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Abstract

In this paper, we survey progress on the general theory for path in-
tegrals as envisioned by Feynman. We introduce a new class of spaces
KSp(Rn) for 1 ≤ p ≤ ∞ and n ∈ N, and their Sobolev counterparts,
KSm,p(Rn), for 1 ≤ p ≤ ∞, m ∈ N, which allow us to construct the path
integral in the manner originally intended by Feynman. Each space con-
tains all of the standard Lebesgue spaces, Lp(Rn) (respectively Sobolev
spaces, Wm,p(Rn)), as compact dense embeddings. More importantly,
these spaces all provide finite norms for nonabsolutely integrable func-
tions. We show that both the convolution and Fourier transform extend
as bounded linear operators. This allows us to construct the path inte-
gral of quantum mechanics in exactly the manner intended by Feynman.
Finally, we then show how a minor change of view makes it possible to
construct Lebesgue measure on (a version of) R∞ which is no more
difficult than the same construction on Rn. This approach allows us
to construct versions of both Lebesgue and Gaussian measure on every
separable Banach space, which has a basis.
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1 Introduction.

Since 1983, a small research group at Howard university has been working on
the mathematical foundations for modern physics. Our philosophy is based
on the following assumptions:

1. Mathematics can provide a set of tools for constructing faithful repre-
sentations (models) of the physical world but does not dictate the final
outcome.

2. The most conceptually effective and computationally efficient (mathe-
matical) tools also allow the most simple and direct representations.

3. To the extent possible, all definitions should be operational.

4. To the extent possible, all proofs should be constructive.
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Objective.

The objective of this paper is to provide a survey of our progress on the general
theory for path integrals as envisioned by Feynman (see [17]). For simplicity,
the theory is developed using the Henstock-Kurzweil integral. This integral
was discovered independently by Henstock [34] and Kurzweil [41] and has been
discussed in a number of books. For more detail and different perspectives,
see Gordon [29], Henstock [33], Kurzweil [40] or Pfeffer [46].

The important new feature introduced is the construction of a new class
of spaces KSp(Rn), for 1 ≤ p ≤ ∞ and n ∈ N (see [23]), and their Sobolev
counterparts which allow us to construct the path integral in the manner
originally intended by Feynman. These are separable Banach spaces which
contain all of the standard Lp spaces, as well as the space of finitely additive
measures, as dense, continuous, compact embeddings. Equally important is
the fact that these spaces provide finite norms for nonabsolutely integrable
functions.

Of the many integrals that integrate nonabsolutely integrable functions, the
Henstock-Kurzweil (HK) integral is currently the best known. This integral
generalizes the Lebesgue, Bochner and Pettis integrals and is equivalent to
the (restricted) Denjoy integral. However, it is much easier to understand
(and learn) compared to the Denjoy and Lebesgue integrals; and provides
useful variants of the same theorems that have made the Lebesgue integral so
important. Furthermore, it arises from a simple (transparent) generalization of
the Riemann integral that is taught in elementary calculus. Loosely speaking,
one uses a Riemann type partition of intervals with the interior points chosen
first, while the size of the base interval around any interior point is determined
by an arbitrary positive function defined at that point.

The descriptive definition is a nice clear way of relating the integrand,
f = F ′ (in some sense) to the integral or primitive F . For example, if F is a
Lebesgue, HK or Denjoy primitive then F is continuous and, with additional
conditions, the integral of f is equal to F (see Section 2).

1.1 Summary.

In Section 2, we give a briefly introduction to the various integrals, with some
emphasis on the elementary HK-integral, its properties and relationship to the
Lebesgue integral (in the one dimensional case). In Section 3, we construct
the KSp, 1 ≤ p ≤ ∞, spaces (KS-spaces) and derive some of their important
properties. In Section 4, we construct the corresponding Sobolev spaces. In
Section 5, we prove that the Fourier transform and convolution operators have
bounded extensions to KS2. These results are applied to show that the weak
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generator of Markov semigroups on the space of bounded uniformly continu-
ous functions becomes a strong generator on KSp. They are also applied to
give the construction of the elementary path integral in the manner originally
intended by Feynman. We then strongly suggest that KS2 is a more natu-
ral Hilbert space for quantum theory when compared to L2. In Section 7 we
show that, contrary to belief, it is possible to construct Lebesgue measure on
a version of R∞ that is no more difficult than the corresponding construction
on Rn. This result is used to provide a construction of both Lebesgue and
Gaussian measure on every separable Banach space (that has a basis).

2 Integrals.

In this section, we briefly discuss the various types of integrals. Our main
interest is in those integrals that integrate nonabsolutely integrable functions.
However, because of its importance, we include the Lebesgue integral. Our
main focus is on the HK-integral (in the simplest case). Proofs of all stated
results can be found in Gordon [29] (see also Saks [48]). The general case can
be found in Henstock [33] or Pfeffer ([46] and [47]). In Section 3 we will show
that each integral is in KSp, 1 ≤ p ≤ ∞.

Background.

Recall that the oscillation ω(F, [a, b]) of a function F on an interval [a, b] is
defined by:

ω (F, [a, b]) = sup {|F (x)− F (y)| : a 6 y < x 6 b} .

Definition 1. We define the weak variation, V (F,E), and the strong varia-
tion, V∗(F,E), by:

V (F,E) = sup
{∑n

i=1
|F (bi)− F (ai)|

}
,

V∗(F,E) = sup
{∑n

i=1
ω (F, [ai, bi])

}
,

where the supremum is taken over all possible finite collections of non-
overlapping intervals that have end points in E.

1. We say that F is of bounded variation on E, (BV), if V (F,E) <∞.

2. We say that F is of bounded variation in the restricted sense on E,
(BV∗), if V∗(F,E) <∞.
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3. We say that F is absolutely continuous on E, (AC), if for each ε > 0,
there exists a δ > 0 such that, for every collection {[ai, bi], 1 6 i 6 n}, of
nonoverlapping intervals with end points in E and

∑n
i=1 (bi − ai) < δ,

then ∑n

i=1
|F (bi)− F (ai)| < ε.

4. We say that F is absolutely continuous in the restricted sense on E,
(AC)∗, if for each ε > 0, there exists a δ > 0 such that, for every collec-
tion {[ai, bi], 1 6 i 6 n}, of nonoverlapping intervals with end points in
E and

∑n
i=1 (bi − ai) < δ, then∑n

i=1
ω (F, [ai, bi]) < ε.

5. We say that F is generalized absolutely continuous on E, (ACG), if
F |E is continuous and E is a countable union of sets {Ei} such that F
is (AC) on each Ei.

6. We say that F is generalized absolutely continuous in the restricted sense
on E, (ACG)∗, if F |E is continuous and E is a countable union of sets
{Ei} such that F is (AC)∗ on each Ei.

We note, for future reference, that the set of functions of bounded variation
on [a, b], BV([a, b]), is a Banach space with norm ‖h‖BV = ‖h‖∞+V (h, [a, b]).

2.1 Classical Integrals.

Let E be a measurable subset of R and let λ(E) denote the Lebesgue measure
of E.

Definition 2. Let E be a measurable set and let c ∈ R.

1. We say that c is a point of density for E if

dcE = lim
h→0+

λ (E ∩ (c− h, c+ h))
2h

= 1.

2. We say that c is a point of dispersion for E if

dcE = lim
h→0+

λ (E ∩ (c− h, c+ h))
2h

= 0.

3. We say that a function F : [a, b] → R is approximately continuous at
c ∈ E ⊂ [a, b], if c is a point of density for E and F |E is continuous at
c.
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4. We say that a function F : [a, b] → R is approximately differentiable at
c ∈ E ⊂ [a, b], if c is a point of density for E and F |E is differentiable
at c. In this case, we write the derivative as F ′ap(c).

Let Ck denote the set of functions with k continuous derivatives (we let
C0 = C, the continuous functions).

Theorem 3. If E is a subset of [a, b], we have:

C1 ⊂ (AC) ⊂ (ACG∗) ⊂ (ACG) ⊂ C.

In the next theorem, we tie down the left end point for convenience. (This
result can be used to provide a descriptive definition of the integrals.)

Theorem 4. Let F be a function defined on [a, b] with F (a) = 0, then the
following holds.

1. If F is (AC) on [a, b], F ′ exists (a.e). If F ′ is Lebesgue integrable, then∫ x
a
F ′(y)d(y) = F (x).

2. If F is (ACG∗) on [a, b], then F ′ exists (a.e) and
∫ x
a
F ′(y)d(y) = F (x)

(as a restricted Denjoy, a Perron and a Henstock-Kurzweil integral).

3. If F is (ACG) on [a, b], then F ′ap exists (a.e) and
∫ x
a
F ′(y)d(y) = F (x)

(as a wide sense Denjoy or Denjoy-Khintchine integral).

The above are the most well-known of the possible integrals. Another pos-
sibility was introduced by Henstock, which integrates the approximate deriva-
tive of an approximately continuous function (see Gordon [29] or Saks [48]).

2.2 HK-Integral.

In this section we discuss the HK-integral (more constructively). It is strong
enough for all integrands that have continuous integrals.

Definition 5. Let [a, b] ⊂ R, let δ(t) map [a, b] → (0,∞), and let P =
{t0, τ1, t1, τ2, · · · , τn, tn}, where a = t0 6 τ1 6 t1 6 · · · 6 τn 6 tn = b. We
call P an HK-partition for δ if, for 1 6 i 6 n, ti−1, ti ∈ (τi −δ(τi), τi +δ(τi)).

Remark 6. Gordon writes P = {(τi, [ti−1, ti]) : 1 6 i 6 n} and calls {τi}
the tags and {[ti−1, ti]} the collection of tagged intervals. Also, the phrase
nearly everywhere (n.e.) means “except for a countable set”.
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Definition 7. The function f(t), t ∈ [a, b], is said to have an HK-integral if
there is a number F [a, b] such that, for each ε > 0, there exists a function
δ from [a, b] → (0,∞) such that, whenever P is an HK-partition for δ, then
(with ∆ti = ti − ti−1) ∣∣∣∑n

i=1
∆tif(τi)− F [a, b]

∣∣∣ < ε.

In this case, we write F [a, b] = (HK)-
∫ b
a
f(t)dt.

Theorem 8. Let f(t) : [a, b]→ R.

1. If f(t) is Lebesgue integrable on [a, b], then it is HK-integrable on [a, b]
and HK-

∫ b
a
f(t)dt =L-

∫ b
a
f(t)dt.

2. If f(t) is HK-integrable and bounded on [a, b], then it is Lebesgue inte-
grable on [a, b].

3. If f(t) is HK-integrable and nonnegative on [a, b], then it is Lebesgue
integrable on [a, b].

4. If f(t) is HK-integrable on every measurable subset of [a, b], then it is
Lebesgue integrable on [a, b].

Corollary 9. Let F : [a, b] → R be continuous. If F is differentiable nearly
everywhere on [a, b], then F ′ is HK-integrable on [a, b] and HK-

∫ t
a
F ′(s)ds =

F (t) for each t ∈ [a, b].

