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AN ONTOLOGY OF DIRECTIONAL
REGULARITY IMPLYING JOINT

REGULARITY

Abstract

It is an old idea to consider whether a function on RN that is smooth
in each variable separately is in fact jointly smooth. It turns out that
some uniformity of estimates in each variable is necessary for such a
result. More recently, there have been studies of functions that are
smooth along integral curves of certain vector fields. Depending on the
commutator properties of the vector fields, different types of results may
be obtained.

Another recent idea is that if one has smoothness along all curves
then the uniformity hypothesis may be dropped.

In the present paper we explore all these approaches to the problem
in a variety of new norms. We present new, simpler proofs of some
classical results. We also explore new theorems in the real analytic
category.

0 Preliminaries.

If 0 < α < 1 and f is a function on RN then we say that f belongs to the
α-order Lipschitz space on RN if it satisfies the condition

sup
x∈RN

06=h∈RN

|f(x+ h)− f(x)|
|h|α

≡ ‖f‖Λα(RN ) <∞ .
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For α = 1 we modify the condition (following Zygmund) to

sup
x∈RN

06=h∈RN

|f(x+ h) + f(x− h)− 2f(x)|
|h|

≡ ‖f‖Λ1(RN ) <∞ .

Inductively, for α > 1, we say that f ∈ Λα(RN ) if f ∈ C1 and ∇f ∈ Λα−1.
Of course these definitions make sense just as well on any open subset

U ⊆ RN , or more generally on any set S ⊆ RN . We need only require in the
definition that x, x+ h, x− h lie in S. If f is defined on an open set U ⊆ RN ,
then we say that f is locally Lipschitz α on U , and write f ∈ Λloc

α (U), if f
∣∣
K

is Lipschitz on K for each compact K ⊆ U .
In 1915 S. Bernstein proved the following theorem (see [1, pp. 96–104],

[16], and the further discussion in [17, p. 386] ):

Theorem 1. Fix a real number α > 0. Let f : RN → R be a function that
is Λα in each variable separately. That is, for each j = 1, . . . , N and for each
X = (x1, x2, . . . , xj−1, xj+1, . . . , xN−1, xN ), the function

fX : t 7−→ f(x1, x2, . . . , xj−1, t, xj+1, . . . , xN−1, xN )

is Λα. Further suppose that there is a constant C > 0 such that

‖fX‖Λα ≤ C (∗)

for every X, with C being independent of X. Then f ∈ Λα(RN ).

Certainly it is known that, if the condition (∗) is omitted, then the con-
clusion fails in general. A simple example is

f(x1, x2) =
x1x2

x2
1 + x2

2

.

This f is clearly C∞ in each variable separately, but it fails to be even continu-
ous at the origin. In general, a function that is C∞ in each variable separately
is at best in the first Baire class (see [15]). Variants of the fundamental The-
orem 1 are explored in [8].

Let us say a few words about the proof of Theorem 1. Perhaps the most
classical proof uses basic Fourier analysis. Recall that the Dirichlet kernel for
Fourier series is

DN (t) =
N∑

j=−N
eijt =

sin(N + 1/2)t
sin(1/2)t



Ontology of Directional Regularity 257

and the Fejér kernel (for Cesaro summability of Fourier series) is

KN (t) =
1

N + 1

N∑
n=0

Dn(t) =
1

N + 1

(
sin N+1

2 t

sin 1
2 t

)2

.

Finally, the de la Vallée Poussin kernel for a Fourier series is

VN (t) = 2K2N+1(t)−KN (t) .

The book [6] is a good reference for this material. The chief virtue of the de la
Vallée Poussin mean MN ≡ f ∗ VN of a function f on the circle T is that the
Fourier coefficients M̂N (j) of MN agree with the Fourier coefficients f̂(j) of f
when |j| ≤ N , yet the Fourier coefficients of MN trail off to zero in a linear
fashion (which is useful for summability). A basic result (which may be found
in [6]) is this:

Lemma 2. Let α > 0. Let f be an integrable function on the circle group T.
If

sup
T
|f −MNf | ≤ C ·N−α ,

then f ∈ Λα(T). The converse is true as well.

This lemma is often formulated in terms of the “trigonometric polynomial
of best approximation” to f . It turns out that, for all practical purposes, the
de la Vallée Poussin mean gives that best approximation.

