Keith Neu,* Science and Mathematics Division, Angelina College, 3500
South First Street, Lufkin, TX 75904. email: kneu@angelina.edu

A FEW RESULTS ON ARCHIMEDEAN SETS

Abstract

In a 1990 paper by R. Mabry, it is shown that for any constant $a \in(0,1)$ there exist sets A on the real line with the property that for any bounded interval $I, \frac{\mu(A \bigcap I)}{\mu(I)}=a$, where μ is any Banach measure. Many of the constructed sets are Archimedean sets, which are sets that satisfy $A+t=A$ for densely many $t \in \mathbb{R}$. In that paper it is shown that if A is an arbitrary Archimedean set, then for a fixed $\mu, \frac{\mu(A \bigcap I)}{\mu(I)}$ is constant. (This constant is called the μ-shade of A and is denoted $\operatorname{sh}_{\mu} A$.) A problem is then proposed: For any Archimedean set A, any fixed Banach measure μ, and any number b between 0 and $\operatorname{sh}_{\mu} A$, does there exist a subset B of A such that $\frac{\mu(B \bigcap I)}{\mu(I)}=b$ for any bounded interval I ? In this paper, we partially answer this question. We also derive a lower bound formula for the μ-shade of the difference set of an arbitrary Archimedean set. Finally, we generalize an intersection result from Mabry's original paper.

1 Introduction.

In this paper we assume the standard definitions for the sum of sets and the scalar multiple of a set. That is, $C+t=\{c+t \mid c \in C\}$ and $s C=\{s c \mid c \in C\}$.

[^0]We also define $A-A=\left\{a_{1}-a_{2} \mid a_{1}, a_{2} \in A\right\}$ to be the difference set of a given set $A \subseteq \mathbb{R}$.

Let μ be a finitely additive, isometry-invariant extension of the Lebesgue measure on $2^{\mathbb{R}}$. Then μ is a measure with the property that $\mu(E+t)=\mu(E)$ and $\mu(-E)=\mu(E)$ for every $t \in \mathbb{R}$ and every set $E \subset \mathbb{R}$. Also, $\mu(E)=\lambda(E)$ if E is Lebesgue measurable and λ is the Lebesgue measure. (Such a measure is called a Banach measure; such measures exist as a consequence of the axiom of choice, which we freely assume.) Mabry [4] has shown that for each $\alpha \in[0,1]$ there exist sets K called shadings, with the following property: Given any bounded Lebesgue measurable set $E \subset \mathbb{R}$ with positive measure and any Banach measure $\mu, \mu(K \cap E) / \mu(E)=\alpha$. It is clear that this "shade density" or shade is an extension of the usual Lebesgue density.

We will now briefly review some of the fundamental ideas used in [4]. To show a shading exists in the case where α is of the form $1 / a$, where $a \in$ $\mathbb{N}, \mathbb{N}=\{1,2, \cdots\}$, define an equivalence relation \sim on \mathbb{R} as follows: $x \sim y \Leftrightarrow$ $x-y \in h \mathbb{Z}+\mathbb{Z}$, where h is a fixed irrational number. Let Γ be a set of numbers consisting of exactly one element from each equivalence class so formed. (That is, let Γ be a selector for \sim.$) Finally, by letting K_{a, b}=\Gamma+h(a \mathbb{Z}+b)+\mathbb{Z}$, where $b \in \mathbb{Z}$, it can be shown $K_{a, b}$ has shade $\frac{1}{a}$. To see this, first note that $\mathbb{R}=\Gamma+h \mathbb{Z}+\mathbb{Z}$. Also, $K_{a, b+c}=K_{a, b}+r_{c}$, where r_{c} is any element of the set $h(a \mathbb{Z}+c)+\mathbb{Z}$. Since h is irrational, this set is dense and so we may choose $r_{c}<\varepsilon$, where ε is any arbitrary positive number. If J is an arbitrary interval and $J^{+}=J \bigcup(J+\varepsilon)$, then

$$
\begin{aligned}
a \mu\left(K_{a, b} \bigcap J\right) & =\sum_{c=0}^{a-1} \mu\left(K_{a, b+c} \bigcap\left(J+r_{c}\right)\right) \leq \sum_{c=0}^{a-1} \mu\left(K_{a, b+c} \bigcap J^{+}\right) \\
& =\mu\left(\left(\bigcup_{c=0}^{a-1} K_{a, b+c}\right) \cap J^{+}\right)=\mu\left(\mathbb{R} \cap J^{+}\right)=\mu(J)+\varepsilon
\end{aligned}
$$

Similarly, $a \mu\left(K_{a, b} \bigcap J\right) \geq \mu(J)-\varepsilon$. Since ε was arbitrary, the result follows. It is also shown in Mabry's paper that shadings of irrational shade can be constructed by taking countable unions of the $K_{a, b}$'s. The extension from intervals J to arbitrary Lebesgue measurable sets E is demonstrated in Theorem 3.11 in Mabry's paper.

2 Subsets of Archimedean Sets and other μ-Shadings.

In [6], Simoson defines an Archimedean set A to be a set with the property that $A+t=A$ for densely many $t \in \mathbb{R}$. (We call such t 's the translators of
A, and denote this set of such t by $\tau(A))$. It is easy to see that the shadings $K_{a, b}$ are Archimedean sets. One of the results proved in [4] is that if A is an Archimedean set, then for each fixed Banach measure μ, the quantity $\frac{\mu(A \cap I)}{\mu(I)}$ is constant for any bounded interval I of positive Lebesgue measure (Theorem 6.1 in [4]). This quantity is called the μ-shade of A, denoted $\operatorname{sh}_{\mu} A$, and the set itself is referred to as a μ-shading. Problem 4 is then posed: Given an Archimedean set A and a number $b \in\left(0, \operatorname{sh}_{\mu} A\right)$, does there exist an Archimedean subset B of A such that $\operatorname{sh}_{\mu} B=b$? The next theorem is a partial answer to this question.

Theorem 2.1. Let μ be a fixed Banach measure, let A be an Archimedean set of positive μ-shade a, and let $0<b<a$. If $\tau(A)$ has two numbers t_{1}, t_{2} such that $\frac{t_{1}}{t_{2}}$ is irrational, then there exists a subset B of A that has μ-shade b.

