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ON THE CONNECTIVITY OF
ATTRACTORS OF ITERATED
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Abstract

The aim of the paper is to give sufficient and necessary conditions
when the attractor of an iterated multifunction system, composed by
multifunctions with compact and connected values, is a connected set.

1 Introduction.

We start by a short presentation of iterated multifunction systems (IMSs)
which are a generalization of iterated function systems (IFSs). We will also
fix the notations.

Iterated function systems were conceived in the present form by John
Hutchinson [7] and popularized by Michael Barnsley [2] and are one of the
most common and most general ways to generate fractals. Many of the im-
portant examples of functions and sets with special and unusual properties in
analysis turns out to be fractal sets and a great part of them are attractors of
IFSs. There is a current effort to extend the classical Hutchinson’s framework
to more general spaces and infinite iterated function systems (IIFSs) or more
generally to multifunction systems and to study them. A very good survey
article for multifunction systems where one can found also an extended and
recent bibliography is [1]. A recent such extension of the IFS theory can be
found in [11], where the Lipscomb’s space–which was an important example

Mathematical Reviews subject classification: Primary: 28A80; Secondary: 54D05, 47H10,
54C60

Key words: iterated function system, iterated multifunction system, connected set,
arcwise connected set, attractor

Received by the editors October 13, 2007
Communicated by: Zbigniew Nitecki

195



196 Alexandru Mihail

in dimension theory–can be obtained as an attractor of an IIFS defined in a
very general setting. In this setting the attractor can be a closed and bounded
set in contrast with the classical theory where only compact sets are consid-
ered. Although the fractal sets are defined with measure theory-being sets
with noninteger Hausdorff dimension [4],[5]-it turns out that they have inter-
esting topological properties as we can see from the above example [11]. One
of the most important result in these direction is Theorem 1.2 below (see [13]
for a proof) which states when the attractor of an IFS is a connected set. We
want to extend this result to IMSs and point out the differences between the
two cases. Theorem 1.2 is not valid for IMSs (see Example 3.1). Even if we
take an IMS which contains only one multifunction, the attractor could not
be connected. So we have to take multifunctions with special properties. We
require for a multifunction to be with compact and connected values. This
choice is suggested by Theorem 1.3, which states that the fixed set of at mul-
ticontraction with compact and connected values is connected and compact.

The paper is divided in three parts. The first part is the introduction. The
second part contains the main result (Theorem 2.1). The last part contains
some examples and remarks.

For a set X, P ∗(X) denotes the subsets of X with the empty set thrown
down. For a metric space (X, d) K∗(X) denotes the set of compact subsets of
X with the empty set thrown down.

Definition 1.1. The generalized Hausdorff-Pompeiu semidistance is an ap-
plication h : P ∗(X)× P ∗(X)→ [0,+∞] defined by

h(A,B) = max(d(A,B), d(B,A))

where d(A,B) = sup
x∈A

d(x,B) = sup
x∈A

( inf
y∈B

d(x, y)).

Definition 1.2. Let (X, dX) and (Y, dY ) be two metric spaces. For a function
f : X → Y let us denote by Lip(f) ∈ [0,+∞] the Lipschitz constant associated
to f, that is

Lip(f) = sup
x,y∈X;x 6=y

dY (f(x), f(y))
dX(x, y)

.

f is a Lipschitz function if Lip(f) < +∞ and a contraction if Lip(f) < 1.

Concerning the Hausdorff-Pompeiu semidistance we have the following im-
portant properties:

Proposition 1.1. Let (X, dX) and (Y, dY ) be two metric spaces. Then:
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1. If H and K are two nonempty subsets of X then hX(H,K) = hX(H,K),
where hX is the Hausdorff-Pompeiu semidistance associated with the dis-
tance dX .

2. If (Hi)i∈I and (Ki)i∈I are two families of nonempty subsets of X then

hX( ∪
i∈I
Hi, ∪

i∈I
Ki) = hX( ∪

i∈I
Hi, ∪

i∈I
Ki) ≤ sup

i∈I
hX(Hi,Ki).