To prove Theorem 1, let f(x1, . . . , xN ) be a function of N variables that
satisfies the hypotheses. Let M j

N (f) denote the de la Vallée Poussin mean of
f in the jth variable. Then one approximates f by M1

N (f) and then approx-
imates M1

N (f) by M2
N (M1

N (f)) and so forth up to the N -variable approxi-
mation MN

N (MN−1
N (· · · (M2

N (M1
N (f)) · · · )). The resulting approximation by a

trigonometric polynomial of N variables turns out to be sufficient to prove a
version of Lemma 2 in the N -variable setting. That is what we need.

It is also possible to prove this result using the calculus of finite differences.
To wit, it is easy to see from Lagrange’s form of the remainder term in Taylor’s
formula that, if 1 < α < 2 and f ∈ Λα(R) then, for x, h ∈ R,

f(x+ h) = f(x) + h · f ′(x) +O(|h|α) . (∗)

Coupled with
f(x− h) = f(x)− h · f ′(x) +O(|h|α) ,

one sees that
f(x+ h) + f(x− h)− 2f(x) = O(|h|α) .
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Exploiting the expansion (∗) in both variables, and using some linear algebra,
one can prove a version of Theorem 1 for functions of two real variables. The
result for more variables is similar but more tedious—see [8] for the details.

If one reformulates Bernstein’s theorem in the language of Sobolev spaces
then a particularly elegant attack on the problem comes to light. Suppose
that Hs(RN ) denotes the usual Sobolev space—see [13] or [5]. Now we have:

Theorem 3. Let k > 0 be a positive integer. Let f : RN → R be a function
that satisfies the condition

‖fX‖Hk(R) ≤ C

for every choice of X = (x1, x2, . . . , xj−1, xj+1, . . . , xN−1, xN ). Here C > 0 is
some fixed constant. Then f ∈ Hk(RN ).

Proof. The proof is simplicity itself, and we include it for its didactic value.
For convenience, multiply f by a C∞ cutoff function so that the result-

ing function (still called f) is supported in the unit cube. The hypothesis
guarantees that (

∂

∂xj

)`
f(x) ∈ L2 ,

with a uniform estimate in j, `, and the variable x, for j = 1, . . . , N and
0 ≤ ` ≤ k. But then Plancherel’s theorem tells us that

ξ`j f̂(ξ) ∈ L2(RN )

for j and ` as above (we use here Fubini’s theorem). But now elementary
estimates tell us that

m(ξ) · f̂ ∈ L2

for every monomial m of degree not exceeding k. That simply says that
f ∈ Hk.

It is worth noting that, in the complex analysis of several variables, mat-
ters are different. For suppose that f(z1, z2, . . . , zn) is a function of several
complex variables defined on an open set U . It is a theorem of F. Hartogs
(see [12]) that, if f is holomorphic in each variable separately, then f is jointly
holomorphic (in the sense, for instance, that it has a convergent, n-variable
power series expansion about each point). Note that, in Hargogs’s result, no
uniform estimates are required in each variable. The joint holomorphicity is,
in effect, automatic.

On the other hand, Jan Boman [2] has proved the following remarkable
result:



Ontology of Directional Regularity 259

Theorem 4. Let f be a function on RN . Suppose that for every smooth
curve γ : R→ RN it holds that f ◦ γ ∈ C∞(R). Then f ∈ C∞(RN ).

Proof. We give here a new proof of this result—considerably simpler than
the one originally offered by Boman.

The proof is still by contradiction. So suppose, seeking a contradiction,
that f is not C∞. Then there is some k such that f is not Ck. That means
that f will not satisfy the hypotheses of Theorem 1 for α = k + 1. Focus
now on a compact cube Q (the closure of an open cube) on which this failure
holds. So there will be an index j and a sequence of points {p`} ⊆ Q so that
|(∂k+1/∂xk+1

j )f(p`)| ≥ `. Invoking compactness, we may suppose that the p`

converge to a point p0 ∈ Q. But now it is easy to interpolate a C∞ curve γ
through the p` in sequence so that γ(t`) = p` and γ′(t`) is parallel to the unit
vector in the jth coordinate direction. We can also arrange that |γ′(t`)| = 1.
Then f ◦ γ will fail the hypothesis of the theorem.

Boman’s theorem is particularly notable because it makes no hypothesis
about uniformity of estimates in the different directions. Yet one still is able to
conclude that the function f is genuinely C∞ as a function of several variables.
It is also remarkable that Boman’s proof is by contradiction.

