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WEAK ALMOST ITERABILITY

Abstract

We investigate continuous selfmappings of a real compact interval,
which are, in a sense, close to iterable ones, that is embeddable into
continuous iteration semigroup. This is a continuation of a research ini-
tiated by W. Jarczyk. We present some necessary and sufficient condi-
tions of weak almost iterability and M−weak almost iterability. Classes
of functions investigated here are generalizations of a class of almost
iterable functions introduced by W. Jarczyk. This refers to the problem
posed by E. Jen.

1 Introduction.

In this paper we restrict our attention to the continuous selfmappings of a
real, compact interval X. We follow M. C. Zdun [7] in posing a definition of a
continuous iteration semigroup and iterability. Namely, function F : (0,∞)×
X → X will be called a continuous iteration semigroup if it is continuous and
satisfies the translation equation

F (t, F (s, x)) = F (s+ t, x), s, t ∈ (0,∞), x ∈ X.

A continuous function f : X → X which is embeddable into a continuous it-
eration semigroup is said to be iterable. So, for an iterable function f and a
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suitable continuous iteration semigroup F we have satisfied the initial condi-
tion

F (1, x) = f(x), x ∈ X,

and, according to the translation equation,

F (n, x) = fn(x), x ∈ X, n ∈ N.

This means that iterable functions are those for which the discrete process
(fn(x))n∈N, generated by f , has a version with continuous time. Necessary
and sufficient conditions for embeddability of self-mappings of a real compact
interval into continuous iteration semigroup were found by M. C. Zdun.

Theorem 1.1 (M. C. Zdun, [7]). A continuous function f : X → X is iterable
if and only if there exist points x1, x2 ∈ X, x1 ≤ x2, and a continuous function
e : X → [x1, x2] fulfilling the conditions:

(i) x1 ≤ f(x1) ≤ f(x) ≤ f(x2) ≤ x2, x ∈ X,

(ii) the function f|[x1,x2] increases and every interval, where it is constant,
contains a fixed point of f ,

(iii) e(x) = x, x ∈ [x1, x2],

(iv) f ◦ e = f .

Let us emphasize the following features of iterable functions.

Corollary 1.2. If f : X → X is an iterable function and a, b are two consecu-
tive fixed points of f , then f([a, b]) = [a, b] and, moreover, limn→∞ fn(x) = a,
respectively b, for every x ∈ (a, b) provided f(x) < x, respectively f(x) > x,
for x ∈ (a, b). Iterable functions have no periodic points of order 2.

Let us introduce some notation which will be used in what follows. Given
f : X → X, we write Per(f, k) for the set of all periodic points of f of order k:

Per(f, k) := {x ∈ X : fk(x) = x and f l(x) 6= x for l < k};

we denote by af and bf the smallest and the greatest fixed point of f , respec-
tively. Moreover, xf stands for the limn→∞ fn(x), if the limit exists.

Inspired by Problem (3.1.12), posed by E. Jen in [6], W. Jarczyk [2] pre-
sented a slightly more general concept called almost iterability.
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A function f : X → X is called almost iterable if there exists an iterable
function g : X → X such that

lim
n→∞

(fn(x)− gn(x)) = 0 (1)

for every x ∈ X and the convergence is uniform on every component of the
set [af , bf ] \ Per(f, 1).

Notice that it is of no use to assume uniform convergence on the whole
interval X, since it would imply that g ≡ f (cf. [2, Lemma 3]). On the
other hand, by omitting the assumption of uniform convergence between fixed
points of f we enlarge the examined class of function, which is desired, since
the class of almost iterable functions is rather narrow. That will lead us to
introducing the class of weak almost iterable, and further, M - weak almost
iterable functions, which are the subject of this paper.

We will need the following characterization of almost iterable function.

Theorem 1.3. (W. Jarczyk; [2, Theorems 1 and 2]) A continuous function
f : X → X is almost iterable if and only if the function f|[af ,bf ] increases and
every interval, where it is constant, contains a fixed point of f , and Per(f, 2) =
∅.

A few other approaches to ”near iterability” can be found in [3] and [4].

2 Weak Almost Iterability.

As was previously announced, we define weak almost iterable functions, as
those continuous selfmapping f : X → X for which there exists an iterable
function g : X → X such that (1) holds for every x ∈ X We start with pro-
viding the sufficient and necessary condition of weak almost iterability.