The last result follows from Theorem 4 (2) and shows in what sense we can
think of the HK-integral as the reverse of the derivative. (The result is not
true for Lebesgue integrals. The standard example is F ′(t) = 2tsin(π/t2) −
(2π/t)cos(π/t2) for all nonrational numbers on 0 < t < 1 and equal to 0 at all
rational points.)

In his book [47], Pfeffer presents a nice exposition of an invariant multi-
dimensional process of recovering a function from its derivative that extends
the HK-integral to Euclidean spaces.

2.3 Distributions.

In the following section, we will define our spaces and their distributional
counterparts for functions on Rn, n ∈ N, so that we develop the general case.

The work of Talvila [52] and others has recently introduced a distribu-
tional (or weak) integral. This integral contains all of the above integrals
and integrates Radon measures. Although it has been studied in Rn, for con-
venience and comparison, we provide an introduction to this integral in the
one-dimensional case.
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Preliminaries.

The following notational conventions are in force:

1. All functions f on Rn are real-valued (i.e., the range of f is R).

2. All integrals are defined on Rn.

3. A function u ∈ L1
loc(Rn) means that u is Lebesgue integrable on every

compact subset of Rn.

Let D(Rn) = C∞c (Rn) denote the space of infinitely differentiable functions
φ : Rn → R with compact support. We say that a sequence of functions
{φn} ⊂ D converges to φ ∈ D if there is a fixed compact set U such that all
functions φn have their support in U and, for each k ≥ 0, the sequence of
k-derivatives of φn, φ

(k)
n , converges uniformly to φ(k) on U . We call a function

φ belonging to D(Rn) a test function.
Let u ∈ C1(Rn). Then, if φ ∈ C∞c (Rn), integration by parts gives:∫

Rn

(uφyi)dλ =
∫
∂Rn

(uφ)νidS−
∫

Rn

(φuyi)dλ, 1 ≤ i ≤ n.

Since φ vanishes on the boundary, we see that the above reduces to:∫
Rn

(uφyi
)dλ = −

∫
Rn

(φuyi
) dλ, 1 ≤ i ≤ n.

In the general case, for any u ∈ Cm(Rn) and any multi-index α =
(α1, . . . , αn), |α| =

∑n
α=1 αi = m, we have∫

Rn

u(Dαφ)dλ = (−1)m
∫

Rn

φ(Dαu)dλ.

Definition 10. If α is a multi-index and u, v ∈ L1
loc(Rn), we say that v is

the αth-weak (or distributional) partial derivative of u and write Dαu = v
provided that ∫

Rn

u(Dαφ)dλ = (−1)|α|
∫

Rn

φv dλ

for all functions φ ∈ C∞c (Rn). Thus, v is in the dual space D′(Rn) of D(Rn).

The next result is easy.

Lemma 11. If a weak αth-partial derivative exists for u, then it is unique
λ-a.e. (i.e., except on a set of measure zero).

Definition 12. If m ≥ 0 is fixed and 1 ≤ p ≤ ∞, we define the Sobolev space
Wm,p(Rn) to be the set of all locally summable functions u : Rn → R such
that, for each multi-index α with |α| 6 m, Dαu exists in the weak sense and
belongs to Lp(Rn).



Banach Spaces for the Feynman integral 9

Extensions and Decompositions.

We need an extension theorem for functions defined on a domain of Rn and
a result which shows that a domain in Rn can be written as a union of non-
overlapping closed cubes. (Proofs of these results can be found in Evans [16]
and Stein [51], respectively.)

Let D be a bounded open connected set of Rn (a domain) with boundary
∂D and closure D̄.

Definition 13. Let k be a positive integer. We say that ∂D is of class Ck if,
for every point x ∈ ∂D, there is a homeomorphsim φ of a neighborhood U of
x into Rn such that both φ and φ−1 have k continuous derivatives with

ϕ (D ∩ U) ⊂ {(x1, . . . , xn) ∈ Rn : xn > 0}

and
ϕ (∂D ∩ U) ⊂ {(x1, . . . , xn) ∈ Rn : xn = 0} .

Theorem 14. Let D be a domain in Rn with ∂D of class C1. Let U be any
bounded open set such that D̄, the closure of D ⊂⊂ U (i.e., the closure of D is
a compact subset of U). Then there is a linear operator E mapping functions
on D to functions on Rn such that:

1. The operator C maps W1,p(D) continuously into W1,p(Rn) for all 1 ≤
p ≤ ∞.

2. C(f) |D = f (i.e., E(·) is an extension operator).

3. E(f)(x) = 0 for x ∈ Uc (i.e., E(f) has support inside U).

Theorem 15. Let D be a domain in Rn. Then D is the union of a sequence
of closed cubes {Dk} whose sides are parallel to the coordinate axes and whose
interiors are mutually disjoint.

Thus, if a function f is defined on a domain in Rn, by Theorem 14 it
can be extended to the whole space. On the other hand, without loss, by
Theorem 15, we can assume that the domain is a cube with sides parallel to
the coordinate axes. In either case, the HK-integral can be constructed under
these conditions.

2.4 Weak Integral.

Here, we follow Talvila [52] and consider the distributional (or weak) integral
on R.
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Definition 16. Let F ′ = DF be the weak derivative of F . We define

Ac(R) = {f = DF | , F ∈ Bc(R)} ,

where

Bc(R) =
{
F ∈ C(R)

∣∣∣∣ lim
x→−∞

F (x) = 0, lim
x→∞

F (x) ∈ R
}
.

If f ∈ Ac(R), we say that F ∈ Bc(R) is the weak integral of f and write

F (x) = (w)
∫ x

−∞
f(y)dy.

Alexiewicz [2] has shown that the class D(R), of Denjoy integrable func-
tions (restricted and wide sense), can be normed in the following manner: for
f ∈ D(R), define ‖f‖D by

‖f‖D = ‖F‖∞ = sup
x

∣∣∣∣∫ x

−∞
f(y)dy

∣∣∣∣ . (2.1)

It is clear that this is a norm, and it is known that D(R) is not complete. The
following is proved in Talvila [52].

Theorem 17. With the Alexiewicz norm, the space Ac has the following
properties:

1. Ac is a separable Banach space and a Banach lattice, which contains L1

and the Denjoy integrable functions (restricted and wide sense) as dense
subsets.

2. Ac is isometrically isomorphic to Bc.

3. Ac is the completion of D(R).

4. The dual space A∗c of Ac is BV(R).

There is also a weak integral in Rn (see [3] and [45] for details). If f ∈
D′(Rn) then f is integrable if there is a function F ∈ C(Rn) such that DF = f ,
where D = ∂n

∂x1∂x2···∂xn
. Thus,∫

Rn

f(x)ϕ(x)dx =
∫

Rn

DF (x)ϕ(x)dx = (−1)n
∫

Rn

F (x)Dϕ(x)dx,

for all φ in C∞c (Rn).
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3 KSp Spaces.

In order to construct the spaces of interest, first recall that the HK-integral is
equivalent to the Denjoy integral (see Henstock [33] or Pfeffer [46]). Replacing
R by Rn in (2.1), for f ∈ D(Rn), we have:

‖f‖D = sup
r>0

∣∣∣∣∫
Br

f(x)dx
∣∣∣∣ = sup

r>0

∣∣∣∣∫
Rn

EBr (x)f(x)dx
∣∣∣∣ <∞, (3.1)

where Br is any closed cube of diagonal r centered at the origin in Rn with
sides parallel to the coordinate axes, and EBr

(x) is the characteristic function
of Br.

Now, fix n, and let Qn be the set {x = (x1, x2 · · · , xn) ∈ Rn} such that
xi is rational for each i. Since this is a countable dense set in Rn, we can
arrange it as Qn = {x1,x2,x3, · · ·}. For each l and i, let Bl(xi) be the closed
cube centered at xi, with sides parallel to the coordinate axes and diagonal
rl = 2−l, l ∈ N. Now choose the natural order which maps N × N bijectively
to N:

{(1, 1), (2, 1), (1, 2), (1, 3), (2, 2), (3, 1), (3, 2), (2, 3), · · · }.

Let {Bk, k ∈ N} be the resulting set of (all) closed cubes
{Bl(xi) |(l, i) ∈ N× N} centered at a point in Qn and, let Ek(x) be
the characteristic function of Bk, so that Ek(x) is in Lp[Rn] ∩ L∞[Rn] for
1 ≤ p <∞. Define Fk( · ) on L1[Rn] by

Fk(f) =
∫

Rn

Ek(x)f(x)dx. (3.2)

It is clear that Fk( · ) is a bounded linear functional on Lp[Rn] for each k,
‖Fk‖∞ ≤ 1 and, if Fk(f) = 0 for all k, f = 0 so that {Fk} is fundamental
on Lp[Rn] for 1 ≤ p ≤ ∞ . Fix tk > 0 such that

∑∞
k=1 tk = 1 and define a

measure dP(x,y) on Rn × Rn by:

dP(x,y) =
[∑∞

k=1
tkEk(x)Ek(y)

]
dxdy.

We first construct our Hilbert space. Define an inner product ( · ) on L1[Rn]
by

(f, g) =
∫

Rn×Rn

f(x)g(y)∗dP(x,y)

=
∑∞

k=1
tk

[∫
Rn

Ek(x)f(x)dx
] [∫

Rn

Ek(y)g(y)dy
]∗
.

(3.3)
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We use a particular choice of tk in Gill and Zachary [23], which is suggested
by physical analysis in another context. We call the completion of L1[Rn],
with the above inner product, the Kuelbs-Steadman space, KS2[Rn]. Follow-
ing suggestions of Gill and Zachary, Steadman [50] constructed this space by
adapting an approach developed by Kuelbs [39] for other purposes. Her inter-
est was in showing that L1[Rn] can be densely and continuously embedded in
a Hilbert space which contains the HK-integrable functions. To see that this
is the case, let f ∈ D[Rn], then:

‖f‖2KS2 =
∑∞

k=1
tk

∣∣∣∣∫
Rn

Ek(x)f(x)dx
∣∣∣∣2 6 sup

k

∣∣∣∣∫
Rn

Ek(x)f(x)dx
∣∣∣∣2 6 ‖f‖2D ,

so f ∈ KS2[Rn].

Theorem 18. The space KS2[Rn] contains Ac and Lp[Rn] (for each p, 1 6
p 6∞) as dense subspaces.