3. If H and K are two nonempty subsets of X and f : X → Y is a function
then

hY (f(K), f(H)) ≤ Lip(f) · hX(K,H).

4. If (Hn)n≥1 ⊂ P ∗(X) is a sequence of compact and connected sets and
H ∈ P ∗(X) is a closed set such that hX(H,Hn)→ 0 when n→∞ then
H is a compact and connected set.

Proof. See [1], [6] or [12].

It is well-known that (K∗(X), h) is a metric space and it is complete if X
is such (see [1], [5], or [6]).

Definition 1.3. An iterated function system on a metric space (X, d) con-
sists in a finite family of contractions (fk)k=1,n on X and is denoted by
S = (X, (fk)k=1,n). For an IFS S = (X, (fk)k=1,n), FS : K∗(X)→ K∗(X) is

the function defined by FS(B) =
n
∪
k=1

fk(B).

The function FS is a contraction with Lip(FS) ≤ max
k=1,n

Lip(fk). Using

Banach contraction theorem there exists for an IFS a unique set A(S) such
that FS(A(S)) = A(S). More generally we have the case of multifunctions
(see [1] for more details). We present the basic definitions and results, which
we need later.

Definition 1.4. Let X and Y be two sets. A multifunction F from the set X
into the set Y is a function F : X → P ∗(Y ). We will denote the multifunction
by F : X � Y . For a nonvoid set A ⊂ X F (A) = ∪

x∈A
F (x).

Definition 1.5. Let (X, dX) and (Y, dY ) be two metric spaces. A multifunc-
tion F : X � Y is said to be with compact, bounded or connected values if for
every x ∈ X the set F (x) is compact, bounded or connected. If F : X � Y is
a multifunction with compact values we will denote by F : X

c
� Y .
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Definition 1.6. Let (X, dX) and (Y, dY ) be two metric spaces and F : X �
Y be a multifunction. Then Lip(F ) ∈ [0,+∞] is the Lipschitz constant
associated to the function F : (X, dX) → (P ∗(Y ), hY ), that is Lip(F ) =

sup
x,y∈X;x 6=y

hY (F (x), F (y))
dX(x, y)

. F is a Lipschitz multifunction if Lip(F ) < +∞

and a multicontraction if Lip(F ) < 1.

Let (X, dX) and (Y, dY ) be two metric spaces. For a multifunction F :
X � Y , ΦF : P ∗(X) → P ∗(X) is the function defined by ΦF (A) = F (A) =
∪
x∈A

F (x).

If F : X
c

� X is a multicontraction and (X, d) is a complete metric space,
from the Banach’s contraction theorem, there exists a unique compact nonvoid
set A(F ) such that ΦF (A(F )) = F (A(F )) = A(F ). The set A(F ) is named
the attractor of the multifunction F . More precisely we have the following
theorem.

Theorem 1.1. [1] Let (X, d) be a complete metric space and F : X
c

� X be a
multifunction with c = Lip(F ) < 1. Then there exists a unique A(F ) ∈ K∗(X)
such that ΦF (A(F )) = F (A(F )) = A(F ). Moreover, for any H0 ∈ K∗(X) the
sequence (Hn)n≥0 defined by Hn+1 = ΦF (Hn) is convergent to A(F ). For the
speed of the convergence we have the following estimation

h(Hn, A(F )) ≤ cn

1− c
h(H0, H1).

Let us note that the theorem is also true for multicontraction with bounded
values with the only differences that ΦF (A(F )) = F (A(F )) = A(F ) and the
sets A(F ) and Hn are bounded closed nonvoid, but we need only the compact
case.

Definition 1.7. Let (X, d) be a metric space. An iterated multifunction sys-
tem, an IMS for short, consists in a family of multicontractions with compact
values (Fk)k=1,n, where Fk : X � X, and it is denote by S = (X, (Fk)k=1,n).

For an IMS FS : X � X is the multifunction defined by FS(x) =
n
∪
k=1

Fk(x).