Proof. Let $b=\frac{a}{n}$ for some integer $n \geq 2$. Define an equivalence relation on A as follows: for $x, y \in A, x \sim y \Leftrightarrow x-y \in t_{1} \mathbb{Z}+t_{2} \mathbb{Z}$. Let Γ_{A} be a selector for \sim and consider the set $\Gamma_{A}+t_{1} \mathbb{Z}+t_{2} \mathbb{Z}$. Since $\Gamma_{A} \subseteq A$ and $\tau(A)$ is an additive group, this set is contained in A. Also, since any element $t \in A$ is equivalent to some $\gamma_{t} \in \Gamma_{A}, t-\gamma_{t} \in t_{1} \mathbb{Z}+t_{2} \mathbb{Z}$ which implies $t \in \Gamma_{A}+t_{1} \mathbb{Z}+t_{2} \mathbb{Z}$ and so $A \subseteq \Gamma_{A}+t_{1} \mathbb{Z}+t_{2} \mathbb{Z}$. We conclude that $A=\Gamma_{A}+t_{1} \mathbb{Z}+t_{2} \mathbb{Z}$. We now claim that $B=\Gamma_{A}+t_{1}(n \mathbb{Z})+t_{2} \mathbb{Z}$ is a subset of A having μ-shade b. The rest of the proof is similar to Theorem 3.6 in [4]. Let I be a bounded, nontrivial interval, let $\varepsilon>0$, and let $r_{i} \in\left(t_{1}(n \mathbb{Z}+i)+t_{2} \mathbb{Z}\right) \bigcap\left(0, \frac{\varepsilon}{n}\right)$ for $i=1,2, \cdots, n-1$, and $r_{0}=0 .\left(\right.$ Note: we can do this because $t_{1}(n \mathbb{Z}+i)+t_{2} \mathbb{Z}=t_{2}\left(\frac{t_{1}}{t_{2}}(n \mathbb{Z}+i)+\mathbb{Z}\right)$ is a dense set.) Now let $B_{i}=\Gamma_{A}+t_{1}(n \mathbb{Z}+i)+t_{2} \mathbb{Z}$ and $I^{+}=I \cup(I+\epsilon)$. Note that A is the disjoint union of the $B_{i}, i=0,1, \cdots, n-1$. Then

$$
\begin{aligned}
n \mu(B \cap I) & =\sum_{i=0}^{n-1} \mu\left((B \cap I)+r_{i}\right)=\sum_{i=0}^{n-1} \mu\left(B_{i} \cap\left(I+r_{i}\right)\right) \\
& \leq \sum_{i=0}^{n-1} \mu\left(B_{i} \cap I^{+}\right) \leq \sum_{i=0}^{n-1} \mu\left(B_{i} \cap I\right)+\varepsilon \\
& =\mu(A \cap I)+\varepsilon
\end{aligned}
$$

Since $\varepsilon>0$ was arbitrary, $n \mu(B \cap I) \leq \mu(A \cap I)$. Similarly we can show $n \mu(B \cap I) \geq \mu(A \cap I)$. The result follows.

Now consider the general case. Let $\sum_{i=1}^{\infty} \frac{d_{i}}{2^{i}}$ be a binary expansion of $\frac{b}{a}$; here $d_{i}=0$ or $d_{i}=1$ for all i. Define $K_{v, w}^{(A)}=\Gamma_{A}+t_{1}(v \mathbb{Z}+w)+t_{2} \mathbb{Z}$, where Γ_{A} is the same as in the first case and $v, w \in \mathbb{N}, w<v$. Then as in Case $1, K_{v, w}^{(A)}$ is an Archimedean subset of A with μ-shade $\frac{a}{v}$. Let $B=\bigcup_{i \in M} K_{2^{i}, 2^{i-1}}^{(A)}$, where $M=\left\{i: d_{i}=1\right\}$. (We are using the construction from Corollary 3.9 in [4].) Clearly each $K_{2^{i}, 2^{i-1}}^{(A)}$ has μ-shade $\frac{a}{2^{i}}$. To show this set satisfies the theorem we only need a variation of Theorem 3.8 of [4] and to show all of the $K_{2^{i}, 2^{i-1}}$'s are pairwise disjoint. (Theorem 3.8 says that if a countable union of disjoint μ-shadings exhausts A, and if the sum of their μ-shades is equal to a, then any subcollection of that union is itself a μ-shading with μ-shade equal to the sum of the μ-shades in the subcollection.) Suppose $x \in K_{2^{i}, 2^{i-1}}^{\bigcap} K_{2^{j}, 2^{j-1}}$. Then we can let $x=\gamma_{1}+t_{1}\left(2^{i} j+2^{i-1}\right)+t_{2} k=\gamma_{2}+t_{1}\left(2^{l} m+2^{l-1}\right)+t_{2} n$ for positive integers i, j, k, l, m, n. But then $\gamma_{1}=\gamma_{2}$, since otherwise $\gamma_{1}-\gamma_{2} \in t_{1} \mathbb{Z}+t_{2} \mathbb{Z}$. This implies that $k=n$ and $2^{i} j+2^{i-1}=2^{l} m+2^{l-1}$, since it follows that $\frac{t_{1}}{t_{2}}$ is rational. But this is impossible unless $i=l$. We conclude all of the $K_{2^{i}, 2^{i-1}}^{(A)}$'s are pairwise disjoint. Hence B has μ-shade $\sum_{i \in M}^{\infty} d_{i}\left(\frac{a}{2^{i}}\right)=a\left(\frac{b}{a}\right)=b$.

Corollary 2.2. For sets B and A as set forth in Theorem 2.1 we have that

$$
\frac{\operatorname{sh}_{\mu}(c B)}{\operatorname{sh}_{\mu}(c A)}=\frac{\operatorname{sh}_{\mu} B}{\operatorname{sh}_{\mu} A}
$$

for any nonzero real number c and any Banach measure μ.

