20n—1.
onax o(j) <2 (26)

Now let (z,y,0,n) € I? x ©,,. Then we have (see (4), (5), (7), (22))

Pn Pn Pn Pn
oD ali(Gon)) il sz Vil0) D Wi ()i(n). (27)
=0 j=0 7=0
It is clear that (see (20), (21), (23))
1 9 10n -1
: S Lo20m-2y 5 7
#2{(0»77) € @n |Kn(x,y7977])| = 82 } = 10 220n+210( (28)

for (z,y) € I?. We shall show that for an arbitrary given set E C I2, uo E > 0,
and for each integer n > rg (rg is a positive constant depending on E) there
exist (all depending on the set E') a positive integer q(n) and the following finite
sequences: a sequence of disjoint measurable sets {B " }q(q)7 Bgn) CE 1=
1,2,...,q(n); a sequence of pairs of numbers {(91@)7772(")) ?2), (GE"),nEn)) €
O, 1=1,2,...,q(n), such that (see (24), (25))

220n—2 n '
15 Gy g0 s @) = == W(a,y) € B, i = 1,2, .q(n)  (29)
n n E

p{U B > “26 >0, (30)
B s SS9 31
MZ{ i }—22077,’ 9 77Q(n) ( )

Set

1

AP = {(w,9,0,n) € Ex O, : |Ku(w,y.0,0)| = 277} (32)
We have for all (z,y) € E (see (2 f® X g0 (z,y,0,n) df dn > 10%,

(n).

where x 4 (z,y,0,m) is the characteristic function of the set A; Using
1

Fubini’s theorem we conclude that there exists a pair of numbers (Hin), 77§n)) €
O, such that uy{(z,y) € B : (3,0 n") € A"} > 5128 iy,

Now we let B%n) = {(z,y) € E : (x,y,é)g”),ng”)) € Agn)}. From (21),
(25), (31), (29), (27), and (32), we see that the first step in the construction is
complete. We now assume that the p-th step of the construction is complete.

If it happens that ,ug{Uf:le”)} > % > 0, then the construction is complete.
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Suppose, on the contrary, that MQ{UleBi(n)} < %. Define Al(i)l to be
20n—2

8

{(2,9,0,m) € (BE\U'_,BM™) x 0, : | Ky (z,y,0,n)] > Y. (33)

Using Fubini’s theorem we conclude that there exists a pair of numbers (91(, 15
) € O, such that o {(x ,y> € BE\ULBM « (2,,000 0\ € ALYy >

190 M26E22})9L7-1l—7§1100 Now we set Bp+1 :{(I,y) € E\UleBz(n) . (l‘,y, 9,(,1)1a 77,,1)1)

€ A(+1} From (21), (25), (31), (29), (27), and (33), we see that the (p+ 1)
step in the construction is complete.
It follows now from the construction (see (25), (31)) that after the p'" step

we have uz(UleBl(")) =37, ,ugBi(") > %’“26’522},2%;11% and consequently,

this inequality cannot hold for sufficiently large numbers p. We can conclude
now that the construction terminates at some finite step g(n).

Define (see (7)) f-(n)(x,y) to be

?

5 2 @) € 00,0 + bl < [0 0™+ b
0" ™ b (z,y) = 0.

Introduce the functions

. (34)
otherwise.

@S)(m,y) = @%)(E;:E,y) = Z 2§gn f(n (z,y)ri(t), (z,y,t) € I (35)

i=1
for n > 1o, where {r;(t), i € N} is the Rademacher system. Consider the set

q(n)
H,=|JB™. (36)
i=1
Let (z,y) be any point from H,,. Then (see (29), (34)) for some positive integer
io = io(x,y), 1 <ig < g(n), we have

(n) z,y )l > 22071 2 (37)

| :Dmpn( ig

Clearly (see (35), (34)), ol (x,y) € L(I?) for each fixed t € [0,1). Further it
follows from (35) that for any ¢ € [0,1)