We remark that FS is a multifunction with compact values.
Let us note that the IMS S = (X, (Fk)k=1,n) can always be reduced to one

multifunction, namely FS =
n
∪
k=1

Fk. Moreover Lip(FS) ≤ max
k=1,n

Lip(Fk) < 1.

By replacing the single multicontraction from Theorem 1.1 by a family of
(multivalued) contractions one can obtain the results from [1],[2],[4],[7],[9],[12].

Notation. For two nonvoid sets A and B BA denotes the set of functions
from A to B.
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By Λn = Λn(B) we will understand the set BN∗n , where N∗n = {1, 2, ..., n}.
The elements of Λn = Λn(B) = BN∗n will be written as words ω = ω1ω2...ωn.
If ω = ω1ω2...ωn and n ≥ m then [ω]m = ω1ω2...ωm. Let (X, d) be a complete
metric space and S = (X, (Fk)k=1,n) be an IMS. Then Fω = Fω1 ◦Fω2 ◦...◦Fωm

for ω = ω1ω2...ωm ∈ Λm(N∗n). For a set H ⊂ X Hω = ΦFω
(H).

Remark 1.1. Let (X, d) be a complete metric space, S = (X, (Fk)k=1,n) be
an IMS and A = A(S) the attractor of S. Then A = ∪

ω∈Λm(N∗n)
Aω.

Definition 1.8. Let (X, d) be a metric space and (Ai)i∈I a family of nonvoid
subset of X. The family (Ai)i∈I is said to be connected if for every i, j ∈ I
there exists (ik)k=1,n ⊂ I such that i1 = i, im = j and Aik ∩ Aik+1 6= ∅ for
every k ∈ {1, 2, .., n− 1}.

Definition 1.9. A metric space (X, d) is arcwise connected if for every x, y ∈
X there exists a continuous function ϕ : [0, 1] → X such that ϕ(0) = x and
ϕ(1) = y.

In the case of IFSs, concerning the attractor’s connectivity, we have the
following theorem (see [13]).

Theorem 1.2. Let (X, d) be a complete metric space, S = (X, (fk)k=1,n) be
an IFS with c = max

k=1,n
Lip(fk) < 1 and A(S) the attractor of S. The following

are equivalent:

1. The family (Ai)i=1,n is connected where Ai = fi(A(S)).

2. A(S) is arcwise connected.

3. A(S) is connected.

We want to find a similar result for IMSs. For an IMS point 2) and 3)
are not equivalent as we can see from Example 3.1. The next results are well
known.

Lemma 1.1. ([3], 6.3.1 p. 457) Let (X, d) be a metric space and K a compact
subset of X. Then K is connected if and only if for every x, y ∈ K and every
ε > 0 there exists (xk)k=1,n ⊂ K such that x1 = x, xn = y and d(xi, xi+1) < ε
for every i ∈ {1, 2, ..., n− 1}.

Lemma 1.2. ([1] or [6]) Let (X, d) be a complete metric space and F : X
c

� X
be a Lipschitz multifunction with bounded values. If the multifunction F has
connected values and the set H is connected then the sets F (H) and ΦF (H)
are connected.
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Corollary 1.1. Let (X, d) be a complete metric space and Fi : X
c

� X for
i ∈ {1, 2, ..., n} be Lipschitz multifunctions with connected values. If the set H
is connected then the sets F1 ◦ F2 ◦ ... ◦ Fn(H) and are ΦF1◦F2◦...◦Fn

(H) also
connected.

The next result is a particular case of the main Theorem 2.1.

Theorem 1.3. Let (X, d) be a complete metric space and F : X
c

� X be a
multicontraction with connected values. Let A(F ) be the attractor of F . Then
A(F ) is compact and connected.

Proof. ( see also [10] Theorem 1 for a generalization) Let x0 ∈ X, H0 = {x0}
and (Hn)n≥0 be the sequence defined by Hn+1 = F (Hn). H0 is compact and
connected. From Lemma 2.1 it follows by induction that Hn is compact and
connected. From the Theorem 1.1 we have Hn → A(F ). From Proposition
1.1 point 4 it follows that A(F ) is connected.