One of the purposes of the present paper is to explore variants of Bo-
man’s theorem when the function space C∞ is replaced by some other space,
particularly by the space of real analytic functions.

Before we explore variants of Boman’s theorem, we take some time to
formulate and discuss some invariant versions of Theorem 1 that are useful in
analysis on manifolds and nilpotent Lie groups.

It is a pleasure to thank the editor for a number of useful suggestions.

1 Non-Commuting Vector Fields.

A basic theorem in the paper [9] is as follows.

Theorem 5. Let U ⊆ RN be a connected, open set (hereinafter called a
domain). Let X1, . . . , XN be smooth vector fields on U . Assume that, at each
point of U , the vectors X1(x), . . . , XN (x) form a basis of RN . Let ϕxj : t 7→
expx tXj denote the integral curve of the vector field Xj emanating from the
point x ∈ U (so that ϕxj (0) = x). Let α > 0. Let C > 0 and assume that, for
each j and each x, the function

f ◦ ϕxj
is Λα with ‖f ◦ ϕxj ‖Λα ≤ C. Then f is locally in Λα on U .
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This result is like an “invariant” form of the fundamental Theorem 1. For
it is not tied to the coordinate axes. It can be formulated in terms of flows
that arise from the problem at hand. The proof of this theorem uses the finite
differences approach that was outlined in the last section.

The next step in the development of these ideas was the result of [10]. In
that paper we proved the following:

Theorem 6. Let U ⊆ RN be a domain. Let X1, . . . , Xk, 1 ≤ k < N be
smooth vector fields on U . Assume that X1, . . . , Xk and the commutators of
these vector fields up to order m span RN at each point of U . Let ϕxj : t 7→
expx tXj denote the integral curve of the vector field Xj emanating from the
point x ∈ U (so that ϕxj (0) = x). Let α > 0. Let C > 0 and assume that, for
each j and each x, the function

f ◦ ϕxj

is Λα with ‖f ◦ ϕxj ‖ ≤ C. Then f is locally in Λα/m on U .

What is remarkable about this last result is that one need only assume
smoothness in a “small” set of directions—smaller than the number of dimen-
sions. And then the contact structure automatically gives smoothness in the
remaining directions.

In fact more can be said in the conclusion of Theorem 5. Let V be a
vector field that is a pth order commutator of X1, . . . , Xk, 2 ≤ m. Then, along
integral curves of V , the function f is locally Λα/p. The proof of this more
refined result is just the same as that of the theorem as enunciated. It is a
subtle finite-difference argument (see [11]).

2 Harmonic Functions.

Suppose that f is a given continuous function on the closure of a smoothly
bounded domain Ω in RN . If the restriction of f to ∂Ω is known to be smooth,
then what can be said about the smoothness of f on Ω? The answer, of course,
is nothing. The simple example on the unit ball given by

f(x) =
{

1 if x ∈ ∂B
(1− |x|)1/2 sin(1/[1− |x|]) if x ∈ B

exhibits a function that is real analytic on ∂B but is only Λ1/2 on B.
The only hope of relating boundary smoothness to interior smoothness is to

have a partial differential equation that mediates between the two. A sample
result is this:
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Theorem 7. Let f be a continuous function on the closure of a smoothly
bounded domain Ω ⊆ RN . Let X1, . . . , XN−1 be smooth vector fields on ∂Ω
which are linearly independent at each point of the boundary. Let α > 0.
Assume that f is Λα along the integral curves of each of the Xj , with a
uniform bound C > 0 on the Lipschitz norms. Define u to be the solution of
the Dirichlet problem for the Laplacian on Ω with boundary data f . Then
u ∈ Λα(Ω).

In fact this theorem is true for the solution of the Dirichlet problem for
any strongly partial differential elliptic operator of order 2. These ideas are
developed in [10].

3 Holomorphic Functions.

The paper that taught us that something special is true for holomorphic func-
tions is [19]. To formulate the fundamental result, we need a bit of terminology.
Let Ω ⊆ Cn be a smoothly bounded domain. If P ∈ ∂Ω then let ν = νP be
the outward unit normal vector at P . The one-dimensional complex linear
space Cν is called the complex normal space NP at P . The Hermitian or-
thogonal complementary space TP is the complex tangent space at P . Let U
be a tubular neighborhood of ∂Ω. If z ∈ U , then let π(z) be the well-defined
Euclidean orthogonal projection of z to ∂Ω. Then we may define Nz ≡ Nπ(z)

and Tz ≡ Tπ(z).
We call a curve γ : (0, 1) → U ∩ Ω complex tangential if γ′(t) ∈ Tγ(t) for

each t. The curve γ is normalized complex tangential of order k if ‖g(j)‖sup ≤ 1
for derivatives of γ of order j, 1 ≤ j ≤ k.