Theorem 2.1. Let f : X → X be a continuous function. Then f is weak
almost iterable if and only if Per(f, 2) = ∅ and there exist points ai, bi ∈
Per(f, 1), i ∈ I, such that [af , bf ] =

⋃
i∈I [ai, bi] and for every i ∈ I one of the

following possibilities holds:

(i) ai = bi;

(ii) (ai, bi) ∩ Per(f, 1) = ∅, f([ai, bi]) = [ai, bi];

(iii) (ai, bi) ∩ Per(f, 1) = {ci}, x < f(x) < bi, for x ∈ (ai, ci), ai < f(x) < x
for x ∈ (ci, bi);

(iv) (ai, bi) ∩ Per(f, 1) = ∅, bi = bf , f(x) > x for x ∈ (ai, bi);
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(v) (ai, bi) ∩ Per(f, 1) = ∅, ai = af , f(x) < x for x ∈ (ai, bi).

Before we pass to the proof, let us remind one more result, which is due to
Šarkovskii.

Theorem 2.2. (Šarkovskii, [5, Theorems 1 and 2]; see also [1, Ch.VI, Propo-
sition 1]) Let f : X → X be a continuous function with no periodic points
of order 2. Then every trajectory is bimonotonic, that is f(x) > x implies
fn(x) > x for every n ∈ N and the implication remains valid if we replace >
by any of <,≤,≥,=; and convergent, with an appropriate relation between xf

and x, >,<,≤,≥,=, respectively.

Proof of Theorem 2.1. First assume that Per(f, 2) = ∅ and the interval
[af , bf ] is a union of appropriate intervals [ai, bi]. Let h : X → X be a continu-
ous function such that h strictly increases on the interval [af , bf ] and satisfies
the conditions:
h(x) > x, if x ∈ [af , bf ] and f(x) > x,
h(x) < x, if x ∈ [af , bf ] and f(x) < x,
h(x) = x, if x ∈ [af , bf ] and f(x) = x,
and h(x) = f(x) for every x ∈ X \ [af , bf ].
According to the Theorem 1.3 such a function h is almost iterable, so we can
choose an iterable function g : X → X, such that xh = xg for every x ∈ X. It
is easy to notice, using Theorem 2.2, that xf = xh for every x ∈ X.

To see the necessary condition, let us choose an iterable function g : X → X
such that (1) holds for every x ∈ X. Of course, Per(f, 2) = ∅ and Per(f, 1) =
Per(g, 1). Let us notice also, that

(f((a, b)) \ [a, b]) ∩ Per(f, 1) = ∅, (2)

for every two consecutive fixed points a, b of f , since for every x ∈ (a, b) we
have xg ∈ {a, b}. Let a, b ∈ Per(f, 1), a < b and (a, b) ∩ Per(f, 1) = ∅. If
f([a, b]) = [a, b], then we have (ii). Assume then, that f([a, b]) \ [a, b] 6= ∅ and,
for instance, f(x) > x for x ∈ (a, b). By (2) we infer that either b = bf and
(iv) holds, or there is a point c ∈ Per(f, 1) such that (b, c) ∩ Per(f, 1) = ∅
and f(x) < c for x ∈ (a, b). Considering the latter possibility we conclude
that f(x) > a for x ∈ (b, c) (again from (2) with b and c instead of a and b,
respectively). Theorem 2.2 let us deduce that f(x) < x for x ∈ (b, c). Putting
ai = a, bi = c and ci = b we get (iii). If a ∈ Per(f, 1) is both-hand side
accumulation point of the set Per(f, 1) it is enough to put a = ai = bi to get
(i). This ends the proof.
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3 M-weak Almost Iterable Functions.

In order to extend the class of weak almost iterable functions we will consider
pointwise convergence in the condition (1) only for x’s from some large set.
More precisely, from a dense set, as this approach includes both sets large in
a sense of Lebesgue measure and in a sense of category.

Put M := {M ⊂ X; cl(X \ M) = X} = {M ⊂ X; intM = ∅}. Let
M ∈ M. Function f : X → X is called M -weak almost iterable if there exists
an iterable function g : X → X such that (1) holds for every x ∈ X \ M .
We will give the necessary condition of M - weak almost iterability under the
assumption that f2 is not turbulent. Let us remind that the continuous map
f is said to be turbulent if there exist compact intervals J and K with at most
one common point such that

J ∪K ⊂ f(J) ∩ f(K).

Actually, the assumption f2 is not turbulent is much weaker than Per(f, 2) =
∅, the former says that f cannot have periodic points of odd orders, while the
latter implies that the only periodic points of f are fixed points. Anyway, we
have the following:

Theorem 3.1. (cf. [1, Chapter VI, Proposition 3]) If f2 is not turbulent, then
every convergent trajectory is bimonotonic, that is f(x) > x implies fn(x) > x
for every n ∈ N and the implication remains valid if we replace > by any of
<,≤,≥,=.