Proof. The first inclusion follows from the above equation and the fact that
both Ac and KS2[Rn] contain L1[Rn] densely. Thus, we need only show that
KS2[Rn] ⊃ Lq[Rn] for q 6= 1. If f ∈ Lq[Rn] and q <∞, we have

‖f‖KS2 =

[∑∞

k=1
tk

∣∣∣∣∫
Rn

Ek(x)f(x)dx
∣∣∣∣
2q
q

]1/2

6

[∑∞

k=1
tk

(∫
Rn

Ek(x) |f(x)|q dx
) 2

q

]1/2

6 sup
k

(∫
Rn

Ek(x) |f(x)|q dx
) 1

q

6 ‖f‖q .

Hence, f ∈ KS2[Rn]. For q = ∞, first note that vol(Bk)2 ≤
[

1
2
√
n

]2n
, so we

have

‖f‖KS2 =

[∑∞

k=1
tk

∣∣∣∣∫
Rn

Ek(x)f(x)dx
∣∣∣∣2
]1/2

6
[[∑∞

k=1
tk[vol(Bk)]2

]
[ess sup |f |]2

]1/2
6

[
1

2
√
n

]n
‖f‖∞ .

Thus f ∈ KS2[Rn], and L∞[Rn] ⊂ KS2[Rn].
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The fact that L∞[Rn] ⊂ KS2[Rn], while KS2[Rn] is separable makes it
clear in a very forceful manner that separability is not an inherited property.
Before proceeding to additional study, we need to construct KSp[Rn].

To construct KSp[Rn] for all p and for f ∈ Lp, define:

‖f‖KSp =

{ {∑∞
k=1 tk

∣∣∫
Rn Ek(x)f(x)dx

∣∣p}1/p
, 1 6 p <∞,

supk>1

∣∣∫
Rn Ek(x)f(x)dx

∣∣ , p =∞.

It is easy to see that ‖·‖KSp defines a norm on Lp. If KSp is the completion
of Lp with respect to this norm, we have:

Theorem 19. For each q, 1 6 q 6∞, KSp[Rn] ⊃ Lq[Rn] as dense continu-
ous embeddings.

Proof. As in the previous theorem, by construction KSp[Rn] contains Lp[Rn]
densely, so we need only show that KSp[Rn] ⊃ Lq[Rn] for q 6= p. First, suppose
that p <∞. If f ∈ Lq[Rn] and q <∞, we have

‖f‖KSp =

[∑∞

k=1
tk

∣∣∣∣∫
Rn

Ek(x)f(x)dx
∣∣∣∣

qp
q

]1/p

6

[∑∞

k=1
tk

(∫
Rn

Ek(x) |f(x)|q dx
) p

q

]1/p

6 sup
k

(∫
Rn

Ek(x) |f(x)|q dx
) 1

q

6 ‖f‖q .

Hence, f ∈ KSp[Rn]. For q =∞, we have

‖f‖KSp =
[∑∞

k=1
tk

∣∣∣∣∫
Rn

Ek(x)f(x)dx
∣∣∣∣p]1/p

6
[[∑∞

k=1
tk[vol(Bk)]p

]
[ess sup |f |]p

]1/p
6 M ‖f‖∞ .

Thus f ∈ KSp[Rn], and L∞[Rn] ⊂ KSp[Rn]. The case p =∞ is obvious.

Theorem 20. For KSp, 1 ≤ p ≤ ∞, we have:

1. If f, g ∈ KSp, then ‖f + g‖KSp 6 ‖f‖KSp +‖g‖KSp (Minkowski inequal-
ity).

2. If K is a weakly compact subset of Lp, it is a compact subset of KSp.
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3. If 1 < p <∞, then KSp is uniformly convex.

4. If 1 < p <∞ and p−1 + q−1 = 1, then the dual space of KSp is KSq.

5. KS∞ ⊂ KSp, for 1 ≤ p <∞.

Proof. The proof of (1) follows from the classical case for sums. The proof
of (2) follows from the fact that, if {fn} is any weakly convergent sequence in
K with limit f , then ∫

Rn

Ek(x) [fn(x)− f(x)] dx→ 0

for each k. It follows that {fn} converges strongly to f in KSp.
The proof of (3) follows from a modification of the proof of the Clarkson

inequalities for lp norms (see [9]).
In order to prove (4), observe that, for p 6= 2, 1 < p < ∞, the linear

functional

Lg(f) = ‖g‖2−pKSp

∑∞

k=1
tk

∣∣∣∣∫
Rn

Ek(x)g(x)dx
∣∣∣∣p−2 ∫

Rn

Ek(y)f(y)∗dy

is a unique duality map on KSq for each g ∈ KSp and that KSp is reflexive
from (3). To prove (5), note that f ∈ KS∞ implies that

∣∣∫
Rn Ek(x)f(x)dx

∣∣ is
uniformly bounded for all k. It follows that

∣∣∫
Rn Ek(x)f(x)dx

∣∣p is uniformly
bounded for each p, 1 ≤ p < ∞. It is now clear from the definition of KS∞

that: [∑∞

k=1
tk

∣∣∣∣∫
Rn

Ek(x)f(x)dx
∣∣∣∣p]1/p

6 ‖f‖∞KS <∞.

Note that, since L1[Rn] ⊂ KSp[Rn] and KSp[Rn] is reflexive for 1 < p <
∞, the second dual

{
L1[Rn]

}∗∗ = M[Rn] ⊂ KSp[Rn]. Recall that M[Rn]
is the space of bounded finitely additive set functions defined on the Borel
sets B[Rn]. This space contains the Dirac delta measure and the free-particle
Green’s function for the Feynman integral. We will return to M[Rn] in the
next section.

Remark 21. There is quite a lot of flexibility in the choice of the family of

positive numbers {tk},
∞∑
k=1

tk = 1. This is somewhat akin to the standard

metric used for R∞ (see Section 6.4). Recall that for any two points X, Y ∈
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R∞, d(X,Y ) =
∞∑
n=1

1
2n

|X−Y |
1+|X−Y | . The family of numbers { 1

2n } can be replaced

by any other sequence of positive numbers whose sum is one, without affecting
the topology. We have used physical analysis to choose the family {tk} so they
are interpreted as probabilities for the occurrence of a particular discrete path.

There is also some ambiguity associated with the order for Qn and the
order for N × N. (We have used simplicity to choose the order for N × N.)
For our work, the important fact is that, for any combination of orders, the
properties of KS2[Rn] are invariant.

4 KSm,p Spaces.

In many applications, it is convenient to formulate problems on one of the stan-
dard Sobolev spaces Wm,p(Rn). In this section we define the corresponding
extension for the KSp spaces. (As will be clear, this theory is in its formative
stages so that there is much to be done.)

Definition 22. If m ≥ 0 is fixed and 1 ≤ p ≤ ∞, we define the generalized
Sobolev space KSm,p(Rn) to be the set of all locally summable functions u :
Rn → R such that, for each multi-index α with |α| 6 m, Dαu exists in the
weak sense and belongs to KSp(Rn).

Definition 23. If u ∈ KSm,p(Rn), we define the norm by:

‖u‖KSm,p : =


{∑

|α|6m
∑∞
i=1 ti

∣∣∫
Rn Ei(x)Dαu(x)dλ(x)

∣∣p}1/p

, 1 6 p <∞,∑
|α|6m supi>1

∣∣∫
Rn Ei(x)Dαu(x)dλ(x)

∣∣ , p =∞.

Recall that the standard Sobolev space Wk,p(Rn) is the set of all locally
summable functions u : Rn → C such that Dαu exists weakly and belongs to
Lp(Rn). The next result follows from the definition of the respective norms
on Wk,p(Rn) and KSk,p(Rn).

Theorem 24. The completion of Wk,p(Rn) relative to the KSp(Rn) norm
also defines the space KSk,p(Rn), which contains Wk,p(Rn) as a continuous
dense and compact embedding.

5 Extension of Fourier and Convolution Operators.

Let L[B], L[H] denote the bounded linear operators on B, H respectively,
where we assume that the separable Banach space B is a continuous dense
embedding in the separable Hilbert space H. The following is the major result



16 T. L. Gill, W. W. Zachary

in Gill et al [22]. It generalizes the well-known result of von Neumann [56] for
bounded operators on Hilbert spaces.

Theorem 25. Let B be a separable Banach space and let A be a bounded
linear operator on B. Then A has a well-defined adjoint A∗ defined on B such
that:

1. the operator A∗A ≥ 0 (maximal accretive),

2. (A∗A)∗ = A∗A (selfadjoint), and

3. I +A∗A has a bounded inverse.

The proof depends on the fact that, given a separable Banach space B,
there always exist Hilbert spaces H1 and H2 such that H1 ⊂ B ⊂ H2 as
continuous dense embeddings, with H1 determined by H2 (see [22]). If A is
any bounded linear operator on B, we define A∗ by

A∗x = J−1
1 [(A1)′]J2|B(x), (5.1)

where A1 is A restricted to H1, J2|B maps B into H′2 and J−1
1 maps H′1 onto

H1.
It is not clear that A need have a bounded extension to H2. On the other

hand, the theorem by Lax [42] states that:

Theorem 26. If A is a bounded linear operator on B such that A is selfadjoint
(i.e., (Ax, y)H2 = (x,Ay)H2 for all x, y,∈ B ), then A is bounded on H2 and
‖A‖H2

≤ k ‖A‖B with k a positive constant.

Since A∗A is selfadjoint on B, it is natural to expect that the same is true on
H2. However, this need not be the case. To obtain a simple counterexample,
recall that, in standard notation, the simplest class of bounded linear operators
on B is B ⊗ B′, in the sense that:

B ⊗ B′ : B → B, by Ax = (b⊗ b′)x = 〈x, b′〉 b.

Thus, if b′ is in B′\H′

2, then J2{J−1
1 [(A1)′]J2|B(x)} need not be in H′

2, so
that A∗A is not defined as an operator on all of H2 and thus, cannot have a
bounded extension. We can now state the correct extension of Theorem 26.

Theorem 27. Let A be a bounded linear operator on B. If B′ ⊂ H2, then
A has a bounded extension to L[H2], with ‖A‖H2

≤ k ‖A‖B with k a positive
constant.
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Proof. The proof is now easy if we observe that, with the stated condition,
J2{J−1

1 [(A1)′]J2|B(x)} is in H′

2 for all x ∈ B. It follows that, for any bounded
linear operator A defined on B, the operator T = A∗A is selfadjoint on H2.
Thus, by Lax’s theorem, T is bounded on H2, with ‖A∗A‖H2 = ‖A‖2H2

≤
‖A∗A‖B ≤ k‖A‖2B, where k = inf{M | ‖A∗A‖B ≤M‖A‖2B}.