&n n
Sg}.,“p"(q)g)a T y) = Ti (t) 920n S;p“,pn(fl(g )7 T y) (38)
&n

(n
+ Z 7“7( pn sPn f )22077, :
1710
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The following easily verifiable fact is well known (see for example [1], p.10): Let
Yot wiri(t) be an arbitrary polynomial with real coefficients in the Rademacher
system and i a fixed integer, 1 < ip < m. Then u{t € [0,1) : w; 7, (t)

Disip wiri(t) > 0} > i
Introduce the set

Q= {(@y,0) € Hy x [0,1): 185, (0, 2,)| 2 56} (39)

According to (37)-(39) we conclude that for all (z,y) € H, we have the in-
equality fol xo(z,y,t) dt > 7, where xq(z,y,t) is the characteristic function
of Q. Consequently (see (30) (36), (39)), there exists a number ¢y, € [0,1)
such that po{(z,y) € H, ! S’;f’mpn(@SfO),x?y) 1> 5én} > “fQE We observe
that (see (31), (30), (34), and (35))

q(n) q(n)

/ / |®0) (2, )| da dy < Z 50 < ZMQ{B(")} <1. (40)

Introduce the notations

Gn(x,y) = Gn(Es2,y) := O (2,y), (z,y) € I” (41)
Y(u) == ugp(u), u € [0,00). (42)

Taking account of an assumption on ¢ we see that if a number C € [0, 1), then
for any =z > 0,

Y(Cx) < CyY(zx), z > 0. (43)

We note that (see (34), (25), and (6)) there exists a sequence of positive
integers {e, := €,(E) n > 1o} such that lim, . €, = 0 and for all integers
n >ro,

i<a( / L @, ) o (™ (@, )]) da dy < enén. (44)

1<i<q(n

The function v in (42) is a non-decreasing convex function. From (43), (41),
and (35) we have

//¢|G z,9)| dxdy<//220n(§w|f )dzdy  (45)

<nen.
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Let S,, denote a finite one-dimensional sequence of all intervals Ag’j )=
A 5 AD where i, j,=0,1,2,...,28 =1,k =0,1,2,...,n. According to the

following scheme Sy, S1,S,..., Sk, ..., we obtain a sequence of sets
E\,E>,.. ,Ey,..., (46)

that has the following properties:

i. For each positive integer k there exists a triple of non negative integers
(n,i,7), where 0 < i,j < 2" — 1, such that Ej = A and

ii. For each triple of non negative integers (n, i, j), whered,j = 0,1,2,...,2"—
1, there exists an increasing sequence of positive integers {l,, = [,,(n, , j) pe1
such that for every p € N,

B, =AW, (47)

Now for the sequence of sets in (46) we will construct by induction an
increasing sequence of positive integers {n; }‘;‘;1, sequence of positive numbers
{97132, such that for all j € N we have

1 1 1
71 S 5 and €n, (El) S Z, (48)
G Loy (49)
Vit1 2 vj
1
€y (Ejt1) < A6 (Ej), (50)
Njt1 > Ny, (51)
1 woE;
/~L2{(xay) € Ej : |S;f)'n.j7pn]v (\Iljvxay” > Sizl/j} > 12] 07 (52)
Qi1 _ a;
2-2940m 2 < and 53
il P < g (53)
1
pof(w,y) € 2218 (@@ y)] = 050} < oopaBl, (54)

where o (z.y) := Z (;1 U, (x,y) (55)

i=1 ¢
G S max(j+1,0,41),  (56)

d
and —o
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where

aj = min(j(E_), Jens (), (57)

v; 1= €, (E;), and (58)
\I/j(fﬁ,y) = G”j (Ej’x7y) (59)

The constructions of the integer n, and the number Jo are contained by the
description of the general (k + 1)t step of the induction. Let the numbers
{n;}s_,, {6;}5_, be already defined so that they satisfy (48)-(59). Accord-
ing to the inequalities of Chebyshev and Parseval we obtain for all positive
numbers & and for all positive integers n, po{(z,y) € I? : [SY,(ak, z,y)| >

0} < ”ak”(;# and consequently one can choose a positive number d1 such
that for all positive integers n we have (see (57), (59), (34), (35), and (41)),
po{(z,y) € I* : |SY (ak,z,y)| > Oky1} < 3542Ek41. Now we can obtain an
integer ng11 large enough so that the relations (48)-(51) and (53)-(56) are sat-
isfied for j = k and the relations (52) and (57)-(59) are satisfied for j = k+ 1.
The construction of sequences {n;}22,, {4;}52, is now completed.