We start with the following

Lemma 3.2. Let f : X → X and g : X → X be continuous functions such
that f2 and g2 are not turbulent. If there exists a set M ∈ M such that (1)
holds for every x ∈ X \M , then

f(x) > x =⇒ g(x) ≥ x,

f(x) < x =⇒ g(x) ≤ x

for every x ∈ X.

Proof. Assume that f(x0) > x0 > g(x0) for an x0 ∈ X. Then the same
inequalities holds for x’s from a neighbourhood Ux0 of x0 and for x ∈ Ux0 \M ,
due to Theorem 3.1, we have xf > x > xg, which contradicts the condition (1).
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Now we differentiate some types of fixed points. Namely, let x ∈ Per(f, 1),
then

x ∈ α(f)⇔
∨
δ>0

( ∧
y∈(x−δ,x)

y ≤ f(y) ≤ x or
∧

y∈(x,x+δ)

x ≤ f(y) ≤ y
)

;

x ∈ β(f)⇔
∨
δ>0

(( ∧
y∈(x−δ,x)

f(y) ≤ y and
∧

y∈(x,x+δ)

f(y) ≥ y
)

or

( ∧
y∈(x−δ,x)

f(y) ≥ y and
∧

y∈(x,x+δ)

f(y) ≤ y
))

;

x ∈ γ(f)⇔ x /∈ α(f) and∨
δ>0

( ∧
y∈(x−δ,x+δ)

f(y) ≥ y or
∧

y∈(x−δ,x+δ)

f(y) ≤ y
)
.

Next, lemmas establish some results concerning defined classes of fixed points.

Lemma 3.3. For a continuous function f : X → X we have

Per(f, 1) = α(f) ∪ clβ(f) ∪ γ(f).

Proof. Fix x ∈ Per(f, 1). Observe that either there exists a δ > 0 such
that the sign of f − id is constant in the left-hand side neighbourhood and
right-hand side neighbourhood of x and either

(f(y)− y)(f(z)− z) ≥ 0, y ∈ (x− δ, x), z ∈ (x, x+ δ),

or
(f(y)− y)(f(z)− z) ≤ 0, y ∈ (x− δ, x), z ∈ (x, x+ δ);

or such a δ does not exist. We conclude that either x ∈ γ(f) ∪ α(f), or
x ∈ β(f); or x ∈ clβ(f), respectively.

Lemma 3.4. Let f, g : X → X be continuous functions such that f2 and g2

are not turbulent. If there exists a set M ∈ M such that (1) holds for every
x ∈ X \M , then

cl(α(f) ∪ β(f)) ⊂ Per(g, 1).

Moreover, if g is an iterable function, then

γ(f) ∩ Per(g, 1) ⊂ {ag, bg} (3)
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and
Per(g, 1) \ {ag, bg} ⊂ Per(f, 1). (4)

Proof. Suppose that x ∈ α(f). Without loss of generality we can assume
that y ≤ f(y) ≤ x for y’s from some left-hand side neighbourhood Lx of x.
Making use of density of the set X \M we can choose a sequence (xn)n∈N of
points of (X \M) ∩ Lx convergent to x. We have

xn ≤ xfn ≤ x, n ∈ N,

which yields that also Per(g, 1) 3 xgn = xfn → x as n → ∞. Since Per(g, 1) is
closed we get x ∈ Per(g, 1).

Now, fix an arbitrary x ∈ β(f). Suppose that g(x) 6= x. There is no loss of
generality in assuming that g(x) < x. Under this assumption we have g(y) < y
for y’s close to x and, by Lemma 3.2, f(y) ≤ y for such y’s. Thus, in fact,
x ∈ α(f), and by what we have already proved, α(f) ⊂ Per(g, 1). Therefore,
assumption g(x) 6= x leads to contradiction, hence β(f) ⊂ Per(g, 1). We have
also cl(α(f) ∪ β(f)) ⊂ Per(g, 1), as Per(g, 1) is closed.

Finally, to show the assertion (3), assume that g is iterable and fix an
arbitrary x ∈ γ(f) ∩ Per(g, 1). Suppose that f(y) ≥ y in a neighbourhood of
x. Choose ε > 0 such that for every y ∈ (x− ε, x) condition x < f(y) implies
f(y) ≤ f2(y). Let (yn)n∈N be a sequence of points of (X \M) ∩ (x − ε, x)
convergent to x such that f(yn) > x. We have

ygn = yfn ≥ f(yn) > x.