2 The Main Result.

The main result of the paper is the following theorem.

Theorem 2.1. Let (X, d) be a complete metric space, S = (X, (Fk)k=1,n) be
an IMS where the multifunctions Fk has compact and connected values, c =
max
k=1,n

Lip(Fk) < 1 and A = A(S) be the attractor of S. The following are

equivalent:

1. The family (Ai)i=1,n is connected, where Ai = Fi(A(S)).

2. A(S) is connected.

Proof. We remark first that, from Theorem 1.1, A(S) ∈ K∗(X). Then
Ai = Fi(A(S)) ∈ K∗(X) for every i ∈ {1, 2, ..., n} and, more generally, Aω =
Fω(A(S)) ∈ K∗(X) for every ω ∈ Λp = Λp(N∗n) and p ∈ N∗.

2)⇒ 1). Let M = {j ∈ {1, 2, ..., n}| there exist (ik)k=1,m such that i1 = 1,
im = j and Aik ∩Aik+1 6= ∅ for every k ∈ {1, 2, ...,m− 1}}.

Set V1 = ∪
j∈M

Aj and V2 = ∪
j /∈M

Aj . Then V1 ∩ V2 = ∅, V1 ∪ V2 = A(S) and

V1 and V2 are compact sets. Because A(S) is connected and V1 6= ∅ ( because
A1 ⊂ V1) it follows that A(S) = V1 and so M = {1, 2, ..., n}. This means that
the family (Ai)i=1,n is connected.

1)⇒ 2). We will prove first that the families of sets (Ai)i∈Λp are connected.
This will be done by induction. First step is the hypothesis.
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The induction step. Let us suppose that the family (Aω)ω∈Λp is connected.
We want to prove that the family (Aω)ω∈Λp+1 is connected. Let ω1, ω2 ∈ Λp+1.
Then ω1 = ω1

1ω
1
2ω

1
3 ...ω

1
pω

1
p+1, ω2 = ω2

1ω
2
2ω

2
3 ...ω

2
pω

2
p+1, [ω1]p = ω1

1ω
1
2ω

1
3 ...ω

1
p,

[ω2]p = ω2
1ω

2
2ω

2
3 ...ω

2
p and [ω1]p, [ω2]p ∈ Λp. Because the family (Ai)i∈Λp

is
connected there exists α1, α2, ..., αl ∈ Λp such that α1 = [ω1]p, αl = [ω2]p and
Aαj ∩ Aαj+1 6= ∅ for j ∈ {1, 2, ..., l − 1}. Let xj ∈ Aαj ∩ Aαj+1 . We have
xj−1, xj ∈ Aαj

and Aαj
= ∪

k=1,n
Aαjk = ∪

k=1,n
Fαj (Ak). Let Aαj k

j
1

and Aαjk
j
2

be such that xj−1 ∈ Aαjk
j
1

and xj ∈ Aαjk
j
2
. We can choose k1

1 = ω1
p+1 and

kl2 = ω2
p+1. Because the family (Ai)i=1,n is connected it follows that the family

(Fαj
(Ai))i=1,n is also connected. Then there exists (ijk)

k=1,m(j)
⊂ {1, 2, ..., n}

such that ij1 = kj1, ijm(j) = kj2 and Aαji
j
k
∩Aαji

j
k+1

= Fαj (Aijk)∩Fαj (Aijk+1
) 6= ∅

for every k ∈ {1, 2, ...,m(j) − 1}. The sequence (ijk)
k=1,m(j)

can be taken
without repetition. In this case m(j) ≤ n. We can suppose that m(j) = n by
taken ijm(j) = ijm(j)+1 = ... = ijn = kj2.