Introduce the functions defined on I? by

g(z,y) = %\If(:vy) (60)
i=1

Bile.y) = D TWila,y). (61)
i=k+1 "

It is obvious that (see (48), (49), (40), (41), (59), (60) and (61)) for any k € N,

1 1 o) )
[ [ iplazays > % <25 ang (62
0 0

143 14
i=k+1 i k+1

1 1 [e’e}
@

lg(z,y)| de dy < Y — < 1.
/0 /0 1:21 Vi

Now let Ey C I? be an arbitrary Lebesgue measurable set, usEg > 0. It
is clear that there exist a triple of non negative integers (ng,g,jo), Where
0 < g, jo < 2" — 1, and an increasing sequence of positive integers {k,}52;
such that (see (47))

o 215 o
pia{Eo N Af0:d0)} > mmAﬁ;gﬂo) and (63)

By, = Aljoo) (64)
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for all ¢ € N. From (55), (60), and (61) we have for all ¢ =2,3,..., g(z,y) =
g1 (2,y) + 52 W, (2, y) + Br, (2,y). Set for all g € N

k
Tq *= Py, - (65)

Then it is obvious that for all ¢ € N, pa{(z,y) € Ex, : | Tq,Tq(akq Uy z,y)| >
30k, < k2{(2,y) € B, 1 1S, (on,—1,2,9)] > ggan,} +pa{(z,y) € By,

1S o (Brgs )| > 9*16%1} +po{(z,y) € By, : ISy, . (9,2, 9)| > ggak, }. Using
(4), (5), (53) (26), (62), and (65) we obtain that for all (z,y) € I? and any

q€N,|SY e Brgr )| < < 2qt1gdlny, 2 < agiﬁq. Consequently (see (52), (54),

— Vkg+1
(56) (64), and (65)) we conclude that for any ¢ € N, po{(z,y) € Aliodo)
|S¥ (T Y)| = a5k, } > /J,QA(“) 90) and consequently (see ((63)) for any

q €N, p2{(z,y) € Eo N An ZO’JO) 188 L ()| > har,} > sl
Obviously (see (51) and (56)) the sequence of the square partial sums of Fourier
series of g is not bounded in measure on FEj.

From (55) and (60) we obtain that ¥ (|g(x,y)]) = limg_ e ¥(|ak(z,y)|)
a.e. We note that for a.e. (z,y) and k € N (see (55), (57), (58), and (43))

Y(lan(z,y)l) < $O01, 21 Wil y)]) < iy &4 (i, y)]). We see that the
sequence of functions {’(/}(Zz 1 2 |®i(2, )|, k € N} is increasing and for all
k €N (see (57)-(59), (50), (41), (44), and (45)),

k
// ", ) dody < 3 e ()% < 3 Ve (B <1
i i3

=1

It follows now that the limit of the sequence {w(zz 1 2|z, y)l), k € N} is
integrable on I? and this limit is a majorant of the sequence {v(|a(z,y)l),
k € N}. Consequently, the limit of the latter, that is the function ¥ (|g(z, y)|)
is also integrable on I2. Theorem 2 is proven.

3 The Proof of Theorem 3.

We consider the rearrangement {o(j )} and the function g from Theorem 2.
It is clear that g(z,y) = 322,372, ” ( )xi(2)x;(y) where bl(-?? (g9) are the
Fourier coefficients of a function g in the double Haar system and the series
converges in the metric L(I?) by rectangles.