If x 6= ag, then yn ∈ (ag, x), for n large enough, whence ygn ≤ x which is
impossible. The third assertion follows from Per(g, 1)\{ag, bg} ⊂ α(g)∪clβ(g)
and the already proved part of this Lemma. The proof is completed.

As we can see from the above Lemma, the fixed points from cl(α(f)∪β(f))
have good properties, as they are also the fixed points of a function g for which
(1) holds. Next Remark shows that the differentiable functions have only such
fixed points.

Remark 3.1. Let f : X → X be a continuous function differentiable at least
at fixed points. Then

Per(f, 1) ⊂ α(f) ∪ clβ(f).
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Proof. In view of Lemma 3.3 it suffices to show that γ(f) = ∅. Assume,
on the contrary, that there is an x ∈ γ(f) with, for instance, f(y) ≥ y in a
neighbourhood of x. Then, obviously, f ′+(x) ≥ 1 and, since in every left-hand
side neighbourhood of x there is y with f(y) > x, we have f ′−(x) ≤ 0, contrary
to assumption of differentiability at x.

4 Necessary and Sufficient Conditions of M-weak Almost
Iterability.

The aim of this section is to provide necessary and sufficient conditions under
which f is M -weak almost iterable. To shorten the notation, let R(f) stands
for the union cl(α(f)∪β(f))∪{af , bf} and S(f) := Per(f, 1)\R(f). Moreover,
if x ∈ Per(f, 1), then the set Af (x) := {y ∈ X; yf = x} is called the basin
of attraction of a fixed point x. For a, b ∈ R(f), a ≤ b, we distinguish the
following cases:

(i) a = b;

(ii) (a, b) ∩R(f) = ∅, f([a, b]) = [a, b];

(iii) (a, b) ∩ R(f) = {c}, x ≤ f(x) ≤ b, for x ∈ (a, c), a ≤ f(x) ≤ x for
x ∈ (c, b);

(iv) (a, b) ∩R(f) = ∅, b = bf , f(x) ≥ x for x ∈ (a, b);

(v) (a, b) ∩R(f) = ∅, a = af , f(x) ≤ x for x ∈ (a, b).

We start with necessary conditions.

Theorem 4.1. Let f : X → X be a continuous function such that f2 is not
turbulent and af , bf ∈ cl(α(f) ∪ β(f)). If there exist an iterable function
g : X → X and a set M ∈ M such that (1) holds for every x ∈ X \M , then
there exist ai, bi, ci ∈ R(f), where I is a set of indexes, such that [af , bf ] =⋃
i∈I [ai, bi] and for every i ∈ I one of the cases (i)–(v) holds. Moreover,

f−n({ai, bi}) ∩ (ai, bi) ⊂ M for every n ∈ N and i ∈ I such that case (iii)
holds, Af (x) ⊂ M for x ∈ S(f), and x ∈ M if the limit limn→∞ fn(x) does
not exist.

Proof. Note that here, actually, we have R(f) = cl(α(f)∪β(f)) and S(f) ⊂
γ(f). According to Lemma 3.4, R(f) ⊂ Per(g, 1). Notice that (a, b)∩R(f) = ∅
for some a, b ∈ X forces f(x) ≥ x for every x ∈ (a, b) or f(x) ≤ x for every
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x ∈ (a, b). Indeed, function f − id can change the sign only at points from
R(f). The rest of the proof will be divided into a few steps.

(I) Let a, b ∈ R(f), a < b and (a, b) ∩ R(f) = ∅. If f(x) ≥ x for every
x ∈ (a, b), then g(x) > x and xg = b for x ∈ (a, b), and if f(x) ≤ x for every
x ∈ (a, b), then g(x) < x and xg = a for x ∈ (a, b).

We will show the first implication. Assume that g(x̂) < x̂ for an x̂ ∈ (a, b).
Then g(x) < x for x from a subinterval (ā, b̄) of (a, b). By Lemma 3.2 we infer
that f(x) ≤ x for x ∈ (ā, b̄), whence f(x) = x for x ∈ (ā, b̄). This contradicts
(a, b) ∩ R(f) = ∅. Now assume that g(x̂) = x̂ for an x̂ ∈ (a, b). We have
x̂ /∈ {ag, bg}, since a, b ∈ Per(g, 1). By (4), x̂ is also a fixed point of f . Since
(a, b) ∩ R(f) = ∅, we get x̂ ∈ γ(f). Now, using again Lemma 3.4, assertion
(3), we conclude that x̂ ∈ {ag, bg}, a contradiction.