Proof. As before, we have $B=\bigcup_{i \in M} K_{2^{i}, 2^{i-1}}^{(A)} \Rightarrow c B=\bigcup_{i \in M}\left(c K_{2^{i}, 2^{i-1}}^{(A)}\right)$. It can be shown using the ideas from the previous proof that $\operatorname{sh}_{\mu}\left(c K_{2^{i}, 2^{i-1}}^{(A)}\right)=$ $\frac{\operatorname{sh}_{\mu}(c A)}{2^{i}}$. (We note that $\operatorname{sh}_{\mu}(c A)$ exists because $c A$ is Archimedean.) Hence,
by Theorem 3.8 of [4],

$$
\begin{aligned}
\frac{\operatorname{sh}_{\mu}(c B)}{\operatorname{sh}_{\mu}(c A)}= & \frac{\operatorname{sh}_{\mu}\left(\bigcup_{i \in M}\left(c K_{2^{i}, 2^{i-1}}^{(A)}\right)\right)}{\operatorname{sh}_{\mu}(c A)}=\frac{\sum_{i=1}^{\infty} d_{i} \operatorname{sh}_{\mu}\left(c K_{2^{i}, 2^{i-1}}^{(A)}\right)}{\operatorname{sh}_{\mu}(c A)} \\
= & \frac{\sum_{i=1}^{\infty}\left(\frac{d_{i}}{2^{i}} \operatorname{sh}_{\mu}(c A)\right)}{\operatorname{sh}_{\mu}(c A)}=\sum_{i=1}^{\infty} \frac{d_{i}}{2^{i}}=\frac{\operatorname{sh}_{\mu} B}{\operatorname{sh}_{\mu} A} .
\end{aligned}
$$

In [1] it is shown that the outer and inner Lebesgue measures of sets that exhibit certain invariant properties take on only certain values. More specifically, if $C+t=C$ for densely many $t \in \mathbb{R}$ or if $s C=C$ for densely many $s \in \mathbb{R}$, then the outer measure of a set of the form $C \cap B$, where B is a Borel set, is always either 0 or $\lambda(B)$. The same is true for the inner measure of such a set. Mabry has already shown that Archimedean sets are μ-shadings. We will now show that sets S that satisfy $c S=S$ for densely many $c \in \mathbb{R}$ are also μ-shadings for certain μ 's. We will also show that a subset result similar to Theorem 2.1 can be proved for such a set. The two proofs that follow require Corollary 11.5 of [7], which guarantees the existence of a Banach measure μ satisfying $\mu(c A)=|c| \mu(A)$ for any nonzero constant $c \in \mathbb{R}$ and any set $A \subset \mathbb{R}$. We define $M(S)$ to be the set of numbers c satisfying $c S=S$.

Theorem 2.3. Let S be a set satisfying $c S=S$ for densely many $c \in \mathbb{R}$, and let μ be a Banach measure satisfying $\mu(c A)=|c| \mu(A)$ for any nonzero constant $c \in \mathbb{R}$ and any set $A \subset \mathbb{R}$. Then S is a μ-shading.

Proof. First we show that if $c_{1}, c_{2} \in M(S)$, where $c_{2}>c_{1} \geq 0$, then $\mu\left(S \bigcap\left[c_{1}, c_{2}\right]\right)=\left(c_{2}-c_{1}\right) \mu(S \bigcap[0,1])$. (This shows $\frac{\mu(S \bigcap I)}{\mu(I)}=\mu(S \bigcap[0,1])$ for $I=\left[c_{1}, c_{2}\right]$.) We have

$$
\begin{aligned}
\left(c_{2}-c_{1}\right) \mu(S \bigcap[0,1]) & =c_{2} \mu(S \bigcap[0,1])-c_{1} \mu(S \bigcap[0,1]) \\
& =\mu\left(c_{2} S \bigcap c_{2}[0,1]\right)-\mu\left(c_{1} S \bigcap c_{1}[0,1]\right) \\
& =\mu\left(S \bigcap\left[0, c_{2}\right]\right)-\mu\left(S \bigcap\left[0, c_{1}\right]\right) \\
& =\mu\left(S \bigcap\left[c_{1}, c_{2}\right]\right) .
\end{aligned}
$$

The cases where $c_{1}<c_{2} \leq 0$ and $c_{1}<0, c_{2}>0$ can be proven similarly, so in all cases, $\mu\left(S \bigcap\left[c_{1}, c_{2}\right]\right)=\mu\left(\left[c_{1}, c_{2}\right]\right) \mu(S \bigcap[0,1])$. If the endpoints c_{1}, c_{2} are not in $M(S)$, then we can choose endpoints that are in $M(S)$ that are close to c_{1} and c_{2} and make a limiting argument to show that for any finite interval $I, \mu(S \bigcap I)=\mu(I) \mu(S \bigcap[0,1])$.

Theorem 2.4. Let μ be a Banach measure satisfying $\mu(c A)=|c| \mu(A)$ for every nonzero constant c and every set $A \subset \mathbb{R}$. Also let S be a set satisfying $c S=S$ for densely many $c \in \mathbb{R}$, and assume there exist $m_{1}, m_{2} \in M(S)$ satisfying $m_{1}>0, m_{2}<0$, and $m_{1}^{q} \neq\left|m_{2}\right|$ for each $q \in \mathbb{Q}$. If $a=\operatorname{sh}_{\mu} S$, then for every b in the interval $(0, a)$, there exists a subset B of A that has μ-shade b.

Proof. It is easy to verify that $x \sim y \Leftrightarrow \frac{x}{y} \in m_{1}^{\mathbb{Z}} m_{2}^{\mathbb{Z}}$ for $x, y \in S$ is an equivalence relation. (Here $m_{i}^{\mathbb{Z}}=\left\{m_{i}^{z} \mid z \in \mathbb{Z}\right\}$.) As in the proof of Theorem 2.1 we choose one element γ from each equivalence class to form the set Γ. It follows that $S=m_{1}^{\mathbb{Z}} m_{2}^{\mathbb{Z}} \Gamma$.