We can now use Theorem 27 to prove that F and C, the Fourier (transform)
operator and the convolution operator respectively, defined on L1[Rn], have
bounded extensions to KS2[Rn]. It should be noted that this theorem also
implies that both operators have bounded extensions to Lp[Rn] (for 1 ≤ p ≤ 2).
This is the first proof based on functional analysis, while the traditional proof
is obtained via rather deep methods of (advanced) real analysis. (However this
result does not tell us that the restriction of the Fourier transform operator
to Lp[Rn] maps Lp[Rn] to itself, which is not true unless p = 2 (see Grafakos
[31]).)

Theorem 28. Both F and C extend to bounded linear operators on KS2[Rn].

Proof. To prove our result, first note that C0[Rn], the bounded continuous
functions on Rn which vanish at infinity, is contained in KS2[Rn] . Now F is
a bounded linear operator from L1[Rn] to C0[Rn], so we can consider it as a
bounded linear operator from L1[Rn] to KS2[Rn]. Since L1[Rn] is dense in
KS2[Rn] and L∞[Rn] ⊂ KS2[Rn], by Theorem 27 F extends to a bounded
linear operator on KS2[Rn].

To prove that C has a bounded extension, fix g in L1[Rn] and define Cg on
L1[Rn] by:

Cg(f)(x) =
∫
g(y)f(x− y)dy.

Once again, since Cg is bounded on L1[Rn] and L1[Rn] is dense in KS2[Rn],
by Theorem 27 it extends to a bounded linear operator on KS2[Rn]. Now use
the fact that convolution is commutative to get that Cf is a bounded linear
operator on L1[Rn] for all f ∈ KS2[Rn]. Another application of Theorem 27
completes the proof.

We now return to M[Rn].

Definition 29. A uniformly bounded sequence {µk} ⊂M[Rn] is said to con-
verge weakly to µ (µn

w−→ µ) if, for every bounded uniformly continuous func-
tion h(x), ∫

Rn

h(x)dµn →
∫

Rn

h(x)dµ.
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Theorem 30. If µn
w−→ µ in M[Rn], then µn

s−→ µ (strongly) in KSp[Rn].

Proof. Since the characteristic function of a closed cube is a bounded uni-
formly continuous function (a.e.), µn

w−→ µ in M[Rn] implies that∫
Rn

Ek(x)dµn →
∫

Rn

Ek(x)dµ

for each k, so that limn→∞ ‖µn − µ‖KSp = 0.

A little reflection gives:

Theorem 31. The space KS2[Rn] is a commutative Banach algebra with unit.

In closing, it is clear that all bounded linear operators on Lp[Rn] have
extensions to KS2[Rn]. It is easy to see that they also have densely defined
closed extensions to KSp[Rn] for p 6= 2. We have not been able to show that
these extensions are bounded.

5.1 Markov Processes.

In the study of Markov processes, two of the natural spaces on which to
formulate the theory; Cb[Rn], the space of bounded continuous functions,
or UBC[Rn], the bounded uniformly continuous functions, do not have the
expected properties. It is well-known that the semigroups associated with
Markov processes, whose generators have unbounded coefficients, are not nec-
essarily strongly continuous when defined on Cb[Rn]. This means that the
generator of such a semigroup does not exist in the standard sense. As a con-
sequence, a number of weaker (equivalent) definitions have been developed in
the literature. For a good discussion of this and related problems see Lorenzi
and Bertoldi [43].

Definition 32. A sequence of functions {fn} in Cb[Rn] is said to converge
to f in the mixed topology, written τM -lim fn = f , if supn∈N ‖fn‖∞ 6 M and
‖fn − f‖∞ → 0 uniformly on every compact subset of Rn.

Theorem 33. If {fn} converges to f in the mixed topology on Cb[Rn], then
{fn} converges to f in the norm topology of KSp[Rn] for each 1 ≤ p ≤ ∞.

Proof. It is easy to see that both Cb[Rn] and UBC[Rn] are subsets of
KSp[Rn] for 1 ≤ p ≤ ∞. Thus, it suffices to prove that τM -lim fn = f
implies that limn→∞ ‖fn − f‖pKS = 0. This now follows from the fact that
each box used in our definition of the KSp[Rn] norm is a compact subset of
Rn.
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Theorem 34. Suppose that T̂ (t) is a transition semigroup defined on Cb[Rn]
with weak generator Â. Let T (t) be the extension of T̂ (t) to KSp[Rn]. Then
T (t) is strongly continuous, and the extension A of Â to KSp[Rn] is the strong
generator of T (t).

Proof. First observe that the dual of Cb[Rn] is M[Rn], which is contained in
KSp[Rn] for 1 ≤ p ≤ ∞. Thus, we can apply Theorem 27 to show that T̂ (t)
has a bounded extension to KS2[Rn]. It is easy to show that the extended
operator T (t) is a semigroup. Since the τM topology on Cb[Rn] is stronger
than the norm topology on KS2[Rn], we see that the generator A of T (t) is
strong.

5.2 Feynman Path Integral.

Historically, the mathematics community has had two responses to the in-
troduction of a new mathematical idea or method into physics. The first
response has been to fit the idea or method into an existing framework. The
second and more exciting response is when such an idea or method leads to
the development of a new branch of mathematics.

The most prevalent and successful response has been in finding an exist-
ing mathematical structure that will reasonably accommodate the physical
theory and provide (at least) the framework for mathematical rigor. An excel-
lent example of this is the introduction of matrix algebra into the Heisenberg
formulation of quantum theory (i.e., matrix mechanics) by Born and Jordan
[6]. This made it possible for Schrödinger to show that, in the nonrelativistic
case, his wave mechanics was equivalent to Heisenberg’s theory. This was later
shown to be rigorously true mathematically via the unitary equivalence be-
tween l2 and L2 as separable Hilbert spaces (c.f., von Neumann [57]). However,
even in this case, we should not conclude that this is the complete story. There
have always been physical advantages in looking at and working with some
problems using the Heisenberg formulation. In fact, in 1964, Dirac strongly
suggested on physical grounds that, at the quantum field level, Heisenberg’s
formulation is much more fundamental (see [7], page 130). Furthermore, re-
cent studies strongly indicate that the mathematical concept of isometric iso-
morphism need not be sufficient for physical equivalence. (For example, it is
known, [27], that the Dirac operator is nonlocal in time, while the square-root
operator is nonlocal in space, but they are unitarily equivalent.)

In some rare but important instances, there is no obvious mathemati-
cal structure which can completely accommodate the theory in the manner
presented by physicists. In this case, mathematicians have extended and/or
adapted an existing mathematical theory, developed new mathematical struc-
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tures or suggested (in frustration) that any conclusions derived from the use
of these ideas or methods are at least suspect. Over the last sixty years, all of
the above positions have appeared in response to Feynman’s introduction of
his path integral into quantum theory.

Since his path integral is the object of this section, let us consider the
simple case of a free particle in nonrelativistic quantum theory in R3:

i~
∂ψ(x, t)
∂t

− ~2

2m
∆ψ(x, t) = 0, ψ(x, s) = δ(x− y). (5.2)

The solution can be computed directly:

ψ(x, t) = K [x, t; y, s] =
[

2πi~(t− s)
m

]−3/2

exp

[
im

2~
|x− y|2

(t− s)

]
.

Feynman wrote the above solution to equation (5.2) as

K [x, t; y, s] = ∫x(t)=x
x(s)=y Dx(τ) exp

{
im
2~ ∫

t
s

∣∣dx
dt

∣∣2 dτ} , (5.3)

where

∫x(t)=x
x(s)=y Dx(τ) exp

{
im
2~ ∫

t
s

∣∣dx
dt

∣∣2 dτ} =:

lim
N→∞

[
m

2πi~ε(N)

]3N/2
∫R3

N∏
j=1

dxj exp

 i
~

N∑
j=1

[
m

2ε(N) (xj − xj−1)2
] ,

(5.4)

with ε(N) = (t− s)/N .

Problems.

Feynman’s objective was to develop an approach to quantum theory which
would avoid the use of a Hamiltonian. Equations (5.2)-(5.4) can be viewed
as an attempt to “apparently” define an integral over the space of all con-
tinuous paths of the exponential of an integral of the classical Lagrangian on
configuration space. Thus, his objective was (partly) accomplished.

However, this approach (using the Lagrangian directly) has led to a new
method for quantizing physical systems, called the path integral method. It
is now used almost exclusively by large groups (in all branches of physics)
and has also been used (formally) by researchers in both mathematics and
mathematical physics. Thus, we must conclude that Feynman’s formulation
(as he proposed it) is both physically and mathematically distinct from those
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of Heisenberg and Schrödinger. (Feynman showed that existence of the other
two representations implies his path integral representation. However, it has
not been shown that a path integral representation implies the other two.)

From a mathematical point of view, this leads to a number of problems:

• The kernel K [x, t; y, s] and δ(x) are not in L2[R3], the standard space
for quantum theory.

• The kernel K [x, t; y, s] cannot be used to define a measure.

Thus, a natural question is: Does there exist a separable Hilbert space con-
taining K [x, t; y, s] and δ(x) which also allows the convolution and Fourier
transform as bounded operators? A positive answer to this question is neces-
sary if we are to make sense of equation (5.4) and have a representation space
for the Feynman formulation of quantum theory (as presented).

The properties of KS2[Rn] derived earlier suggest that it may be a more
appropriate Hilbert space, compared to L2[Rn], for the Feynman formulation.
It is easy to prove that both the position and momentum operators have
closed densely defined extensions to KS2[Rn]. Furthermore, the extensions of
F and C insure that both the Schrödinger and Heisenberg theory have faithful
representations on KS2[Rn].

Since KS2[Rn] contains the space of measures, it follows that all the ap-
proximating sequences for the Dirac measure converge strongly to it in the
KS2[Rn] topology. (For example, [sin(λ · x)/(λ · x)] ∈ KS2[Rn] and converges
strongly to δ(x).) Thus, the Feynman kernel [17] generates a finitely additive
set function defined on the algebra of sets B, such that EB(|y|) ∈ BV by: (with
m = 1 and ~ = 1)

Kf [t,x ; s,B] =
∫
B

(2πi(t− s))−n/2 exp{i|x− y|2
/

2(t− s)}dy

is in KS2[Rn] and ‖Kf [t,x ; s,B]‖KS 6 1, while ‖Kf [t,x ; s,B]‖M = ∞ (the
total variation norm) and

Kf [t,x ; s,B] =
∫

Rn

Kf [t,x ; τ, dz]Kf [τ, z ; s,B], (HK-integral).