(II) Let a, b, c, d ∈ R(f) be such that a < b, c < d, [(a, b)∪(c, d)]∩R(f) = ∅,
(a, b) 6= (c, d) and f((a, b)) ∩ (c, d) 6= ∅. Then

(f(x)− x)(f(y)− y) ≤ 0, x ∈ (a, b), y ∈ (c, d).

To see this, assume, for instance, that f(x) ≥ x for x ∈ (a, b). If f(x) ≥ x for
x ∈ (c, d), then f2(x) ≥ f(x) for an x ∈ (a, b) ∩ (X \M), which implies, in
view of Theorem 3.1, xg = xf ≥ f(x) > c for this x. But xg = b from (I), a
contradiction.

(III) Let a, b ∈ R(f), a < b and (a, b) ∩R(f) = ∅. Then

int Per(f, 1) ∩ (f((a, b)) \ [a, b]) = ∅.

Assume, on the contrary, that the assertion does not hold. Then there is an
subinterval I0 ⊂ [a, b], such that f(x) ∈ Per(f, 1) \ [a, b] for x ∈ I0, whence,
by density of the set X \M , we have I0 ∩ (X \M) 6= ∅ and therefore there
exists x ∈ (a, b) ∩ (X \M) such that f(x) ∈ Per(f, 1) \ [a, b], which implies
xf = f(x) /∈ [a, b] whereas xg ∈ [a, b].

(IV) Let a, b, c, d ∈ R(f) be such that a < b, c < d and [(a, b) ∪ (c, d)] ∩
R(f) = ∅. If f((a, b)) ∩ (c, d) 6= ∅, then b = c or a = d.

We can assume, without loss of generality, that

f(x) ≥ x, x ∈ (a, b). (5)

Then we have a < b ≤ c < d and it is enough to prove that b = c. Suppose,
on the contrary, that b < c. Using (II), in view of (5), it is easy to see that

f(x) ≤ x, x ∈ (b, c). (6)
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Choose an open, nonempty interval J ⊂ (c, d) ∩ f((a, b)). Put K := f−1(J) ∩
(a, b) and

A := {x ∈ J ; xf < c}, B := {x ∈ J ; xf ≥ c}, C := J \ (A ∪B)

A0 := f−1(A) ∩K, B0 := f−1(B) ∩K, C0 := f−1(C) ∩K.

Obviously, A ∪ B ∪ C = J and A0 ∪ B0 ∪ C0 = K. Notice also that since for
x ∈ C the sequence (fn(x))n ∈ N does not converge, we have

C ⊂M. (7)

Furthermore,
A ⊂M, (8)

as xg ≥ c for every x ∈ A, since A ⊂ J ⊂ (c, d). Moreover, since B0 ⊂ M ,
as for every x ∈ B0 we have xf ≥ c and xg ≤ b, and C0 ⊂ M , we deduce
that A0 ⊂/ M . Fix an x0 ∈ A0 \M . We have xf0 = xg0. By (I) and (5), we
conclude that xg0 = b. Fix an arbitrary positive ε < c−b

2 and choose a positive
δ < min{ε, b− a} in such a way that

f((b− δ, b+ δ)) ⊂ (b− ε, b+ ε). (9)

Since xf0 = b we can find an n0 ∈ N with fn0+1(x0) ∈ (b− δ, b+ δ). Let J0 be
a neighbourhood of f(x0) such that fn0(J0) ⊂ (b− δ, b+ δ).

Fix an x ∈ J0 such that the limit limn→∞ fn(x) exists. Making use of (5)
and (9) we infer that either there exists an N ≥ n0 with fN (x) ∈ (b, b+ ε) or

fn(x) ∈ (b− δ, b], n ≥ n0. (10)

In both cases we get xf < c. Indeed, in the first case, according to (6), we
have fN+1(x) ≤ fN (x), whence, due to Theorem 3.1, we obtain xf ≤ fN (x) <
b+ ε < c. In the second case (10) implies xf ≤ b. Hence, we have showed that
J0 ∩B = ∅. Observe that (cf. (7) and (8))

∅ 6= J0 ∩ J = J0 ∩ (A ∪B ∪ C) = (J0 ∩A) ∪ (J0 ∩B) ∪ (J0 ∩ C) ⊂M,

which yields that M has nonempty interior, which is a contradiction.
(V) Let a, b ∈ R(f) and a < b. If b < bf and ((a, bf )) ∩R(f) = {b}, then

f(x) ≤ bf for x ∈ (a, b), whereas af < a and ((af , b)) ∩ R(f) = {a} implies
f(x) ≥ af for x ∈ (a, b).