We now show that the set $m_{1}^{\mathbb{Z}} m_{2}^{\mathbb{Z}}$ is dense. Since $m_{1}^{\mathbb{Z}}\left(m_{2}\right)^{2 \mathbb{Z}}$ is a set of positive numbers, we can say $\ln \left(m_{1}^{\mathbb{Z}}\left(m_{2}\right)^{2 \mathbb{Z}}\right)=\mathbb{Z} \ln \left(m_{1}\right)+2 \mathbb{Z} \ln \left|m_{2}\right|$. This is dense if $\frac{\ln \left(m_{1}\right)}{\ln \left|m_{2}\right|} \notin \mathbb{Q}$, which is true by assumption. So $m_{1}^{\mathbb{Z}}\left(m_{2}\right)^{2 \mathbb{Z}}$ is dense in \mathbb{R}^{+}, which implies $m_{1}^{\mathbb{Z}}\left(m_{2}\right)^{2 \mathbb{Z}+1}$ is dense in \mathbb{R}^{-}. This implies $m_{1}^{\mathbb{Z}} m_{2}^{\mathbb{Z}}$ is dense in \mathbb{R}.

Now let $S_{2^{n}}=\left(m_{1}\right)^{2^{n} \mathbb{Z}}\left(m_{2}\right)^{\mathbb{Z}} \Gamma$. Clearly $S=\bigcup_{i=0}^{2^{n}-1} c_{i} S_{2^{n}}$, where c_{i} is any number in the dense set $\left(m_{1}\right)^{2^{n} \mathbb{Z}+i} m_{2}^{\mathbb{Z}}$. Thus for any finite interval I,

$$
\begin{aligned}
\mu(S \bigcap I) & =\mu\left(\bigcup_{i=0}^{2^{n}-1} c_{i} S_{2^{n}} \bigcap I\right)=\sum_{i=0}^{2^{n}-1} \mu\left(c_{i} S_{2^{n}} \bigcap I\right) \\
& =\sum_{i=0}^{2^{n}-1} c_{i} \mu\left(S_{2^{n}} \bigcap \frac{I}{c_{i}}\right)
\end{aligned}
$$

Since each c_{i} can be made as close to 1 as we like, for any $\varepsilon>0$, we can choose the c_{i} so that $\mu\left(S_{2^{n}} \bigcap I\right)-\frac{\varepsilon}{2^{n}}<c_{i} \mu\left(S_{2^{n}} \bigcap \frac{I}{c_{i}}\right)<\mu\left(S_{2^{n}} \bigcap I\right)+\frac{\varepsilon}{2^{n}}$ for all i, which implies $2^{n} \mu\left(S_{2^{n}} \bigcap I\right)-\varepsilon<\mu(S \bigcap I)<2^{n} \mu\left(S_{2^{n}} \bigcap I\right)+\varepsilon$.

Since ε can be made arbitrarily small, we have $\frac{\mu\left(S_{2^{n}} \bigcap I\right)}{\mu(S \bigcap I)}=\frac{1}{2^{n}}$. Now let $\sum_{i=1}^{\infty} \frac{d_{i}}{2^{i}}$ be a binary expansion of $\frac{b}{a}$, where $d_{i}=0$ or 1 for all i, and define $S_{2^{n}, 2^{n-1}}=\left(m_{1}\right)^{2^{n} \mathbb{Z}+2^{n-1}}\left(m_{2}\right)^{\mathbb{Z}} \Gamma$. Finally, choose $B=\bigcup_{i \in M} S_{2^{i}, 2^{i-1}}$, where $M=\left\{i \mid d_{i}=1\right\}$. The rest of the proof is similar to the last part of the proof of Theorem 2.1.

3 The μ-Shade of the Difference Set of an Archimedean Set.

The next theorem involves estimating the μ-shade of $A-A$, where A is Archimedean. We note that $A-A$ will have a μ-shade because $A-A$ is also Archimedean. The proof is similar to the proof of Proposition 1 in [2, p. 126], where it is proved that if A is a (nonmeasurable) set satisfying $\mu(A \bigcap I)>\frac{1}{2} \mu(I)$ on some interval I, then $A-A$ contains an interval about 0 . Hence if A is Archimedean with this property, $\operatorname{sh}_{\mu} A>1 / 2$, and so $\operatorname{sh}_{\mu}(A-A)=1$. We will weaken this assumption to prove a more general theorem, although our result will be an inequality instead of an equality. But first, we need a lemma. (The original proof of this lemma was a bit longer; the proof that follows is due to Mabry.)

Lemma 3.1. Let μ be a Banach measure and let H be an Archimedean set with $\operatorname{sh}_{\mu}(H)>\frac{k-1}{k}$, where $k \geq 2$ is an integer. Then there exist distinct $h_{1}, h_{2}, \cdots, h_{k} \subset \mathbb{R}$ such that $\operatorname{sh}_{\mu}\left(\bigcap_{i=1}^{k}\left(H-h_{i}\right)\right)>0$.

Proof. For any $h_{1}, h_{2}, \cdots, h_{k}$, one has

$$
\begin{aligned}
\operatorname{sh}_{\mu}\left(\bigcap_{i=1}^{k}\left(H-h_{i}\right)\right) & =1-\operatorname{sh}_{\mu}\left(\bigcup_{i=1}^{k}\left(H-h_{i}\right)^{c}\right) \geq 1-\sum_{i=1}^{k} \operatorname{sh}_{\mu}\left(H-h_{i}\right)^{c} \\
& =1-k\left(1-\operatorname{sh}_{\mu}(H)\right)=k \operatorname{sh}_{\mu}(H)-(k-1) .
\end{aligned}
$$

Thus $\operatorname{sh}_{\mu}\left(\bigcap_{i=1}^{k}\left(H-h_{i}\right)\right)>0$ if $\operatorname{sh}_{\mu} H>\frac{k-1}{k}$. For $1 \leq n \leq k$ it is also clear that $\operatorname{sh}_{\mu}\left(\bigcap_{i=1}^{n}\left(H-h_{i}\right)\right)>\frac{k-n}{k}>0$. The h_{i} can therefore be chosen recursively so that they are distinct. Specifically, let h_{1} be arbitrary and take $h_{n} \in \bigcap_{i=1}^{n-1}\left(H-h_{i}\right)$ for $1<n \leq k$, such that $h_{n} \notin\left\{h_{1}, h_{2}, \cdots, h_{n-1}\right\}$. This
is possible because h_{n} is chosen from a set of positive μ-shade, which must be (uncountably) infinite.