Definition 35. Let Pk = {t0, τ1, t1, τ2, · · · , τk, tk} be an HK-partition for
a function δk(s), s ∈ [0, t] for each k, with limk→∞∆µk = 0 (mesh). Set
∆tj = tj − tj−1, τ0 = 0 and, for ψ ∈ KS2[Rn], define

∫
Rn[0,t]

Kf [Dλx(τ) ; x(0)] = e−λt
[[λt]]∑
k=0

(λt)k

k!


k∏
j=1

∫
Rn

Kf [tj ,x(τj) ; tj−1, dx(τj−1)]

,
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and∫
Rn[0,t]

Kf [Dx(τ) ; x(0)]ψ[x(0)] = lim
λ→∞

∫
Rn[0,t]

Kf [Dλx(τ) ; x(0)]ψ[x(0)] (5.5)

whenever the limit exists.

Remark 36. In the above definition we have used the Poisson process. This is
not accidental but appears naturally from a physical analysis of the information
that is knowable in the micro-world (see [23]). In fact, it has been suggested by
Kolokoltsov [38] that such jump processes often provide another effective way
to give meaning to the Feynman path integral, and also offers a nice approach
to Feynman diagrams.

However, the term k = 0 in our definition still seems strange. This term
represents the probability that no information appears. Thus, in case k = 0,
the product does not contribute and the right-hand side reduces to e−λt. In the
limit, this term becomes zero in equation (5.5) (see also Section 5 in [23]).

The next result is now elementary, since KS2[Rn] is closed under convolu-
tion.

Theorem 37. The function ψ(x) ≡ 1 ∈ KS2[Rn] and∫
Rn[t,s]

Kf [Dx(τ) ; x(s)] = Kf [t,x ; s,y] = 1√
[2πi(t−s)]n

exp{i|x− y|2
/

2(t− s)}.

The above result is what Feynman was trying to obtain without the ap-
propriate space. A more general (sum over paths) result, that covers almost
all application areas, will appear later, where these spaces have been used
to provide a generalization of the constructive representation theory for the
Feynman operator calculus (see [24] and also [23] for other applications).

Discussion.

A natural reaction to any suggestion that we replace the Lebesgue integral
by one based on a finitely additive measure would be negative. After all, we
would lose all of the advantages of the powerful theorems (dominated con-
vergence theorem, monotone convergence theorem, etc) that depend on the
countable additivity of the measure. Those strongly vested in using L2 for
the C∗-algebra approach to quantum theory via the GNS construction may
also feel obliged to object to such a proposed change. These are all reason-
able concerns. However, we do not lose any of the powerful theorems found
via countable additivity. First of all, the HK-measure is an extension of the
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Lebesgue measure so that all of its power is still available to us. In fact, Hen-
stock has extended each of the standard theorems to the HK-integral (see [33]).
Those concerned with the C∗-algebra approach to quantum theory need not
be concerned since KS2 is a separable Hilbert space and is also amenable to
the GNS construction. If we treat K [x, t; y, s] as the kernel for an operator
acting on good initial data, then a partial solution has been obtained by a
number of workers. (See [24] for references to all the important contributions
in this direction.)

A related approach to the Feynman path integral can be found in the
work of Fujiwara and Kumano-go (see [18], [19] and references therein). For a
survey of this approach, see [20]. They have systematically developed a time-
slicing approximation method that covers a large portion of classical quantum
theory. They restrict themselves to scalar potentials with polynomial growth.
However, their method seems general enough to eventually include the addi-
tional cases. (They show the power of their approach by providing an analytic
formula for the second term of the semi-classical asymptotic expansion of the
Feynman path integral.)

5.3 Examples.

A standard method is to compute the Wiener path integral for the problem
under consideration and then use analytic continuation in the mass to provide
a rigourous meaning for the Feynman path integral. The following example
provides a path integral representation for a problem that cannot be solved
using analytic continuation via a Gaussian kernel (see Gill and Zachary [26]).
It is shown that, if the vector potential A is constant, µ = mc/~, and β is the
standard beta matrix, then the solution to the square-root equation for a spin
1/2 particle:

i~∂ψ(x, t)/∂t =
{

β

√
c2
(
p− e

cA
)2 +m2c4

}
ψ(x, t), ψ(x, 0) = ψ0(x),

is given by:

ψ(x, t) = U[t, 0]ψ0(x) =
∫
R3

exp
{
ie

2~c
(x− y) ·A

}
K [x, t ; y, 0]ψ0(y)dy,
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where

K [x, t ; y, 0] =
ictµ2β

4π


−H(1)

2

h
µ(c2t2−||x−y ||2)1/2

i
[c2t2−||x−y ||2] , ct < −||x ||,

−2iK2

h
µ(||x−y ||2−c2t2)1/2

i
π[||x−y ||2−c2t2] , c |t| < ||x ||,

H
(2)
2

h
µ(c2t2−||x−y ||2)1/2

i
[c2t2−||x−y ||2] , ct > ||x ||.

The function K2( · ) is a modified Bessel function of the third kind of second
order, whileH(1)

2 , H
(2)
2 are Hankel functions (see Gradshteyn and Ryzhik [30]).

Thus, we have a kernel that is far from the standard form. This example was
first introduced in [25], where we only considered the kernel for the Bessel
function term. In that case, it was shown that, under appropriate conditions,
that term will reduce to the free-particle Feynman kernel and, if we set µ = 0,
we get the kernel for a (spin 1/2) massless particle. In closing this section,
we remark that the square-root operator is unitarily equivalent to the Dirac
operator (in the case discussed).

5.4 The Kernel Problem.

Since any semigroup that has a kernel representation will automatically gen-
erate a path integral via the reproducing property, a fundamental question
is: Under what general conditions can we expect a given (time-independent)
generator of a semigroup to have an associated kernel? In this section we
discuss a class of general conditions for unitary groups. It will be clear that
the results of this section carry over to semigroups with minor changes.

Let A(x, p) denote a k× k matrix operator [Aij(x, p)], i, j = 1, 2, · · · , k,
whose components are pseudodifferential operators with symbols aij(x, η) ∈
C∞(Rn × Rn) and we have, for any multi-indices α and β,∣∣∣a(α)

ij(β)(x,η)
∣∣∣ 6 Cαβ(1 + |η|)m−ξ|α|+δ|β|, (5.6)

where

a
(α)
ij(β)(x,η) = ∂αpβaij(x,η),

with ∂l = ∂/∂ηl and pl = (1/i)(∂/∂xl). The multi-indices are defined in the
usual manner by α = (α1, · · · , αn) for integers αj ≥ 0, and |α| =

∑n
j=1 αj ,

with similar definitions for β. The notation for derivatives is ∂α = ∂α1
1 · · · ∂αn

n

and pβ = pβ1
1 · · · pβn

n . Here, m, β, and δ are real numbers satisfying 0 ≤ δ < ξ.
Equation (5.6) states that each aij(x, η) belongs to the symbol class Smξ,δ (see
[49]).



Banach Spaces for the Feynman integral 25

Let a(x,η) = [aij(x,η)] be the matrix-valued symbol for A(x,η), and let
λ1(x,η) · · ·λk(x,η) be its eigenvalues. If | · | is the norm in the space of k× k
matrices, we assume that the following conditions are satisfied by a(x,η). For
0 < c0 < |η| and x ∈ Rn we have

1.
∣∣∣a(α)

(β)(x,η)
∣∣∣ ≤ Cαβ |a(x,η)| (1 + |η)|)−ξ|α|+δ|β| (hypoellipticity),

2. λ0(x,η) = max
16j6k

Reλj(x,η) < 0,

3. |a(x,η)|
|λ0(x,η)| = O

[
(1 + |η|)(ξ−δ)/(2k−ε)] , ε > 0.

We assume that A(x,p) is a selfadjoint generator of a unitary group U(t, 0),
so that

U(t, 0)ψ0(x) = exp[(i/~)tA(x,p)]ψ0(x) = ψ(x, t)

solves the Cauchy problem

(i~)∂ψ(x, t)/∂t = A(x,p)ψ(x, t), ψ(x, t) = ψ0(x). (5.7)

Definition 38. We say that Q(x, t,η, 0) is a symbol for the Cauchy problem
(5.7) if ψ(x, t) has a representation of the form

ψ(x, t) = (2π)−n/2
∫

Rn

ei(x,η)Q(x, t,η, 0)ψ̂0(η)dη. (5.8)

It is sufficient that ψ0 belongs to the Schwartz space S(Rn), which is con-
tained in the domain of A(x,p), in order that (5.8) makes sense.

Following Shishmarev [49], and using the theory of Fourier integral opera-
tors, we can define an operator-valued kernel for U(t, 0) by

K(x, t ; y, 0) = (2π)−n/2
∫

Rn

ei(x−y,η)Q(x, t,η, 0)dη,

so that

ψ(x, t) = U(t, 0)ψ0(x) = (2π)−n/2
∫

Rn

K(x, t ; y, 0)ψ0(y)dy. (5.9)

The following results are due to Shishmarev [49].

Theorem 39. If A(x,p) is a selfadjoint generator of a strongly continuous
unitary group with domain D, S(Rn) ⊂ D in L2(Rn), such that conditions
(1)-(3) are satisfied, then there exists precisely one symbol Q(x, t,η, 0) for the
Cauchy problem (5.7).
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Theorem 40. If we replace our condition (3) in Theorem 39 by the stronger
condition

(3′) |a(x,η)|
|λ0(x,η)| = O

[
(1 + |η|)(ξ−δ)/(3k−1−ε)] , ε > 0, |η| > c0,

then the symbol Q(x, t,η, 0) of the Cauchy problem (5.7) has the asymptotic
behavior near t = 0:

Q(x, t,η, 0) = exp[−(i/~)ta(x,η)] + o(1),

uniformly for x, y ∈ Rn.

Now, using Theorem 40 we see that, under the stronger condition (3’), the
kernel K(x, t ; y, 0) satisfies

K(x, t; y, 0) =
∫

Rn

exp[i(x− y,η)− (i/~)ta(x,η)]
dη

(2π)n/2

+
∫

Rn

exp[i(x− y,η)]
dη

(2π)n/2
o(1).

In order to see the power of KS2(Rn), first note that A(x,p) has a selfadjoint
extension to KS2(Rn) which also generates a unitary group. This means that
we can construct a path integral in the same (identical) way as was done for
the free-particle propagator (i.e., for all Hamiltonians with symbols in Smα,δ).
Furthermore, it follows that the same comment applies to any Hamiltonian
that has a kernel representation, independent of its symbol class. The impor-
tant point of this discussion is that no initial data or Gaussian form for the
kernel is required!

6 The Lebesgue Measure Problem on R∞.

6.1 Background.

It is well-known that physics has been and continues to be a powerful source
of research inspiration for both pure and applied mathematics. In some cases,
physics insight has also given new approaches to problems in mathematics
that appeared hopeless. This section has two objectives. The first objective
is to show how elementary physics explains why the standard way of thinking
about Lebesgue measure on finite–dimensional space does not apply in the
infinite-dimensional case. The second and more important objective is to show
how a slight change in thinking about the cause for problems with unbounded
measures on R∞ makes the construction of Lebesgue measure (on a reasonable
version of R∞) possible. This allows us to provide a version of Lebesgue
measure for every separable Banach space that has a Schauder basis. As
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an application, we construct a version of Gaussian measure on the space of
continuous paths.