Assume, for instance, that the first possibility holds.
If f((a, b))∩(bf , supX] 6= ∅, then f(x) ≥ x for x ∈ (a, b) and, by (II), f(x) ≤ x
for x ∈ (b, bf ). Since f(x) < x for x ∈ (bf , supX], ((a, bf )) ∩ R(f) = {b}
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and bf ∈ R(f) we infer that bf ∈ α(f), more precisely bf ≤ f(x) < x for
x ∈ (bf , bf + δ), for a positive δ. Evidently, xf = bf for x ∈ (bf , bf + δ). The
density of the set X \M allows us to choose a point x ∈ (a, b) \M such that
f(x) ∈ (bf , bf + δ). By (I) we obtain b = xg = xf = bf , a contradiction.

(VI) Let a, b ∈ R(f), a < b and (a, b) ∩R(f) = ∅. Then

int(f([a, b]) \ [a, b]) ∩R(f) = ∅.

By (III) and (IV) we infer that the set (f([a, b]) \ [a, b]) ∩ R(f) has at
most one element. If there exists a c ∈ int(f([a, b]) \ [a, b]) ∩ R(f), then, due
to (IV), c = bf , which contradicts (V).

Finally, we will present the partition of [af , bf ] into a union of intervals
[ai, bi] satisfying one of the conditions (i)-(v). In order to do it choose an
arbitrary x ∈ [af , bf ]. We have the following possibilities.
• x ∈ R(f).

We put ai = bi = x; interval [ai, bi] fulfills condition (i).
• x /∈ R(f).

Then there exist a, b ∈ R(f) with (a, b) ∩ R(f) = ∅ and x ∈ (a, b). Assume,
for instance, that f(x) ≥ x for x ∈ (a, b). Here we differentiate further.
• f([a, b]) = [a, b].

We put ai = a and bi = b to get interval [ai, bi] satisfying (ii).
• f([a, b]) \ [a, b] 6= ∅.

According to (VI), int(f([a, b]) \ [a, b]) ∩ R(f) = ∅. We have the following
possibilities.
• There exists a fixed point from R(f) greater than b.

Let us denote d := min(R(f)∩ (b,∞). According to (II) we have f(x) ≤ x for
x ∈ (b, d). Moreover, making use of (VI), we infer that f(x) ≥ a for x ∈ (b, d).
It is enough to put ai = a, bi = d and ci = b to get interval [ai, bi] satisfying
(iii). The last part of the assertion (iii) follows from the fact that xg = ci for
x ∈ (ai, bi), which is due to (I).
• There are no fixed points from R(f) greater than b.

Then b = bf . Putting ai = a and bi = b we obtain the interval [ai, bi] satisfying
(iv).

Lemma 3.4 implies S(f) ∩ Per(g, 1) = ∅, whence Af (x) ⊂ M for every
x ∈ S(f). The last assertion is obvious.

Now we are going to provide the sufficient conditions of M -weak almost
iterability.

Theorem 4.2. Let f : X → X be a continuous function such that Per(f, 2)∩
(X \ [af , bf ]) = ∅. Assume that there exist ai, bi, ci ∈ R(f), i ∈ I, such that
[af , bf ] =

⋃
i∈I [ai, bi] and for every i ∈ I one of the cases (i)–(v) (from page
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366) holds. Put Zi :=
⋃
n∈N f

−n({ai, bi})∩ (ai, bi), Z ′i :=
⋃
n∈N f

−n(Zi) for i
such that (iii) holds and Zi = Z ′i := ∅ otherwise. Then there exists an iterable
function g, such that (1) holds for every x ∈ X \M , where

M :=
⋃
i∈I

(Zi ∪ Z ′i) ∪
⋃

x∈S(f)

Af (x) ∪ {x ∈ X; lim
n→∞

fn(x) does not exist}.

Particularly, if M ∈M, then f is M -weak almost iterable.

Proof. We start with a construction of an almost iterable function h. Namely,
let h : X → X be a continuous function such that h(x) = f(x) for every
x ∈ (X \ [af , bf ]) ∪R(f), h|[af ,bf ]

is strictly increasing and

h(x) > x, if f(x) ≥ x for x ∈ (ai, bi) and (ii) holds,
h(x) < x, if f(x) ≤ x for x ∈ (ai, bi) and (ii) holds,
h(x) > x, for x ∈ (ai, ci) where (iii) holds,
h(x) < x, for x ∈ (ci, bi) where (iii) holds,
h(x) > x, for x ∈ (ai, bi) where (iv) holds,
h(x) < x, for x ∈ (ai, bi) where (v) holds.