Let {x:1(z), l € Zo} be the Haar-type system that corresponds to the given
complete ONS {¢;(x), ! € Zo} in Theorem 1. Then according to the properties
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of the Haar type system ([4], pp. 60-62) we can find a function f(z,y) that
has the same distribution as g(x,y) and is such that

zzb<><> )%;(v) (66)

=0 j=0

in the metric L(I?) by rectangles.
We introduce ordered blocks of integers (see (1))

Hj:={k(o(j) + 1, k(e (5) +2,.. ., k(o) + 1)}, j€Zo,  (67)

where the natural order is preserved. We define the rearrangement {o1(j),
j € N} of the set of all positive integers, according to the following list of the
blocks

Ho,Hy....,H; Hjiy,.... (68)
Set
Qp () := g, (n)(x), n €N, (69)
q(r) = anrd(Hp), r € Zo, g(—1) :=0. (70)
p=0

G A. Karagulyan proved that ([2], p. 47.) if h(x,y) € L(I?), then all the se-
ries (see (1), (2)) Y520 X020 b0 (M)Qu(@) Qs (1), Y2 S0 by ()X ()7 (1)
and Y27°0 S 00 (W) (2)%s(y), and 32770 32000 b (h) () (y) are con-

vergent in the metric of L(I?) by rectangles, while the last three series are
convergent by rectangles a.e. on I2.

Let g(p1 — 1) < n < q(p1) and g(p2 — 1) < m < q(p2) with p1,p2 € N.
Then we have (see (1), (2), (66)-(69))

® ) j
ngn?n(f) bafm),a(pz)( ) G'l(’ﬂ o1(m) + Z ba(pl) j al(n)C%) (71)

o

Z io Pz) (m)CS)JrZZbE?(g)c() ()

i=0 i=0 j=0
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where ¢ = fol vi(2)®y(z) dx. From (1), (2), (66)-(71) we have
a(p1) a(p2)

0 (n=q(p1—1)+1) m=q(p2—1)+1

B0y (9 Q1) (@) Q) (1)

M=
Mz

S;I?N),q(zv)(ﬂ z,y) =

Il
=)

=

1 b2

I
M=
Mz

P1=0p2=0
+Z Z ba(m)u 9)Qo(py)(® )S;I)(N)(Vjay) (72)
j=0p1=0
+ Z Z bE,U (p2) QG’ (p2) ( ) (N)(’th)
= Op2 0
+Zzb13 q(N) 725 )S;D(N)(’Y]vy)
1=0 j=0

= JO(N, z,y) + JD (N, z,y)
+ IO (N, 2, y) + JV(N, 2, y).

We have according to (2)

( ) v
J N x y Z Z U)Em) 0(p2 XU(Pl)( )Xa(pz)(y)
p1=0 p2=0

N N
-> > bffﬁl),a(m)(9)%(p1)($)>~<a(pz)(y)
N N
=30 3T ) @Ko () Vo) () (73)

N N
+ Z Z bi(gn) o (p2) D Vo (01) (T) Vo (p2) (V)

= I(l)(viay) *1(2)(N,I,y) 71(3)(N"Tay) +I(4)(N,£E,y)

Set for [ € N

FO0 = [ gttt ds. (74)
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Then we have for each N € N, I®(N,z,y) = Z;J;\;:o bff)&z)(zgzo Fééz)n)

Yo (p1) () Xo(ps)(y)- It is known that (see [4], pp. 60-62) for any Haar type
system {x;(x) with | € N}, there exists a Lebesgue measurable function
u(z) : I — I such that x;(x) = x;(u(z)) a.e. for all [ € N and for every
Lebesgue measurable set G C I the set u~!(G) is Lebesgue measurable and
p1{u"t(G)} = u1G. Besides, for each n there exists a measure preserving map-
ping u,(x) : I — I that is one-to-one a.e. and is such that x;(x) = x;(un(2))
a.e. foralll=0,1,...,n

According to the weak (1,1) type property of rearrangements of the one-
dimensional Haar system (see [3], p- 71), we have for any z € I, i1 {y € I :
I®(N,z,y)| > R} < & Zpl -0 i(;l)fyg(pl ()| (1), where C' is an absolute
constant.