Theorem 3.2. Let A be an Archimedean set satisfying $\operatorname{sh}_{\mu} A>\frac{1}{k+1}$ for an integer $k \geq 1$. Then $\operatorname{sh}_{\mu}(A-A) \geq \frac{1}{k}$.

Proof. Assume to the contrary that $\operatorname{sh}_{\mu}(A-A)<\frac{1}{k}$ and let $H=(A-A)^{c}$. Clearly H is Archimedean and $\operatorname{sh}_{\mu}(H)>\frac{k-1}{k}$. Choose distinct $h_{1}, h_{2}, \cdots, h_{k}$ as per Lemma 3.1 and then take $h_{k+1} \in \bigcap_{i=1}^{k}\left(H-h_{i}\right) \backslash\left\{h_{1}, h_{2}, \cdots, h_{k}\right\}$, this being possible since the latter intersection has positive μ-shade. It follows that the sets $A+h_{1}, A+h_{2}, \cdots, A+h_{k}$ are pairwise disjoint. (To see this, note that if $x \in\left(A+h_{j}\right) \cap\left(A+h_{i}\right)$ for $j \neq i$, then $h_{j}-h_{i} \in A-A$, which is impossible.) But the sum of μ-shades of disjoint μ-shadings cannot exceed unity, so $1 \geq \sum_{i=1}^{k+1} \operatorname{sh}_{\mu}\left(A+h_{i}\right)=(k+1) \operatorname{sh}_{\mu}(A)$, which implies that $\operatorname{sh}_{\mu} A \leq$ $\frac{1}{k+1}$, a contradiction.

4 An Intersection Result.

In his paper, Mabry proved that if $f: \mathbb{R} \rightarrow[0,1]$ is a continuous function, then there exists a point set F such that $\lim _{\mu\left(I_{x}\right) \rightarrow 0} \frac{\mu\left(F \bigcap I_{x}\right)}{\mu\left(I_{x}\right)}=f(x)$ for all Banach μ and for all $x \in \mathbb{R}$, where I_{x} is a closed interval about x. (A. B. Kharazishvili constructs something similar in [3].) Mabry also proved ([4, Example 5.4]) that for any finite collection $v_{1}, v_{2}, \ldots, v_{n}$ of real numbers in $(0,1)$, there exist shadings $C_{1}, C_{2}, \ldots, C_{n}$ with the property that for any set M of distinct integers in $\{1,2, \cdots, n\}, \operatorname{sh}\left(\bigcap_{j \in M} C_{j}\right)=\prod_{j \in M} v_{j}$. We will combine these results to prove that this intersection property holds for countably many continuous functions.

Theorem 4.1. Let $\left\{f_{i}\right\}_{i=1}^{\infty}$ be a set of continuous functions, $f_{i}: \mathbb{R} \rightarrow[0,1]$. Then there exist subsets $\left\{F_{i}\right\}_{i=1}^{\infty}$ of \mathbb{R} such that for each finite subset M of \mathbb{N},

$$
\begin{equation*}
\lim _{\mu\left(I_{x}\right) \rightarrow 0} \frac{\mu\left(\left(\bigcap_{i \in M} F_{i}\right) \bigcap I_{x}\right)}{\mu\left(I_{x}\right)}=\prod_{i \in M} f_{i}(x) \tag{1}
\end{equation*}
$$

where $x \in \mathbb{R}$ is arbitrary and I_{x} is a closed interval centered at x.

Before proving the theorem, we need a few lemmas.
Lemma 4.2. For $i=1,2, \cdots, t$, let $\left\{p_{i}\right\}$ be distinct primes and let $\left\{m_{i}, a_{i}\right\}$ be pairs of nonnegative integers. Then $\left(x_{1}, x_{2}, \cdots, x_{t}\right)$ is an integer solution of the equation $p_{1}^{m_{1}} x_{1}+a_{1}=p_{2}^{m_{2}} x_{2}+a_{2}=\cdots=p_{t}^{m_{t}} x_{t}+a_{t}$ if and only if $x_{i}=\left(\prod_{j \neq i} p_{j}^{m_{j}}\right) k+c_{i}$ for all i, where $k \in \mathbb{Z}$ and $\left(c_{1}, c_{2}, \cdots, c_{t}\right)$ is any single integer solution of the equation.

Proof. Fix a solution $\left(c_{1}, c_{2}, \cdots, c_{t}\right)$. Let x_{0} denote the common value of $p_{i}^{m_{i}} c_{i}+a_{i}$. By the Chinese Remainder Theorem (see, e.g., [5]), x is a solution of the set of congruences

$$
x \equiv a_{1}\left(\bmod p_{1}^{m_{1}}\right), \quad x \equiv a_{2}\left(\bmod p_{2}^{m_{2}}\right), \quad \ldots \quad, x \equiv a_{t}\left(\bmod p_{t}^{m_{t}}\right)
$$

if and only if $x=x_{0}+k m$, where k is an integer and $m=p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{t}^{m_{t}}$. Clearly x is a solution of the above congruences if and only if $x=a_{1}+$ $k_{1} p_{1}^{m_{1}}=a_{2}+k_{2} p_{2}^{m_{2}}=\cdots=a_{t}+k_{t} p_{t}^{m_{t}}$ for integers k_{i}. Thus we can say that $\left(k_{1}, k_{2}, \cdots, k_{t}\right)$ is a solution of the equation mentioned in the theorem if and only if there exists a $k \in \mathbb{Z}$ such that $x_{0}+k m=a_{i}+k_{i} p_{i}^{m_{i}}$ for all i. After a little algebra, this is seen to be equivalent to the conditions $k_{i}=k \frac{m}{p_{i}^{m_{i}}}+c_{i}$.
Lemma 4.3. Let x be a real number written in base p, where $p>1$ is an integer. Assume that the base-p representation of x never ends in an infinite string of $p-1$'s. (For example, if $x=0.23 \overline{4}$ in base- 5 , we write $x=0.24$.) Then for any $N \in \mathbb{N}$, there exists an $\varepsilon>0$ such that the base-p representation of every number in $(x-\varepsilon, x)$ begins with the same N digits after the radix point and the base-p representation of every number in $[x, x+\varepsilon)$ begins with the same N digits after the radix point.