Since Per(h, 2) = ∅ and h|[af ,bf ]
= h|[ah,bh]

strictly increases, it follows from
Theorem 1.3 that h is almost iterable. Let g : X → X be an iterable function
such that xg = xh for every x ∈ X. Put M :=

⋃
i∈I(Zi∪Z ′i)∪

⋃
x∈S(f)Af (x)∪

{x ∈ X; limn→∞ fn(x) does not exist}. To finish the proof, it suffices to show
that xf = xh for x ∈ X \M .

Fix an x ∈ [af , bf ] \ M . It is worth pointing out that xf ∈ R(f), so
xf = ai, bi or ci for some i ∈ I. If x ∈ R(f), then xf = x = xh. Otherwise
x ∈ (ai, bi), where one of (ii)-(v) is satisfied. In the case (ii), since the interval
[ai, bi] is invariant under f , we get xf = ai or xf = bi, depending on the sign
of f− id on this interval, according to Theorem 2.2. As (f− id)(h− id) > 0, we
get the assertion. Considering case (iii) notice that again [ai, bi] is invariant
under f so, xf ∈ {ai, bi, ci}. Assume, for instance, that x ∈ (ai, ci). If
there exists a natural number n0 such that fn0(x) > ci, then x < f(x) and
fn0(x) > fn0+1(x). Therefore, using once more Theorem 2.2, we conclude
that xf ∈ (x, fn0(x)), and consequently, xf = ci. Note, that we have also
used the assumption x /∈ Zi. Otherwise, x < fn(x) < ci, whence xf = ci.
Obviously, xh = ci. Passing to case (iv) , observe that x < f(x), whence
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x < xf . But (x, supX] ∩ R(f) = {bf}. Thus xf = bf , we also have xh = bf .
We proceed analogously in the case (v).

If x ∈ X \ ([af , bf ] ∪M), then either fn(x) ∈ X \ [af , bf ] for every n ∈ N
whence fn(x) = hn(x) and also xf = xh, or let n0 ∈ N be the smallest natural
number such that fn0(x) ∈ [af , bf ]. We have fk(x) = hk(x) ∈ X \ [af , bf ]
for k = 1, 2, . . . , n0 − 1, whence fn0(x) = hn0(x) ∈ [af , bf ]. In fact fn0(x) =
hn0(x) ∈ [af , bf ] \M and the assertion follows from what we have already
shown.

5 Convergence in Measure.

As we already mentioned, assumption M ∈M includes the case when M is of
Lebesgue measure zero. One can ask, if and how the class of M - weak almost
iterable functions will increase if we change the convergence in (1) from con-
vergence almost everywhere into convergence in measure. Namely, we consider
a measure µ such that

µ is a finite Borel measure on the interval X, vanishing at points
and positive on every measurable subset of X with nonempty interior.

(H)

We are going to prove a result which says that under some quite natu-
ral conditions, satisfying fn − gn → 0, µ-almost everywhere is equivalent to
convergence in this measure.

We follow [1] in posing the following definitions.
Let f : X → X be a continuous function. We say that x ∈ X is approxi-

mately periodic if for every ε > 0 there exist a periodic point y and a natural
number N such that

|fn(x)− fn(y)| < ε, n ≥ N.

A function f is uniformly nonchaotic if every point of X is approximately
periodic. [1, Chapter VI, Corollary 26, Proposition 27 and Lemma 28] justifies,
in a sense, assuming in what follows that f is uniformly nonchaotic.

Theorem 5.1. Suppose (H). Let f : X → X be a uniformly nonchaotic
function and g : X → X an iterable function such that

lim
n→∞

(fn − gn) = 0 in measure µ.

Then limn→∞(fn(x)− gn(x)) = 0 for µ-almost every x ∈ X.
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Proof. Notice that

X = {x ∈ X; xf = xg} ∪X ′ ∪X ′′,

where
X ′ := {x ∈ X; xf 6= xg}

and
X ′′ := {x ∈ X; lim

n→∞
fn(x) does not exist}.

Let us consider X ′. We have

X ′ =
∞⋃
m=1

Xm,

where
Xm :=

{
x ∈ X;

∣∣xf − xg∣∣ > 1
m

}
.

For every x ∈ Xm there exists n ∈ N such that∣∣fk(x)− gk(x)
∣∣ ≥ 1

3m
, k ≥ n.

Hence

Xm ⊂
⋃
n∈N

∞⋂
k=n

{
x ∈ X;

∣∣fk(x)− gk(x)
∣∣ ≥ 1

3m

}
.