6.2 Motivation.

In order to understand the problem and part of our motivation, let I be a
countable set and, for each i ∈ I, let (Xi, Bi, mi) be a measure space,
where Xi is a complete separable metric space, Bi is the Borel σ-algebra
generated by the open sets of Xi and mi is a probability measure on Xi.
Let L2[Xi, Bi, mi] = L2[Xi] be the set of complex-valued functions f(x)
in Xi such that |f(x)|2 is integrable with respect to mi. If ∆2 is the nat-
ural tensor product norm for Hilbert spaces; then, for any pair Xi and Xj ,
L2[Xi] ⊗̂

∆2 L2[Xj ] = L2[Xi × Xj ]. Let φi ∈ L2[Xi] with ‖φi‖L2[Xi]
= 1

and, with φ = ⊗i∈Iφi, construct the incomplete tensor product space of von
Neumann [58], L∆2

⊗ [φ]s. Let X = ×i∈IXi and B = ⊗̂i∈IBi (the smallest
σ-algebra containing ×i∈IBi). Recall that a tame function in L2[X] is any
function f ∈ L2[X] which only depends on a finite number of variables.

Theorem 41. (Guichardet [32]) L∆2
⊗ [φ]s ∼= L2[X].

Proof. Let JN = {i1, · · · iN} ⊂ I (where N is finite but arbitrary), let
f(xi1 , · · ·xiN ) be a tame function in L2[X], and define f̃(xi1 , · · ·xiN ) =
f(xi1 , · · ·xiN )⊗ (⊗i∈I\JN

φν) so that f̃(xi1 , · · ·xiN ) ∈ L∆2
⊗ [φ]s. Define a func-

tion Λ : L2[X] → L∆2
⊗ [φ]s by Λ(f) = f̃ . It is easy to check that Λ is

well-defined and it is easy to see that: (1) Λ(af1 + bf2) = aΛ(f1) + bΛ(f2) (Λ
is a linear mapping); (2) ‖Λ(f)‖∆2

= ‖f‖L2[X] (Λ is an isometric mapping);
and (3) Λ(f1) = Λ(f2) ⇒ f1 = f2 (Λ is a one-to-one mapping). Since the set
of tame functions is dense in L2[X] and the set of all f̃ is dense in L∆2

⊗ [φ]s, it
follows that, for any f in L2[X], we can define Λ(f) = limn→∞ Λ(fn), where
{fn} is any sequence of tame functions converging to f . Since the extension
to L2[X] is one-to-one, Λ defines an isometric isomorphism of L2[X] onto
L∆2
⊗ [φ]s.

Now observe that this theorem should be true if each Xi = R and each
mi = λ (Lebesgue measure). In this case, L∆2

⊗ [φ]s ∼= L2[R∞,B(R∞), λ̂∞],
where λ̂∞ is some version of Lebesgue measure on R∞. However, there is a
“folk theorem” to the effect that there is no reasonable version of Lebesgue
measure on R∞.

The above is interesting on a number of levels. However, our interest in the
general question is mainly motivated by modeling considerations for infinite
dimensional systems. In many cases the Hilbert space structure appears as
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a natural state space. In other cases, both the Hilbert space structure and
probability measures are imposed for mathematical convenience and appear
somewhat artificial. On the other hand, all reasonable models of infinite di-
mensional physical systems require some constraint on the effects on all but a
finite number of variables. Thus, what is needed, in general, is the imposition
of constraints that preserve the freedom associated with functions of indepen-
dent variables (in some well-defined sense). This necessarily implies a theory
of Lebsegue measure on (a version of) R∞.

6.3 Rotational and Translational Invariance.

On finite-dimensional space it is useful to think of Lebesgue measure in terms
of geometric objects (e.g., volume, surface area, etc.). Thus, it is natural to
expect that this measure will leave these objects invariant under translations
and rotations, so that rotational and translational invariance is an intrinsic
property of Lebesgue measure. However, we then find ourselves disappointed
when we try to use these properties to help define Lebesgue measure on R∞.
On the other hand, if we replace Lebesgue measure by the infinite product
Gaussian measure, µ∞, on R∞, we get countable additivity but lose rota-
tional invariance. Furthermore, the µ∞ measure of l2 is zero. On the other
hand, another approach is to use the standard projection method onto finite
dimensional subspaces to construct a probability measure directly on l2. In
this case, we recover rotational invariance but not translation invariance (but
we lose countable additivity). A nice discussion of this and related issues can
be found in Dunford and Schwartz [12] (see pg. 402).

The above problems, along with the natural need for infinite products
of probability measures served to concentrate research in another direction.
However, the lack of any definitive understanding of the cause for this lack of
invariance on R∞ has led to the general sense that it is very difficult, if not
impossible, to construct a version of Lebesgue measure on R∞.

From a physical point of view, the angular momentum operator is the
generator for the rotational group, while the momentum operator is the gen-
erator for the translation group. Thus, physically we interpret the failure of
full rotational and translation invariance for an infinite dimensional system
as a constraint induced by the requirement of finite total angular and linear
momenta (i.e., physical systems with infinite amounts of angular or linear
momentum are ill-defined). Thus, such systems are necessarily ill-defined as
geometric objects. To see why we recover rotational but not translational
invariance for l2 for Gaussian measures, see below. One could ask similar
questions about C0[0, 1], the continuous functions x(t) on [0, 1] with x(0) = 0
(i.e., Wiener space). (This is unrelated to the mathematical desirability of
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countable additivity.)
To begin, we first consider the following classical setup. Suppose we have

an infinite system of particles with positions {xi(t)} and momenta {pi(t)}, 1 ≤
i < ∞ (t ∈ [0, 1]). For each i, xi(t), pi(t) are mappings from R3 → L2[0, 1].
In this case, the total angular momentum is defined by:

J =
∑∞

i=1
xi × pi.

(Under standard physical conditions, we assume that J is independent of t.)
It follows that, if our phase space is l2, then

‖J‖2 6
∑∞

i=1
‖xi × pi‖2 6 1

2

∑∞

i=1

[
‖xi‖22 + ‖pi‖22

]
,

so that the total angular momentum J is finite. On the other hand, the total
linear momentum, L =

∑∞
i=1 pi, need not be bounded, so we do not have

translation invariance. In the case of C0[0, 1] both bounds can fail. (The
correct setup is the quantum level, where both x, the position, and p, the mo-
mentum, of a particle become operators. However, this requires a substantial
detour, which will not materially change the above picture.)

Remark 42. We note that the ray representation (ambiguity) in conventional
quantum theory may be viewed as the precursor to the ultraviolet divergence
problem in quantum field theory where the ray, along with the wave function,
becomes an operator. (A more precise discussion and proof of the physical
cause for the ultraviolet divergence in quantum electrodynamics, as conjectured
by Dyson [15], can be found in [23].)

6.4 Lebesgue Measure on R∞I .

It is instructive to review the historical approach to the construction of infinite
product measures, {µk, k ∈ N}, on R∞. In the standard approach, the chosen
topology defines open sets to be the (Cartesian) product of an arbitrary finite
number of open sets in R, while the remaining (infinite number) are copies of
R. The first success was Kolmogorov’s work on the foundations of probability
theory [37]. This naturally led to the condition that µk(R) be finite for all but
a finite number of k. Thus, any attempt to construct Lebesgue measure on this
space starts out a failure (since the measure of every open set is infinite). It
appears that any attempt to define Lebesgue theory must face this restriction.
However, Kolmogorov’s approach is not the only way to induce a total measure
of one for the spaces under consideration. An alternate approach is to use
Lebesgue measure and replace the (tail end of the) infinite product of copies
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of R by infinite products of copies of a unit interval (with, as will be seen, a
few additions). In this case, we can still construct probability measures, but
now the door is open to reconsider Lebesgue measure.

The above discussion suggests that, contrary to the long held belief, it may
well be possible to construct Lebesgue measure on (a reasonable version of)
R∞. The purpose of this section is to provide such a construction. Let λ be
Lebesgue measure on R.

Set I = [− 1
2 ,

1
2 ] and, for each n, define RnI = Rn × In, where In =

∞
×

i=n+1
I.

In order to avoid confusion, we set Īc = ∅, where Ī = ×∞J=1I.

Definition 43. If An = A × In, Bn = B × In are any sets in RnI , then we
define:

1. An ∪Bn = A ∪B × In,

2. An ∩Bn = A ∩B × In, and

3. Bcn = Bc × In.

We can now define the topology for RnI via the following class of open sets:

On = {Un : Un = U × In, U open in Rn} .

Note, that (1) and (2) is the same as the standard approach. However, (3) is
different, so that both the set operations and the above class of sets, On, are
not quite the same as those used for the topology of infinite product spaces.

If B(RnI ) is the Borel σ-algebra for RnI (i.e., the smallest σ-algebra gener-
ated by On), then it is easy to see that RnI ⊂ Rn+1

I and B(RnI ) ⊂ B(Rn+1
I ).

Since they are both increasing sequences, we can define R̄∞I and B̄(R∞I ) by:

R̄∞I = limn→∞Rn
I =

∞
∪

k=1
Rk

I

and
B̄(R∞I ) = limn→∞B(Rn

I ) =
∞
∪

k=1
B(Rk

I ).

Let R∞I be the closure of R̄∞I in the induced topology from R∞ (see below). Let
B(R∞I ) be the smallest σ-algebra containing B̄(R∞I ). From our construction,
it is clear that a set of the form A = An ×

(
×∞k=n+1R

)
is not in R̄∞I for any

n, so that R̄∞I 6= R∞. It may well be that R∞ ∈ B(R∞I ) and, R∞I = R∞.
From our construction, it is clear that R∞I ⊂ R∞ (We will see momentarily
that they are actually equal.)
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On the other hand, for any set A of the form A =
∞
×
i=1

Ai ∈ B(R∞I )

with
∑∞
i=1 |λ(Ai)− 1| <∞, we can define a finite-valued infinite dimensional

Lebesgue measure of A by:

0 < λ∞(A) =
∏∞

i=1
λ(Ai). (6.1)

The natural topology for R∞I is that induced as a closed subspace of R∞.
Thus, if X = (xn), Y = (yn) are sequences in R∞I ,

d(X,Y ) =
∞∑
n=1

1
2n

|xn − yn|
1 + |xn − yn|

.

Theorem 44. R∞I = R∞.