The radix point in base 10 is the decimal point. From now on, we will refer to the $n^{\text {th }}$ digit after the radix point as the digit in the $n^{\text {th }}$ radix place. We omit the obvious proof of Lemma 4.3, but note that the N digits corresponding to $(x-\varepsilon, x)$ are, in general, different than the N digits corresponding to $[x, x+\varepsilon)$ whenever x terminates in base p. We use the notation x^{-}to represent the rational number in base p whose only nonzero digits after the radix point are the N digits corresponding to $(x-\varepsilon, x)$. The notation x^{+}has a similar meaning.

Proof of Theorem 4.1. Consider the set $K_{p^{k}, l p^{k-1}}=\Gamma+h\left(p^{k} \mathbb{Z}+l p^{k-1}\right)+$ \mathbb{Z}, where Γ is the same selector set mentioned in the introduction, h is the
same irrational constant, and $1 \leq l \leq p-1$. It is easy to show that if $k_{1} \neq k_{2}$
 sequence $2,3,5, \cdots$ of primes, and let $C_{k}^{(l)}(i)=K_{p_{i}^{k}, l p_{i}^{k-1}}$, where $k \in \mathbb{N}$ and $1 \leq l \leq p_{i}-1$. Then for each fixed i the sets $C_{k}^{(l)}(i)$ are pairwise disjoint shadings (for distinct pairs (k, l)) with shade $1 / p_{i}^{k}$. We will associate these shadings with the nonzero digits $l=1,2, \cdots, p_{i}-1$ in the $k^{\text {th }}$ radix place of a number expressed in base p_{i}.

We will now construct the point set F_{i} using the $i^{\text {th }}$ prime p_{i}. We assume $f_{i}\left(x_{0}\right)$ is written in base p_{i} and also we make the same assumption about numbers written in base p_{i} that we made in Lemma 4.3: The base- p_{i} representation of a number never ends with an infinite string of $p_{i}-1$'s. Let $S_{k}^{(j)}(i)$ be the set of x-values such that $f_{i}(x)$ has a j in its $k^{\text {th }}$ radix place, where $0 \leq j<p_{i}, k \in \mathbb{N}$. (Notice that $S_{k}^{(j)}(i)$ is Lebesgue measurable, being the inverse image of a finite union of intervals under the continuous function $\left.f_{i}.\right)$ Let $F_{i}=\bigcup_{j, k}\left[S_{k}^{(j)}(i) \bigcap\left(\bigcup_{1 \leq l \leq j} C_{k}^{(l)}(i)\right)\right]$ for $i \in \mathbb{N}$, and let $M \subset \mathbb{N}$ be finite. (For $j=0$, the expression $S_{k}^{(j)}(i) \bigcap\left(\bigcup_{1 \leq l \leq j} C_{k}^{(l)}(i)\right)$ is understood to be empty.) Now fix $x_{0} \in \mathbb{R}$ and let $\varepsilon>0$. We will show that the limit in (1) holds for this arbitrary x_{0}. For now, assume $f_{i}\left(x_{0}\right)>0$ for all $i \in M$, and choose $N \in \mathbb{N}$ large enough so that $\prod_{i \in M} f_{i}\left(x_{0}\right)-\prod_{i \in M}\left(f_{i}\left(x_{0}\right)-\frac{1}{p_{i}^{N}}\right)<\varepsilon, \frac{|M|}{2^{N}}<\varepsilon$, and $f_{i}\left(x_{0}\right)-\frac{1}{p_{i}^{N}}>0$ for all $i \in M$. From Lemma 4.3 we know $\exists \varepsilon^{\prime}>0$ such that the base- p_{i} representation of every number in $\left(f_{i}\left(x_{0}\right)-\varepsilon^{\prime}, f_{i}\left(x_{0}\right)\right)$ begins with the same N digits after the radix point and the base- p_{i} representation of every number in $\left[f_{i}\left(x_{0}\right), f_{i}\left(x_{0}\right)+\varepsilon^{\prime}\right.$) begins with the same N digits after the radix point. (In the above statement ε^{\prime} depends, in general, on i, but we can always set $\varepsilon^{\prime}=\min \left\{\varepsilon_{i}^{\prime}\right\}$ and use the same ε^{\prime} for every i.) Let $f_{i}\left(x_{0}\right)^{-}$and $f_{i}\left(x_{0}\right)^{+}$have meanings similar to x^{-}and x^{+}mentioned after Lemma 4.3. Now define $I_{x_{0}}^{+}\left(f_{i}\right)=\left\{x \in I_{x_{0}} \mid f_{i}(x) \in\left[f_{i}\left(x_{0}\right), f_{i}\left(x_{0}\right)+\varepsilon^{\prime}\right)\right\}$ and $I_{x_{0}}^{-}\left(f_{i}\right)=\left\{x \in I_{x_{0}} \mid f_{i}(x) \in\left(f_{i}\left(x_{0}\right)-\varepsilon^{\prime}, f_{i}\left(x_{0}\right)\right)\right\}$, where $I_{x_{0}}$ is an interval centered at x_{0} satisfying $f_{i}\left(I_{x_{0}}\right) \subset\left(f_{i}\left(x_{0}\right)-\varepsilon^{\prime}, f_{i}\left(x_{0}\right)+\varepsilon^{\prime}\right)$ for all $i \in M$.