We can estimate

µ(Xm) ≤ µ(
⋃
n∈N

∞⋂
k=n

{
x ∈ X;

∣∣fk(x)− gk(x)
∣∣ ≥ 1

3m

}
) =

= lim
n→∞

µ(
∞⋂
k=n

{
x ∈ X;

∣∣fk(x)− gk(x)
∣∣ ≥ 1

3m

}
) ≤

≤ lim
n→∞

µ(
{
x ∈ X; |fn(x)− gn(x)| ≥ 1

3m

}
) = 0.

Now we pass to X ′′. Fix a point x ∈ X ′′. Let m be a natural number such
that

1
m
<

lim supn→∞ fn(x)− lim infn→∞ fn(x)
5

.

Since f is uniformly nonchaotic we can find a point x∗ ∈ Per f and a positive
integer K such that ∣∣fk(x)− fk(x∗)

∣∣ < 1
3m

, k ≥ K. (11)
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If x∗ ∈ Per(f, 1), then

∣∣fk(x)− x∗
∣∣ < 1

3m
, k ≥ K,

whence lim supn→∞ fn(x)− lim infn→∞ fn(x) ≤ 2
3m , contrary to the choice of

a number m. Therefore x∗ ∈ Per(f, l) for a l ≥ 2. Notice also that there exist
positive integers k1, k2 ≥ K such that∣∣∣fk1(x)− lim inf

n→∞
fn(x)

∣∣∣ < 1
m
, (12)

∣∣∣∣fk2(x)− lim sup
n→∞

fn(x)
∣∣∣∣ < 1

m
. (13)

From the choice of m and conditions (11), (12) and (13), we get∣∣fk1(x∗)− fk2(x∗)
∣∣ ≥ lim sup

n→∞
fn(x)− lim inf

n→∞
fn(x)+

−
∣∣fk1(x∗)− fk1(x)

∣∣− ∣∣fk2(x∗)− fk2(x)
∣∣+

−
∣∣∣fk1(x)− lim inf

n→∞
fn(x)

∣∣∣− ∣∣∣∣fk2(x)− lim sup
n→∞

fn(x)
∣∣∣∣ ≥

≥ 5
m
− 1

3m
− 1

3m
− 1
m
− 1
m
>

2
m
.

Hence, there is an i ∈ {0, . . . , l − 1} such that

∣∣xg − f i(x∗)∣∣ > 1
m
. (14)

We have already shown that for every x ∈ X ′′ there exist a periodic point
x∗ ∈ Per(f, l) of period l ≥ 2 and positive integers m,K ∈ N and i ∈ {0, . . . , l−
1} such that (11) and (14) hold. Since x∗ ∈ Per(f, l), by (14) and condition
(11), we get∣∣f i+kl(x)− gi+kl(x)

∣∣ ≥ ∣∣f i+kl(x∗)− xg∣∣− ∣∣f i+kl(x)− f i+kl(x∗)
∣∣+

−
∣∣xg − gi+kl(x)

∣∣ ≥ 1
m
− 1

3m
− 1

3m
=

1
3m

,

for k sufficiently large. Whence

X ′′ =
⋃
l≥2

⋃
m∈N

⋃
i∈{1,...,l−1}

⋃
K′∈N

Xl,m,i,K′ ,
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where

Xl,m,i,K′ :=
{
x ∈ X ′′;

∣∣f i+kl(x)− gi+kl(x)
∣∣ ≥ 1

3m
for k ≥ K ′

}
.

Moreover

Xl,m,i,K′ ⊂
⋂
k≥K′

{
x ∈ X;

∣∣f i+kl(x)− gi+kl(x)
∣∣ ≥ 1

3m

}
.

Thereafter

µ(Xl,m,i,K′) ≤ lim
k→∞

µ(
{
x ∈ X;

∣∣f i+kl(x)− gi+kl(x)
∣∣ ≥ 1

3m

}
) = 0,

which implies µ(X ′′) = 0.

It is worth pointing out that the topological equivalent of the above The-
orem also holds true. Namely, we have

Remark 5.1. Let f : X → X be a uniformly nonchaotic function and g : X →
X an iterable function such that from every subsequence (fnk −gnk)k∈N of the
sequence (fn − gn)n∈N we can choose a subsequence (fnkm − gnkm )m∈N such
that limm→∞(fnkm (x)− gnkm (x)) = 0 for every x ∈ X \M , where M is a set
of first category. Then limn→∞(fn(x)−gn(x)) = 0 for every x ∈ X \L, where
L is a set of first category.

Proof. With notation from the previous proof we have Xm is a subset of a
meager set, whence X ′ is also a set of first category. Considering the subse-
quence (f i+kl− gi+kl)k∈N leads to conclusion that the set Xl,m,i,K′ is a subset
of a meager set. Thereafter X ′′ is a set of first category.
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