Proof. We know that R∞I ⊂ R∞. Let X = (x1, x2, x3, · · · ) be any point
in R∞ and let {Yk}, Yk = (y1,k, y2,k, y3,k, · · · ), be a sequence converg-
ing to X. Thus, given any ε > 0, there exists N(ε) ∈ N such that for
n ≥ N(ε), d(X,Yn) < ε/2. Now choose K(ε) such that for nk > K(ε),∑∞

l=nk+1

1
2l

|yl,n|
1 + ||yl,n||

< ε/2.

Define Ȳn = (y1,n, y2,n, y3,n, · · · , ynk,n, 0, 0, · · · ), so that Ȳn ∈ R∞I . Further-
more, for n ≥ max{N(ε), K(ε)}, we have

d(X, Ȳn) 6 d(X,Yn) + d(Yn, Ȳn) < ε.

Thus, X is a limit point of R∞I and, since this space is closed, we see that
R∞ = R∞I .

Definition 45. We call R∞I the essentially bounded version of R∞.

It may be expected that we lose some of the pathology of R∞ by replacing
it with R∞I . However, this is not true. Infinite product measure for unbounded
measures induces problems because it can fail to make sense for two additional
reasons (other than being unbounded). This is best explained by considering
the following simple example. Let Ai have measure 1 + ε for all i. It is easy to
see that λ∞(A) =

∏∞
i=1 λ(Ai) =∞. On the other hand, if each Ai has measure

1− ε, then λ∞(A) =
∏∞
i=1 λ(Ai) = 0. Thus, the class of sets A ∈ B(R∞I ) for

which 0 < λ∞(A) <∞ is relatively small. It follows that sets of measure zero
need not be small (in the normal sense), nor need sets of infinite measure be
large.
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Theorem 46. λ∞(·) is a measure on B(RnI ), equivalent to n-dimensional
Lebesgue measure on Rn.

Proof. If A =
∞
×
i=1

Ai ∈ B(RnI ), then Ai = I for i > n in (6.1) so that

the above series always converges. Furthermore, λ∞(A) =
∏n
i=1 λ(Ai) =

λn(
n
×
i=1

Ai). Since sets of the type Ai =
n
×
i=1

Ai generate B(Rn), we see that

λ∞(·), restricted to RnI , is equivalent to λn(·).

It is instructive to see how naturally the measurable functions on RnI are
related to those on Rn. Let EIn

be the characteristic function of In. If we let
L(X) represent the class of measurable functions on the set X, then for each
measurable function fn ∈ L(Rn) we identify fn,I ∈ L(RnI ) by fn,I = fn ⊗ EIn

.
It is not obvious that λ∞(·) extends to a countably additive measure on

B(R∞I ). The proof of this requires additional effort.

Definition 47. Let

∆0 = {Kn = Kn × In ∈ B(RnI ) : Kn is compact and 0 < λ∞(Kn) <∞},

∆ = {PN =
⋃N

i=1
Kni , N ∈ N; Kni ∈ ∆0 and λ∞(Knl

∩Knm) = 0, l 6= m}.

Definition 48. If PN ∈ ∆, we define

λ∞(PN ) =
∑N

i=1
λ∞(Kni

).

Since PN ∈ B(RnI ) for some n, and λ∞(·) is a measure on B(RnI ), the next
result is easy:

Lemma 49. If PN1 , PN2 ∈ ∆ then:

1. If PN1 ⊂ PN2 , then λ∞(PN1) ≤ λ∞(PN2).

2. If λ∞(PN1 ∩ PN2) = 0, then λ∞(PN1 ∪ PN2) = λ∞(PN2) + λ∞(PN2).

Definition 50. If G ⊂ R∞I is any open set, we define:

λ∞(G) = lim
N→∞

sup {λ∞(PN ) : PN ∈ ∆, PN ⊂ G, } .

Theorem 51. If O is the class of open sets in B(R∞I ), we have:

1. λ∞(R∞I ) =∞.

2. If G1, G2 ∈ O, G1 ⊂ G2, then λ∞(G1) ≤ λ∞(G2).
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3. If {Gk} ⊂ O, then

λ∞(
⋃∞

k=1
Gk) ≤

∑∞

k=1
λ∞(Gk).

4. If the Gk are disjoint, then

λ∞(
⋃∞

k=1
Gk) =

∑∞

k=1
λ∞(Gk).

Proof. The proof of (1) is standard. To prove (2), observe that

{PN : PN ⊂ G1} ⊂
{
P̄N : P̄N ⊂ G2

}
,

so that λ∞(G1) ≤ λ∞(G2). To prove (3), let PN ⊂
⋃∞
k=1Gk. Since PN is

compact, there is a finite number of the Gk which cover PN , so that PN ⊂⋃L
k=1Gk. Now, for each Gk, there is a PNk

⊂ Gk. Furthermore, as PN is
arbitrary, we can assume that PN = P̄N =

⋃L
k=1 PNk

. Since there is a n such
that all PNk

∈ B(RnI ), we may also assume that λ∞(PNl
∩ PNm

) = 0, l 6= m.
We now have that

λ∞(PN ) =
L∑
k=1

λ∞(PNk
) 6

L∑
k=1

λ∞(Gk) 6
∞∑
k=1

λ∞(Gk).

It follows that
λ∞(

⋃∞
k=1

Gk) ≤
∑∞

k=1
λ∞(Gk).

If the Gk are disjoint, observe that if PN ⊂ P̄M ,

λ∞(P̄M ) ≥ λ∞(PN ) =
L∑
k=1

λ∞(PNk
).

It follows that
λ∞(

⋃∞
k=1

Gk) ≥
∑L

k=1
λ∞(Gk).

This is true for all L so that this, combined with (3), gives our result.

If F is an arbitrary compact set in B(R∞I ), which is not a subset of RnI for
some n, we define

λ∞(F ) = inf {λ∞(G) : F ⊂ G, G open} . (6.2)

Theorem 52. Equation (6.1) is consistent with Definition 47 and the results
of Lemma 49.
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Definition 53. Let A be an arbitrary set in R∞I .

1. The outer measure (on R∞I ) is defined by:

λ∗∞(A) = inf {λ∞(G) : A ⊂ G, G open} .

We let L0 be the class of all A with λ∗∞(A) <∞.

2. If A ∈ L0, we define the inner measure of A by

λ∞,(∗)(A) = sup {λ∞(F ) : F ⊂ A, F compact} .

3. We say that A is a bounded measurable set if λ∗∞(A) = λ∞,(∗)(A), and
define the measure of A, λ∞(A), by λ∞(A) = λ∗∞A).

Theorem 54. Let A, B and {Ak} be arbitrary sets in R∞I with finite outer
measure.

1. λ∞,(∗)(A) ≤ λ∗∞(A).

2. If A ⊂ B then λ∗∞(A) ≤ λ∗∞(B) and λ∞,(∗)(A) ≤ λ∞,(∗)(B).

3. λ∗∞(
⋃∞
k=1Ak) ≤

∑∞
k=1 λ

∗
∞(Ak).

4. If they are disjoint, λ∞,(∗)(
⋃∞
k=1Ak) ≥

∑∞
k=1 λ∞,(∗)(Ak).

Proof. The proofs follow closely along the same lines as similar results in
Jones [36] (see pages 42-52). The proofs of (1) and (2) are straightforward. To
prove (3), let ε be given. Then, for each k, there exists an open set Gk such
that Ak ⊂ Gk and λ∞(Gk) < λ∗∞(Ak) + ε2−k. Since (

⋃∞
k=1Ak) ⊂ (

⋃∞
k=1Gk),

we have

λ∗∞

(⋃∞
k=1

Ak

)
6 λ∞

(⋃∞
k=1

Gk

)
6
∑∞

k=1
λ∞(Gk)

<
∑∞

k=1
[λ∗∞(Ak) + ε2−k] =

∑∞

k=1
λ∗∞(Ak) + ε.

Since ε is arbitrary, we are done.
To prove (4), let F1, F2, . . . , FN be compact subsets of A1, A2, . . . , AN ,

respectively. Since the Ak are disjoint,

λ∞,(∗)

(⋃∞
k=1

Ak

)
> λ∞

(⋃N

k=1
Fk

)
=
∑N

k=1
λ∞(Fk).

Thus,

λ∞,(∗)

(⋃∞
k=1

Ak

)
≥
∑N

k=1
λ∞,(∗)(Ak).

Since N is arbitrary, we are done.
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The next two theorems are implicit in the last one.

Theorem 55. (Regularity) If A is a bounded measurable set, then for every
ε > 0 there exist a compact set F and an open set G such that F ⊂ A ⊂ G,
with λ∞(G \ F ) < ε.

Theorem 56. (Countable Additivity) If the family {Ak} are disjoint bounded
measurable sets and A =

⋃∞
k=1Ak, then λ∞(A) =

∑∞
k=1 λ∞(Ak).

Definition 57. Let A be an arbitrary set in R∞I . We say that A is measurable
if A ∩M ∈ L0 for all M ∈ L0. In this case, we define λ∞(A) by:

λ∞(A) = sup {λ∞(A ∩M) : M ⊂ L0} .

We let L be the class of all measurable sets A.

Proofs for the following results are direct adaptations of those in Jones [36]
(see pages 48-52).

Theorem 58. A and {Ak} be arbitrary sets in L.

1. If λ∗∞(A) < ∞, then A ∈ L0 if and only if A ∈ L. In this case, λ∞(A)
is the same number.

2. L is closed under countable unions, countable intersections, differences
and complements.

3.
λ∞(

⋃∞
k=1

Ak) ≤
∑∞

k=1
λ∞(Ak).

4. If they are disjoint,

λ∞(
⋃∞

k=1
Ak) =

∑∞

k=1
λ∞(Ak).

5. If Ak ⊂ Ak+1 for all k, then

λ∞(
⋃∞

k=1
Ak) = lim

k→∞
λ∞(Ak).

6. If Ak+1 ⊂ Ak for all k, then

λ∞(
⋂∞

k=1
Ak) = lim

k→∞
λ∞(Ak).

Thus, we see that λ∞(·) is a regular countably additive measure on the
measurable sets of R∞I . More important is the fact that the development is
no more difficult than the corresponding theory for Lebesgue measure on Rn.
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6.5 Separable Banach Spaces.

One may get the impression that R∞I offers no other (essentially important)
advantages than those obtained for Lebesgue measure. This is incorrect (in
the extreme). Let B be any separable Banach space. Recall that (see Diestel
[10] page 32):

Definition 59. A sequence (en) is called a Schauder basis for B if, for f ∈ B,
there is a unique sequence (an) of scalars such that

f = limn→∞
∑n

k=1
akek.

Definition 60. The sequence (en) is called norm-decreasing for f =
∑
akek

if
∥∥∥∥ m∑
k=1

akek

∥∥∥∥
B
≤
∥∥∥∥m+n∑
k=1

akek

∥∥∥∥
B

for m,n ≥ 1.