We consider the functions f, g : N → N defined by f(m) = [m−1
n ] + 1 and

g(m) = m − [m−1
n ]n, where N denotes the set of natural numbers and [x]

denotes the greater integer less or equal to x.
Let t : {1, 2, ..., nl} → Λp+1 be defined by t(m) = αf(m)i

f(m)
g(m) . We have

At(m) ∩ At(m+1) 6= ∅, At(1) = Aα1i11
= A[ω1]pk1

1
= A[ω1]pω1

p+1
= Aω1 and

At(nl) = Aαliln
= A[ω2]pkl

2
= A[ω2]pω2

p+1
= Aω2 . This proves that the family of

sets (Aω)ω∈Λp+1 is connected.
For the proof of the fact that A(S) is a connected set we will used Lemma

1.1. Let ε > 0 and x0, z0 ∈ A be fixed. Let m be such that cmd(A) < ε/2 and
B = {x0}. Then there exists α1, α2 ∈ Λm such that x0 ∈ Aα1 and z0 ∈ Aα2 .
Because the family of sets (Aω)ω∈Λm

is connected it follows that there exists
(ωj)j=0,l ⊂ Λm such that ω0 = α1, ωl = α2 and Aωj

∩ Aωj+1 6= ∅ for every
j ∈ {0, 1, ..., l − 1}. Let us fixed xj ∈ Aωj−1 ∩ Aωj

for j ∈ {1, 2, ..., l}. Set
xl+1 = z0.

Let ω ∈ Λp with p ≥ m and let Bω = Fω(B). Since the set B = {x0}
is connected and compact it follows, from Corollary 1.1 that the set Bω is
connected and compact. We have h(Bω, Aω) ≤ c|ω|h(B,A) ≤ c|ω|d(A) ≤
cmd(A) < ε and Bω ⊂ Aω (because B ⊂ A).

Since h(Bωj , Aωj ) < ε, there exists for every j ∈ {0, 1, ..., l} yj , y′j ∈ Bωj

such that d(yj , xj) < ε and d(y′j , xj+1) < ε. Since Bωj
is a connected set there

exists (tji )i=2,m(j)
⊂ Bωj such that tj2 = yj , t

j
m(j) = y′j and d(tji , t

j
i+1) < ε for

i ∈ {2, 3, ...,m(j)− 1} and j ∈ {0, 1, ..., l}. Set tj1 = xj for j ∈ {0, 1, ..., l} and
m = max{m(0),m(1), ...,m(l)}. By repeating the last therms of the sequences
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(tji )i=1,m(j)
we can suppose that m(j) = m.

We consider the functions t, s : N → N defined by t(i) = [ i−1
m ] and s(i) =

i− [ i−1
m ]m.

Let (zi)i=1,(l+1)m+1
be the sequence defined by zi = t

t(i)
s(i) for i ∈ {1, 2, ..., (l+

1)m} and z(l+1)m+1 = z0. We have z1 = x0, z(l+1)m+1 = z0 and d(zi, zi+1) <
ε. This ends the proof.

3 Examples.

Example 3.1. Let (X, d) be a complete metric space, K a nonvoid compact
set in X and F : X � X be a multifunction defined by F (x) = K for every
x ∈ X. Then ΦF (H) = K for every H ∈ P ∗(X), F is a compact multifunc-
tion compact values, Lip(F ) = 0 and A(F ) = K. If K is also connected, F is
a multifunction with connected values. Because K could be a connected set but
not arcwise connected it follows that the sentences 2) and 3) from Theorem
1.2 could not be equivalent for multifunctions. From Theorem 2.1 it follows
that sentences 1) and 3) from Theorem 1.2 could not be equivalent for multi-
functions. Let us consider the case when K is a disconnected set. The IMS
S = (X, (F )) is connected but A(S) = A(F ) = K is not a connected set. This
does not contradict Theorem 1.3 because F is not a connected multifunction.

Example 3.2. Let (X, d) be a metric space and S = (X, (fk)k=1,n) be an
iterated function system. S can be seen as an iterated multifunction system
(X, (Fk)k=1,n) where Fk(x) = {fk(x)} for every k ∈ {1, 2, ..., n}. In this case
the equivalence 1) ⇔ 3) from Theorem 1.2 is a particular case of Theorem 3.1.