Proposition 8. Let Ω be a smoothly bounded domain in Cn. Suppose that
f is holomorphic in Ω and that f ∈ Λα(Ω). Let α > 0. If γ is any normalized
complex tangential curve of order [α]+1 (where square brackets [ ] denote the
greatest integer function) then f ◦ γ is Lipschitz of order 2α.

This result (see [12, Ch. 8], for the proof) is remarkable for several reasons.
First, it gives free additional smoothness in certain geometrically distinct di-
rections. Second, it begs the question of “Why an improvement of order 2?”
We say just a word about the proof. For simplicity, restrict α to 0 < α < 1/2.
The key fact for this result is the following two estimates. Let ν = νz rep-
resent a complex normal direction at z ∈ Ω and τ = τz represent a complex
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tangential direction.

(1)
∣∣∣∣ ∂∂ν f(z)

∣∣∣∣ ≤ C · δΩ(z)α−1 .

(2)
∣∣∣∣ ∂∂τ f(z)

∣∣∣∣ ≤ C · δΩ(z)α−1/2 .

These estimates are established by a clever exploitation of the mean value
property on complex analytic discs pointing in the different directions.

The last result was studied and developed in a series of papers. Rudin [18]
pioneered the idea of hypothesizing smoothness just in the normal direction.
Krantz [9] took that idea to its natural fruition. We state that result in a
moment. But first a little notation.

Let Ω be a smoothly bounded domain in Cn. Let U be a tubular neighbor-
hood of ∂Ω. For each P ∈ ∂Ω, let eP be the inward-extending normal segment
emanating from P and having length ε0. Here ε0 is chosen so that, for each
P , this segment will lie in the tubular neighborhood.

Theorem 9. Let Ω be a smoothly bounded domain in Cn. Let α > 0.
Let f be a holomorphic function on Ω. Assume that, for each P ∈ ∂Ω, the
restriction of f to eP is Λα, with the Lipschitz norm being uniformly bounded
in P . Then f ∈ Λα(Ω). Further, by Stein’s theorem, f is Λ2α in complex
tangential directions.

The other key insight, which we mention briefly now, is that one can take
into account the Levi geometry of the domain Ω to sharpen the result. We
now recall the notion of finite type. Restrict attention to complex dimension
2. Let Ω be a smoothly bounded domain in C2. We say that P ∈ ∂Ω is a
point of finite type m if there is a nonsingular complex analytic disc that is
tangent to ∂Ω at P to order m, but no such disc which is tangent to order
m + 1. A strongly pseudoconvex point is of finite type 2. The point (1, 0) in
the boundary of E2p = {(z1, z2) : |z1|2 + |z2|2p < 1}, p a positive integer, is
of finite type 2p. The idea of finite type was first developed in [7] to measure
subellipticity of the ∂-Neumann problem. It has developed into an important
geometric tool in several complex variables. Now we have

Theorem 10. Let Ω be a smoothly bounded domain in Cn. Let α > 0.
Let f be a holomorphic function on Ω. Assume that, for each P ∈ ∂Ω, the
restriction of f to eP is Λα, with the Lipschitz norm being uniformly bounded
in P . Then f ∈ Λα(Ω). Further, let P ∈ ∂Ω be a point of finite type m. Then,
near P , f is Λmα in complex tangential directions.
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4 New Results in the Vein of Boman.

Our purpose in this section is to present some new results along the lines of
Jan Boman’s ideas in [2]. We wish to have theorems in the Lipschitz category,
and also in the real analytic category.

Theorem 11. Let f be a function on an open set U ⊆ RN . Suppose that
0 < α < k ∈ N. Assume that, for every Ck curve γ : (−1, 1) → U , it holds
that f ◦ γ ∈ Λloc

α . Then f ∈ Λloc
α (U).