Let S be the set of all sequences (an) for which limn→∞
∑n
k=1 akek exists

in B. Define
|‖(an)‖| = sup

n

∥∥∥∑n

k=1
akek

∥∥∥
B
.

Theorem 61. The operator

T : (S, |‖ · ‖|)→ (B, ‖ · ‖B)

is a norm-decreasing isomorphsim from S onto B.

It is known that most of the natural separable Banach spaces, and all
that have any use for applications in analysis, have a Schauder basis. In
particular, it is easy to see from Theorem 60 and the definition of a Schauder
basis that, for any sequence (an) ∈ S representing a function f ∈ B, we have
limn→∞ an = 0. It follows that every separable Banach space (with a Schauder
basis) is isomorphic to a subspace of R∞I . Thus, if we define BI = B∩R∞I and
B(BI) = B ∩B(R∞I ), we have:

Theorem 62. The restriction of λ∞ is a version of Lebesgue measure on BI .

6.6 Gaussian measure.

As an equally important application, we can now return to take another look
at infinite product Gaussian measure. The canonical Gaussian measure on R
is defined by:

dµ(x) =
1√
2π

exp

{
−|x|

2

2

}
dλ(x).
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Recall that µ∞ = ⊗∞k=1µ is countably additive on R∞, but its measure of
l2 is zero. If we introduce a scaled version of Gaussian measure on R∞I , we
can resolve this difficulty. Let

{
σ2
k

}
be a family of variances chosen so that∏∞

k=2 µk(I) > 0 (it suffices for µk(I) = [1− 1
k2 ]), where

µk(I) =
1√

2πσ2
k

∫ 1/2

−1/2

exp

{
−|xk|

2

2σ2
k

}
dλ(xk).

(This is not possible via the conventional approach.) Now, set µ1 = µ and
define µI,∞ = ⊗∞k=1µk. We call µI,∞ the scaled version of Gaussian measure.
Since Rn ⊂ BI and µI,∞(RnI ) =

∏∞
k=n+1 µk(I) is positive (for every n), we see

that µI,∞(BI) = b > 0.

Definition 63. We call 1
bµI,∞ = µb,∞ the scaled version of Gaussian measure

for BI .

Theorem 64. The measure µb,∞ is a countably additive version of Gaussian
measure on BI .

In particular, observe that we obtain a countably additive (scaled) version
of Gaussian measure for both l2 and C0[0, 1] (the continuous functions x(t) on
[0, 1] with x(0) = 0). Since all finite dimensional distributions are Gaussian,
we obtain an equivalent version of Wiener measure on C0[0, 1].

7 L2[R∞I ].

Although we can formally define the space of Lebesgue integrable functions in
the obvious way, a complete study requires the development of the infinite ten-
sor product Banach space theory. This would take us too far from our original
limited objective. (Such a project is in preparation and will be presented at a
later date.) However, because of von Neumann’s development of infinite ten-
sor product Hilbert spaces [58], much of the L2 theory is within reach with the
tools at hand and provides some closure to our original motivating question.

For each fixed n, let (Rn, B(Rn), λn) be the Lebesgue measure space and

let In =
∞
×

i=n+1
I, where I = [− 1

2 ,
1
2 ]. Let L2[Rn, B(Rn), λn] = L2[Rn] be

the set of complex-valued functions f(x) on Rn such that |f(x)|2 is integrable
with respect to λn. Let L2[RnI ] be the special tensor product space defined by

L2[RnI ] = ⊗ni=1L
2[R]⊗

(
⊗∞i=n+1EI

)
and let

L̄2[R∞I ] = limn→∞L2[Rn
I ] =

∞
∪

n=1
L2[Rn

I ].
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As in Section 6.4, we let L2[R∞I ] be the completion of L̄2[R∞I ] in the natural
Hilbert space norm. We can now relate this space to our question in the first
section.

However, we first need a result from von Neumann [58]. Let N be the
natural numbers, let {en, n ∈ N = N∪ {0}} be a complete orthonormal basis
for L2(R), and let E0 = ⊗i∈IEI . We define F to be the set of all functions
f : I → N such that f(i) = 0 for all but a finite number of i. Let F (f) be
the image of f ∈ F (i.e., F (f) = {f(i), i ∈ I}), and set EF (f) = ⊗i∈Iei,f(i),
where f(i) = 0 implies that ei,0 = EI and f(i) = n implies ei,n = en.

Theorem 65. The set {EF (f), f ∈ F} is a complete orthonormal basis for
L∆2
⊗ [E0]s.

From Theorem 41, we see that L∆2
⊗ [E0]s is isometrically isomorphic to

L2[R∞,B(R∞), λ̂∞]. On the other hand, every vector in the basis set for
L∆2
⊗ [E0]s is in L2[R∞I ,B(R∞I ), λ∞]. Since both spaces are closed and complete,

we have:

Theorem 66. The spaces L2[R∞,B(R∞), λ̂∞] and L2[R∞I ,B(R∞I ), λ∞] are
isomorphic.

We cannot conclude that B(R∞I ) and B(R∞) are equal, since they are
generated from different classes of cylinder sets.

In closing, we briefly discuss the Fourier transform in relation to
L2[R∞I ,B(R∞I ), λ∞]. Our main objective is to point out the advantage in
treating it as a bounded linear operator. If

Fj(g)(xj) =
1√
2π

∫
R

exp{−ixjyj}g(yj)dyj ,

we can define F(fn)(X) on L2[RnI ] by

F(fn)(X) = ⊗ni=1Fi ⊗
(
⊗∞i=n+1Fi

)
(f ⊗ EIn

) (X).

Viewed as an operator, F is a isometric isomorphism on L2[RnI ].

Theorem 67. The operator F is an isometric isomorphism on L2[R∞I ].

Proof. Let f ∈ L2[R∞I ]. Since it is a Hilbert space, there exists a sequence of
functions {fk ∈ L2[Rnk

I ], nk ∈ N} such that lim
k→∞

‖f − fk‖2 = 0. Furthermore,

since the sequence converges, it is a Cauchy sequence. Hence, given ε > 0,
there exists a N(ε) such that m, n ≥ N(ε) implies that ‖fm − fn‖2 < ε.
Since F is an isometry, ‖F(fm)− F(fn)‖2 < ε, so that the sequence F(fk)
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is also a Cauchy sequence in L2[R∞I ]. Thus, there is a f̂ ∈ L2[R∞I ] with

lim
k→∞

∥∥∥f̂ − F(fk)
∥∥∥

2
= 0, and we can define F(f) = f̂ . It is easy to see that f̂ is

unique.

This is quite interesting since the Fourier transform can only be defined
on R∞ for sequences in R∞0 (the set of sequences that are zero except for a
finite number of terms). Furthermore, we induce a definition of the Fourier
transform on L2[BI ] for every separable Banach space (with a basis).

Conclusion.

In this paper we have shown how to construct a natural class of separable
Banach spaces KSp which parallels the standard Lp spaces but contains them
as dense compact embeddings. These spaces are of particular interest because
they contain the Henstock-Kurzweil integrable functions and the HK-measure,
which generalizes the Lebesgue measure. We have also constructed the corre-
sponding spaces KSm,p of Sobolev type.

We have used KS2 to construct the free-particle path integral in the man-
ner originally intended by Feynman. We have suggested that KS2 has a
claim as the natural representation space for the Feynman formulation of
quantum theory in that it allows representations for both the Heisenberg and
Schrödinger representations, a property not shared by L2.

Since any semigroup that has a kernel representation will generate a path
integral on KS2, via our theory, we have also identified a general class of
(time-independent) generators of a semigroups that have an associated kernel.

In the analytical theory of Markov processes, it is well-known that, in
general, the semigroup T (t) associated with the process is not strongly contin-
uous on Cb[Rn], the space of bounded continuous functions or UBC[Rn], the
bounded uniformly continuous functions. We have shown that the weak gener-
ator defined by the mixed locally convex topology on Cb[Rn] is a strong gener-
ator on KSp[Rn] (i.e., T (t) is strongly continuous on KSp[Rn] for 1 ≤ p ≤ ∞).

We have also offered a physical explanation for the failure of both rotational
and translational invariance for Lebesgue measure on R∞. We have shown
that this problem is not related to the mathematical desirability of countable
additivity.

We have shown that what appears to be a minor change in the way we rep-
resent R∞ makes it possible to define a version of both Lebesgue and Gaussian
measure (countably additive) on every (classical) separable Banach space. In
particular, we obtain a version equivalent to Wiener measure on C0[0, 1].
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Remark 68. After preparing the final draft of this work, we discovered that, in
a series of papers, A. M. Vershik (see [53], [54], [55] and references contained
therein) has discussed an “infinite-dimensional analogue of Lebesgue measure”
that is constructed in a different manner than we have done in the present
paper. Roughly stated, he considers the weak limit as n → ∞ of invariant
measures on certain homogeneous spaces (hypersurfaces of high dimension) of
the Cartan subgroup of the Lie groups SL(n,R) (i.e., the subgroups of diagonal
matrices with unit determinant).
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Sci. (RIMS), Kyoto, 2008.

[21] I. Fujiwara, Operator calculus of quantized operator, Prog. Theor. Phys., 7
(1952), 433–448.

[22] T. Gill, S. Basu, W. W. Zachary and V. Steadman, Adjoint for operators in
Banach spaces, Proc. Amer. Math. Soc., 132 (2004),1429–1434.

[23] T. L. Gill and W. W. Zachary, Foundations for relativistic quantum theory I:
Feynman’s operator calculus and the Dyson conjectures, Journal of Mathemat-
ical Physics, 43 (2002), 69–93.

[24] T. L. Gill and W. W. Zachary, Constructive representation theory for the
Feynman operator calculus, accepted for publication, J. Diff. Equations. (see
http://teppergill.googlepages.com/tepperlgill)

[25] T. L. Gill and W. W. Zachary, Time–ordered operators and Feynman–Dyson
algebras, Journal of Mathematical Physics, 28 (1987), 1459–1470.

[26] T. L. Gill and W. W. Zachary, Analytic representation of the square–root oper-
ator, Journal of Physics A: Math. and Gen., 38 (2005), 2479–2496.

[27] T. L. Gill, W. W. Zachary and M. Alfred, Analytic representation of the Dirac
equation, Journal of Physics A: Math. and Gen., 38 (2005), 6955–6976.

[28] J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford
Mathematical Monographs, Clarendon Press, Oxford University Press, New
York and Oxford, 1985.

[29] R. A. Gordon, The Integrals of Lebesgue, Denjoy, Perron and Henstock, Grad-
uate Studies in Mathematics, 4, Amer. Math. Soc., Providence, RI, 1994.

[30] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products,.
Fourth edition prepared by Ju. V. Geronimus and M. Ju. Cĕitlin. Translated
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