Example 3.3. Let (X, dX) and (Y, dY ) be two metric spaces such that Y is
compact and (Z = X × Y, d) be the product metric space with the maxim dis-
tance, that is d((x, y), (x1, y1)) = max{d(x, x1), d(y, y1)}. Let S = (X, (fk)k=1,n)
be an iterated function system on the metric space X. Let S ′ = (Z, (Fk)k=1,n)
be an iterated multifunction system defined by Fk(x, y) = {fk(x)}×Y for every
k = 1, n. Then

hZ(Fk(x, y), Fk(x′, y′)) = hZ({fk(x)} × Y, {fk(x′)} × Y )
= hX({fk(x)}, {fk(x′)}) = dX(fk(x), fk(x′))

and so Lip(Fk) = Lip(fk).
The attractor of the IMS S ′ is A(S ′) = A(S) × Y . Fk are connected

multifunctions if and only if Y is a connected space. If Y is not a connected
space then A(S ′) = A(S) × Y is not a connected set. If Y is a connected
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space then A(S ′) is a connected set if and only if A(S) is a connected set.
This is equivalent, from Theorem 1.2, with the fact that the family of sets
(fk(A(S)))k=1,n is connected. This is also equivalent with the fact that the
family of sets (fk(A(S))×Y )k=1,n is connected. In this way we obtain a proof
of Theorem 2.1 in this particular case.

We also remark that in this case A(S ′) is arcwise connected if and only if
it is connected and Y is arcwise connected.

Example 3.4. We consider the multifunctions F,G : R→ R defined by F (x) =
{x3 ,

x
2} and by G(x) = {x+2

3 , x+1
2 }. The attractor of the IMS S = (R, (F,G))

is [0, 1]. Indeed
FS([0, 1]) = F ([0, 1]) ∪G([0, 1]) = [0, 1

2 ] ∪ [ 1
2 , 1] = [0, 1].

We remark that the attractor is connected but the multifunctions F,G are
not connected.

Example 3.5. We consider the unit interval, [0, 1], with the usual distance,
a ∈ [0, 1) and the multifunctions F,G : [0, 1] � [0, 1] defined by F (x) = [0, ax]
and by G(x) = [1− ax, 1]. Then F ([0, 1]) = [0, a] and G([0, 1]) = [1− a, 1]. It
follows that the attractor of the IMS S = ([0, 1](F,G)) is [0, 1] if a ≥ 1/2 and
[0, a]∪ [1− a, 1] if a < 1/2. It is obvious that the attractor is connected if and
only if F ([0, 1]) ∩G([0, 1]) = ∅.

Example 3.6. ( an extension of a m-dimensional generalization of the Sier-
pinsky triangle). Let Rm be endowed with the euclidead metric (with m ≥ 2),
n be a natural number between 3 and m+1, a1, a2, ..., an be linear independent
points from Rm and Gi : Rm � Rm be multifunctions with compact and con-
nected values such that Lip(Gi) ≤ 1/6 and 0Rm ∈ Gi(x) for i ∈ {1, 2, ..., n}.
Let also, for i ∈ {1, 2, ..., n}, Fi : Rm � Rm be multifunctions defined by

Fi(x) =
x+ ai

2
+Gi(x). Then S = (Rm, (Fk)k=1,n) is an IMS such that A(S)

is a connected set.
Indeed, it is easy to see that Fi are multicontractions with compact and

connected values such that Lip(Fi) ≤ 2/3, ai ∈ Fi(ai) for every i ∈ {1, 2, ..., n}
and that

ai + aj
2

∈ Fi(aj) ∩ Fj(ai) ⊂ Fi(A(S)) ∩ Fj(A(S)) for every i, j ∈
{1, 2, ..., n}. From Theorem 2.1 it results that A(S) is a connected set. In this
case we can establish that A(S) is a connected set without finding A(S).