Proof. As in [2], our proof will proceed by contradiction. First suppose for
simplicity that 0 < α < 1. Suppose that f satisfies the hypotheses, yet f is
not locally Lipschitz α on U . Then there is a compact set K ⊆ U and points
xj , xj + hj ∈ K so that

|f(xj + hj)− f(xj)|
|h|α

> j . (∗∗)

Invoking compactness, we may assume that xj → x0 ∈ K and xj + hj →
x0 + h0 ∈ K. But now it is a simple matter to interpolate a smooth curve η,
in sequence, through the points x1, x1 + h1, x2, x2 + h2, . . . . According to our
hypothesis, f ◦ η is Lipschitz smooth on compact sets. Yet that contradicts
(∗∗).

Our next result is about real analytic functions. The following classical
characterization of these objects (see [14]) will prove useful:

Proposition 12. Let f be a function on a domain U ⊆ RN . Let V be a
relatively compact open subset of U . Suppose that there are constants C > 0,
r > 0 such that, for each k = 0, 1, . . . and each multi-index β with |β| ≤ k, it
holds for x ∈ V that ∣∣∣∣∂βf∂xβ

(x)
∣∣∣∣ ≤ C · k!

rk
.

Then f is real analytic on V .

Now a classical result of F. Browder (see [3], [14]) says this:

Theorem 13. Let f be a function on an open cube C ≡ (−a, a) × (−a, a) ×
· · ·× (−a, a) ⊆ RN . Assume that there is an r > 0 such that, for j = 1, . . . , N
and k = 0, 1, 2, . . . , we have∣∣∣∣dkf(x1, x2, . . . , xj−1, x, xj+1, . . . , xN )

dxk

∣∣∣∣ ≤ C · k!
rk
.

Then f is real analytic on C.
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Theorem 14. Let f be a continuous function on an open set U ⊆ RN . Let V
be a relatively compact, connected open subset of U . Assume that, for every
real analytic curve γ : (−1, 1)→ V , it holds that f ◦ γ is real analytic, and in
particular that, on any relatively compact interval W ⊆ (−1, 1) and for any
r > 0 sufficiently small, ∣∣∣∣ dkdtk [f ◦ γ](t)

∣∣∣∣ ≤ C · k!
rk
.

[Here the choice of C and r will, in general, depend on γ.] Then f is real
analytic on V .

Proof. Seeking a contradiction, let us suppose that our f is not real analytic
on V . Therefore the hypotheses of Browder’s theorem will fail for f . Thus,
for any r > 0, there will be a sequence of points xj ∈ V and indices kj → +∞
and mj ∈ {2, . . . , N − 1} such that∣∣∣∣dkjfdxkj

(xj1, x
j
2, . . . , x

j
mj−1, x, x

j
mj+1, . . . , x

j
N )
∣∣∣∣ > j · j!

rj
.

Passing to a subsequence, we may suppose that the set {xj} has at most a
single limit point as j → ∞. In particular, no xj is itself an accumulation
point of this sequence.

Although the proof may now be completed in the real variable category, it
is in fact more expeditious to pass to the complex analytic category (so that
we may invoke Mittag-Leffler’s theorem—see [4]). What we need to do, in
order to obtain the necessary contradiction, is to interpolate a real analytic
curve γ : (−1, 1)→ V through the points x1, x2, · · · ∈ V in such a way that γ
at the point xj agrees with the curve

t 7→ (x1
1, x

j
2, . . . , x

j
mj−1, x

j
mj + t, xjmj+1, . . . , x

j
N−1, x

j
N ) (?)

to order j+1. [We may, and do, restrict attention to γ on a relatively compact
subset W ⊆ (−1, 1) so that we may apply Theorem 12. In particular, the γ
that we construct may be supposed to satisfy the interpolation condition (?)
at points of W .] Doing so, we will find then that f ◦ γ fails the condition in
Proposition 12. And that is the required contradiction.

Now we turn to the construction of γ. Complexifying γ to a holomorphic
function Γ on an open set X ⊆ C that contains W , we are asking for a
holomorphic function on X with specification of a particular Taylor jet at
each of the points xj . Of course Mittag-Leffler’s theorem guarantees that this
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can be done. So the holomorphic function Γ exists. The restriction of Γ to the
set W ⊆ R gives us the real analytic curve γ that we seek. And f ◦ γ gives
the desired contradiction. The proof of the theorem is complete.
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ed., Birkhäuser, Boston, MA, 2002.

[15] Kuratowski, Topology, Academic Press, New York, 1966.

[16] P. Montel, Sure les polynomes d’approximation, Bull. Soc. Math. France,
46 (1918), 151–192.
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