Let the $k^{\text {th }}$ digit after the radix point of $f_{i}\left(x_{0}\right)^{+}$be denoted $m_{k}^{+}(i)$. If $j=$ $m_{k}^{+}(i), k \leq N$, then $S_{k}^{(j)}(i) \bigcap I_{x_{0}}^{+}\left(f_{i}\right)=I_{x_{0}}^{+}\left(f_{i}\right) ;$ otherwise $S_{k}^{(j)}(i) \bigcap I_{x_{0}}^{+}\left(f_{i}\right)=$
\emptyset. Hence for $k \leq N, \bigcap_{i \in M}\left(S_{k}^{(j)}(i) \bigcap I_{x_{0}}^{+}\left(f_{i}\right)\right)=\bigcap_{i \in M} I_{x_{0}}^{+}\left(f_{i}\right)$ if $j=m_{k}^{+}(i)$ and

$$
\bigcap_{i \in M}\left(S_{k}^{(j)}(i) \bigcap I_{x_{0}}^{+}\left(f_{i}\right)\right)=\emptyset
$$

otherwise. (For each i in the intersection above we fix the j, k pair, but each j, k pair is, in general, different for each i.) Now let $I_{1}=\bigcap_{i \in M} I_{x_{0}}^{+}\left(f_{i}\right)$ and let

$$
\begin{gathered}
G=\bigcap_{i \in M}\left[\left(\bigcup_{k \leq N, j}\left[S_{k}^{(j)}(i) \bigcap\left(\bigcup_{1 \leq l \leq j} C_{k}^{(l)}(i)\right)\right]\right) \bigcap I_{1}\right] . \text { Also let } \\
x \in\left(\left(\bigcap_{i \in M} F_{i}\right) \bigcap I_{1}\right) \backslash G .
\end{gathered}
$$

Then x is contained in $\bigcap_{i \in M}\left[\left(\bigcup_{j, k}\left[S_{k}^{(j)}(i) \bigcap\left(\bigcup_{1 \leq l \leq j} C_{k}^{(l)}(i)\right)\right]\right) \bigcap I_{1}\right]$. But x is not in G, so x must be in some set of the form

$$
\left[S_{k}^{(j)}(i) \bigcap\left(\bigcup_{1 \leq l \leq j} C_{k}^{(l)}(i)\right)\right] \bigcap I_{1}
$$

for $k>N$. This means the set $\left(\left(\bigcap_{i \in M} F_{i}\right) \bigcap I_{1}\right) \backslash G$ is contained in

$$
\left(\bigcup_{i \in M, k>N}\left[\bigcup_{1 \leq l \leq p_{i}-1} C_{k}^{(l)}(i)\right]\right) \bigcap I_{1}
$$

But the measure of this set is less than $|M|\left(\frac{1}{\left(\min \left\{p_{i} \mid i \in M\right\}\right)^{N}}\right) \mu\left(I_{1}\right)$. We conclude that $\mu\left(\left(\bigcap_{i \in M} F_{i}\right) \bigcap I_{1}\right) \leq \mu(G)+\frac{|M|}{2^{N}} \mu\left(I_{1}\right)$. Using the intersections mentioned at the beginning of the paragraph and the fact that for $k \leq N, S_{k}^{(j)}(i) \bigcap I_{1}=\emptyset$ unless $j=m_{k}^{+}(i)$, we can write

$$
\begin{equation*}
G=\bigcap_{i \in M}\left[\bigcup_{k \leq N}\left(I_{1} \bigcap\left(\bigcup_{1 \leq l \leq m_{k}^{+}(i)} C_{k}^{(l)}(i)\right)\right)\right] \tag{2}
\end{equation*}
$$

We now want to show $\mu(G)=\left(\prod_{i \in M} f_{i}\left(x_{0}\right)^{+}\right) \mu\left(I_{1}\right)$. To do this, we think of each $f_{i}\left(x_{0}\right)^{+}$as a sum of terms of the form $\frac{1}{p_{i}^{k}}$, where k is a positive integer. For each k, there are $m_{k}^{+}(i)$ of these terms and each $\frac{1}{p_{i}^{k}}$ corresponds to exactly one $C_{k}^{(l)}(i)$ in (2). So we need to show that the shade of any set of the form $\bigcap C_{k}^{(l)}(i)$ is equal to the product of all of the individual shades of the $C_{k}^{(l)}(i)^{\prime}$'s. This is where Lemma 4.2 is used. Since $C_{k}^{(l)}(i)=$ $K_{p_{i}^{k}, l p_{i}^{k-1}}=\Gamma+h\left(p_{i}^{k} \mathbb{Z}+l p_{i}^{k-1}\right)+\mathbb{Z}$, by the construction of Γ, our intersection requires that $p_{1}^{k_{1}} x_{1}+l_{1} p_{1}^{k_{1}-1}=p_{2}^{k_{2}} x_{2}+l_{2} p_{2}^{k_{2}-1}=\cdots=p_{|M|}^{k_{|M|}} x_{|M|}+l_{|M|} p_{|M|}^{k_{|M|}-1}$ for $\left\{x_{i}\right\} \subset \mathbb{Z}$. From Lemma 4.2, we know that any number of the form $\left(\prod_{s \neq i} p_{s}^{k_{s}}\right) z+c_{i}$ can be used for x_{i}, where $z \in \mathbb{Z}$ is arbitrary and $c_{i} \in \mathbb{Z}$ is fixed. This implies the intersection set can be written in the form $\Gamma+$ $h\left(\left(\prod_{i \in M} p_{i}^{k_{i}}\right) \mathbb{Z}+d\right)+\mathbb{Z}$ for some integer d. But this set has shade $\frac{1}{\prod_{i \in M} p_{i}^{k_{i}}}$, the product of all the shades of the $C_{k}^{(l)}(i)$'s in the intersection. We conclude that $\mu(G)=\left(\prod_{i \in M} f_{i}\left(x_{0}\right)^{+}\right) \mu\left(I_{1}\right)$. We note that I_{1} is Lebesgue measurable, so the last equation also follows from Mabry's Theorem 3.11, which says that shadings are evenly distributed on Lebesgue measurable sets and not just intervals. Thus we have $\prod_{i \in M} f_{i}\left(x_{0}\right)^{+} \mu\left(I_{1}\right) \leq \mu\left(\left(\bigcap_{i \in M} F_{i}\right) \bigcap I_{1}\right) \leq$ $\prod_{i \in M} f_{i}\left(x_{0}\right)^{+} \mu\left(I_{1}\right)+\frac{|M|}{2^{N}} \mu\left(I_{1}\right) . \quad U \operatorname{sing} f_{i}\left(x_{0}\right)-\frac{1}{p_{i}^{N}} \leq f_{i}\left(x_{0}\right)^{+} \leq f_{i}\left(x_{0}\right)$ and the assumptions on the size of ε, we can write $\left(\prod_{i \in M} f_{i}\left(x_{0}\right)-\varepsilon\right) \mu\left(I_{1}\right) \leq$ $\mu\left(\left(\bigcap_{i \in M} F_{i}\right) \bigcap I_{1}\right) \leq\left(\prod_{i \in M} f_{i}\left(x_{0}\right)+\varepsilon\right) \mu\left(I_{1}\right) . \quad$ (The inequality $f_{i}\left(x_{0}\right)-$ $\frac{1}{p_{i}^{N}} \leq f_{i}\left(x_{0}\right)^{+} \leq f_{i}\left(x_{0}\right)$ holds if we again assume that any number written
in base p_{i} that might end with an infinite string of $p_{i}-1$'s is written in terminating form.) We proved $\left(\prod_{i \in M} f_{i}\left(x_{0}\right)-\varepsilon\right) \mu\left(I_{1}\right) \leq \mu\left(\left(\bigcap_{i \in M} F_{i}\right) \bigcap I_{1}\right) \leq$ $\left(\prod_{i \in M} f_{i}\left(x_{0}\right)+\varepsilon\right) \mu\left(I_{1}\right)$ for $I_{1}=\bigcap_{i \in M} I_{x_{0}}^{+}\left(f_{i}\right)$, but a similar process can be used to prove it for any intersection of the sets $\left\{I_{x_{0}}^{+}\left(f_{i}\right), I_{x_{0}}^{-}\left(f_{i}\right)\right\}$, where for each i either $I_{x_{0}}^{+}\left(f_{i}\right)$ or $I_{x_{0}}^{-}\left(f_{i}\right)$ is chosen. (We need to use both $f_{i}\left(x_{0}\right)-$ $\frac{1}{p_{i}^{N}} \leq f_{i}\left(x_{0}\right)^{+} \leq f_{i}\left(x_{0}\right)$ and $f_{i}\left(x_{0}\right)-\frac{1}{p_{i}^{N}} \leq f_{i}\left(x_{0}\right)^{-} \leq f_{i}\left(x_{0}\right)$ in the general case.) There are $2^{|M|}$ such sets, and each one is Lebesgue measurable. If we add up all $2^{|M|}$ of these inequalities and use the finite additivity of μ, we can write $\left(\prod_{i \in M} f_{i}\left(x_{0}\right)-\varepsilon\right) \mu\left(I_{x_{0}}\right) \leq \mu\left(\left(\bigcap_{i \in M} F_{i}\right) \bigcap I_{x_{0}}\right) \leq$ $\left(\prod_{i \in M} f_{i}\left(x_{0}\right)+\varepsilon\right) \mu\left(I_{x_{0}}\right)$. Dividing both sides by $\mu\left(I_{x_{0}}\right)$ and using the arbitrary smallness of ε gives us the desired result.