On the other hand we have (see (74), (5), (3)) || Zpl oF Pl VYo ) <

S olIE, p1)||L e llzeay < Yo —o szsemnros Vo) + gl =

Ci < 0, Where the constant C; does not depend on N. Thus we obtain for
every N € Nand R > 0, po{(x,y) € I? : [I®(N,z,y)| > R} < 2, where the
constant Cy does not depend on N. Therefore the sequence {1(2)(N x,y),N €
Zo} is bounded in measure on I?. The sequence {I®)(N,z,y), N € Zy} is
bounded in measure on I? for similar reasons.

From (5), (3), and (73) we obtain

IO (N, 2, 9)l| 2y < Z Z 1852 o) Do) @) 22 () o) () 21y

Pl—O p2=0

\/Upl +1 \/apQ 11
< Z Z 39050 (51405 39050 (pa)05 191121)
p1=0p2=0

= (5 < 0.

Consequently the sequence {I*)(N,z,)} is bounded in measure on I2. We
note that (2) and (72) imply

JEO(N,@,y) Z Z b )5 (o) (@) S5t (17 ) (75)
j=0p1=0
- Z Z bO’(p1)] P)/U([)l ( )S;I?N)(’Y]ay)
j=0p1=0

= J(2’1)(N,Jj,y) - ‘](2,2)(N?$7y)'
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Set for j € Zg and s €

Fy(s) = [ a0 (76)

Now we will prove boundedness in measure on I? of the sequence
{J@D(N,z,y)}. We have for a.e. fixed y € I:

x)
Zba(m ):d (N) 73’ Zba(m (N)(%’ y)

oo

- bt%)ol (FJ‘S(?(N) (v5,v))-

j=0
Introduce the function defined on 12, Gn(s,y) = >0 Fj(s)SiN)(vj,y).

The series 3572 |Fj(s)Sg ) (77, y)| converges on I to an integrable function
according to Levy’s theorem because (see (76), (3), (5))

Jj+1
Z//|F ey >|dsdy<2||g||L SRS SN

= C5 < 00.

Here we used also Bessel’s inequality. Consequently, the function Gy (s,y) is
integrable on I?. We note also that for a.e. fixed y € I the series Z;io F;(s)

S;b( ~y (75, y) converges in metric L(I) as a function series in the variable s be-

cause the series ZJ o fo |F;(s)] ds|S‘I) (v (75, 9)| converges for a.e. y according
to Levy’s theorem (see (77)).

Now it is obvious for a.e. fixed y € I that J&V(N,z,y) = Zz])\i=0 bg’ggl)

(Z;‘io F; S;I)(N) (V55 y)))za(pl) (z). According to the weak (1,1) type property of
rearrangements of the one-dimensional Haar system (see [3], p.771) and (77)
we have

p2{(z,y) € I* :| J*Y(N, 2,y)| > R}

Cy 1
< f” ZFJ'S;D(N)('YJ'vy))HL(P) < EC&
=0

where the constants C4 and Cg do not depend on N. Therefore, the sequence
{J@V(N,z,y), N € N} is bounded in measure on I?.
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Now we will prove boundedness in measure on I? of the sequence {.J )
(N,z,y)}. We note that (see (72), (3), (5))

00 00 .1 1
[T (N, 2, y) || L2y < ZZ/@ /0 |b§§)(9)53>(1v)(%x)S(;I?N)(Vj,yN dz dy

i=0 j=0

=< Z Z 390,5i+0,5 ¥ i+ 1320,5j+0,5 Vi + 1H9HL(I2)
i=0 j=0

= C7 < o0,

where C7 does not depend on N.

The proof of boundedness in measure on I? of the sequence {J32) (N, z, y)}
(see (75)) is similar to that of the sequence {J* (N, z,v)}.

Consequently, (see (75)) the sequence {J®)(N,z,y), N € Zo} is bounded
in measure on 12, as is the sequence {J®) (N, z,y), N € Z} for similar reasons.
According to Theorem 2 and the properties of Haar-type systems it follows
that the sequence {I™"(N,z,y)} (see (73)) is not bounded in measure on Ej.
Taking account of (73), (72), and (75), we see that Theorem 3 has been proven.
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