Example 3.7. Let us consider the space X = [0, 1]2 endowed with the max-
imum metric, that is d((x, y), (x1, y1)) = max{|x − x1|, |y − y1|}, the func-

tion g : (0, 1] → [0, 1] defined by g(x) =
1
2

(1 + sin(
1
x

)), the Warsaw sine

curve C = {0} × [0, 1] ∪ {(x, y) ∈ [0, 1]2|x > 0 and y =
1
2
g(x)} and π :
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[0, 1]2 → [0, 1] be the function defined by π(x, y) = x. Let us denote by Ca,b
the set C ∩ π−1([a, b]), where 0 ≤ a ≤ b ≤ 1. We consider the multifunc-
tions F1, F2, F3, : C � C defined by F1(x, y) = [0, 1]× {0}, F2(x, y) = C1/2,1,
F3(0, y) = [0, 1] × {0} and by F3(x, y) = Cx/10,3x/4 if x > 0 and the ”IMS”
S = (C, (F1, F2, F3)). It can be seen that C is a connected but not arcwise
connected set, Lip(F1) = Lip(F2) = 0, F1, F2, F3 are continuous multifunc-
tions with compact and arcwise connected values such that FS(C) = C and
for every (x, y) ∈ C the sequence (F [n]

S (x, y))n is convergent to C, where F [n]
S

denotes FS ◦ FS ◦ ... ◦ FS . We also remark that F3 is not a multicontraction.

To see this let us consider x =
1

2nπ
, where n ≥ 2 is a natural number, and a

ε > 0. Then if ε is small enough we have

h(F3(x, g(x)), F3(x− ε, g(x− ε))) = h(Cx/10,3x/4, C(x−ε)/10,3(x−ε)/4)

≥ d((
x− ε

10
, g(

x− ε
10

)), Cx/10,3x/4)

= d((
x

10
, g(

x

10
)), (

x− ε
10

, g(
x− ε

10
))) ≥ |g(

x

10
)− g(

x− ε
10

)|.

If F3 is a contraction, taking account that |g′(x)| = 1
x2

> 1, we have

|g(x)− g(x− ε)| = d((x, g(x)), (x− ε, g(x− ε))

≥ h(F3(x, g(x)), F3(x− ε, g(x− ε))) ≥ |g(
x

10
)− g(

x− ε
10

)|.

This is in contradiction with the fact that lim
ε→0

g(x)− g(x− ε)

g(
x

10
)− g(

x− ε
10

)
= 10.

Example 3.8. In [8], an example of a locally connected continuum which is
not an IFS attractor is given.

Open question. It is an open question that if in Theorem 2.1 we suppose
that the multifunctions have arcwise connected (and compact) values then
A(S) is arcwise connected. The same question can be put for Theorem 1.3.
I think that the answer is not true but I have not found a counterexample.
Example 3.7. is an attempt to find an example. The only problem is that
F3 is not a contraction. At least in the case of Theorem 2.1 it seems to
me that to find a counterexample is not very easy. In this case the attractor
A = A(F ) of a multicontraction F with compact and arcwise connected values
must contain at least two arcwise connected components which are dense in
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A. It results from the fact that every arcwise connected component of A is
dense in A. To see this let us denote by Ax the arcwise connected component
of an x ∈ A and remark that for every x ∈ A and natural number n there
exists an xn ∈ A such that x ∈ F [n](xn). But the set F [n](xn) is arcwise

connected and so F [n](xn) ⊂ Ax. Also h(F [n](xn), A) ≤ Lipn(F )
1− Lip(F )

δ(A),

where δ(A) = sup
x,y∈A

d(x, y). This gives the desired conclusion. Although such

sets exists one should also define the multifunctions and can encounter similar
problems with those from Example 3.7. The difference between the two cases,
connected and arcwise connected, consists of the fact that the limit (in the
Hausdorff-Pompeiu distance) of a sequence of compact and arcwise connected
sets could not be arcwise connected.
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