We now consider the case where $f_{t}\left(x_{0}\right)=0$ for some $t \in M$. Besides $\frac{|M|}{2^{N}}<\varepsilon$ and the one involving Lemma 4.3, the other assumptions on N are not used. Everything in the proof is the same until we get to the inequality $\prod_{i \in M} f_{i}\left(x_{0}\right)^{+} \mu\left(I_{1}\right) \leq \mu\left(\left(\bigcap_{i \in M} F_{i}\right) \bigcap I_{1}\right) \leq \prod_{i \in M} f_{i}\left(x_{0}\right)^{+} \mu\left(I_{1}\right)+\frac{|M|}{2^{N}} \mu\left(I_{1}\right)$, or $0 \leq \mu\left(\left(\bigcap_{i \in M} F_{i}\right) \bigcap I_{1}\right) \leq \varepsilon \mu\left(I_{1}\right)$. Since $f_{t}\left(x_{0}\right)=0$ and $f_{t}(x) \geq 0$ for all $x \in \mathbb{R}, I_{x_{0}}^{-}\left(f_{t}\right)=\emptyset$. (Hence $f_{t}\left(x_{0}\right)^{-}$does not exist.) This last case then gives us fewer than $2^{|M|}$ inequalities to add together, since there are fewer than $2^{|M|}$ nonempty intervals to consider. Their sum, nevertheless, is still $0 \leq \mu\left(\left(\bigcap_{i \in M} F_{i}\right) \bigcap I_{x_{0}}\right) \leq \varepsilon \mu\left(I_{x_{0}}\right)$.

We should mention that the F_{i} sets above can be made to be subsets of arbitrary Archimedean sets satisfying the conditions of Theorem 2.1, if we use $\Gamma_{A}+t_{1} \mathbb{Z}+t_{2} \mathbb{Z}$ in place of $\Gamma+h \mathbb{Z}+\mathbb{Z}$ in the proof.

Acknowledgement. The author wishes to express his appreciation to R. Mabry for his suggestions and comments.

References

[1] H. G. Kellerer, Non measurable partitions of the real line, Adv. Math., 10 (1973), 172-176.
[2] A. B. Kharazishvili, Applications of point set theory in real analysis, Kluwer Acad. Publ., Dordrecht, 1998.
[3] A. B. Kharazishvili, Some remarks on density points and the uniqueness property for invariant extensions of the Lebesgue measure, Acta Univ. Carolin. Math. Phys., 35(2) (1994), 33-39.
[4] R. D. Mabry, Sets which are well-distributed and invariant relative to all isometry invariant total extensions of Lebesgue measure, Real Anal. Exchange, 16(2) (1990-91), 425-459.
[5] I. Niven, H. S. Zuckerman and H. L. Montgomery, An introduction to the theory of numbers, Fifth edition, Wiley, New York, 1991.
[6] A. Simoson, On two halves being two wholes, Amer. Math. Monthly 91(3) (1984), 190-193.
[7] S. Wagon, The Banach-Tarski paradox, Cambridge Univ. Press, Cambridge, 1985.

[^0]: Mathematical Reviews subject classification: Primary: 28A12
 Key words: Archimedean set, Banach measure, measure, shading, nonmeasurable set, translation invariant

 Received by the editors August 12, 2007
 Communicated by: Krzysztof Ciesielski
 *Most of the results in this paper were proved while the author was at Louisiana State University in Shreveport.

