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Abstract

In [9] G. F. Stefansson has studied the Banach space L1(ν,X, Y ),
the space of all tensor integrable functions f : Ω → X with respect to
a countably additive vector valued measure ν : Σ → Y and also the
tensor integral of weakly ν-measurable functions. In [1] we obtained
some Banach space properties of L1(ν,X, Y ) and also of w-L1(ν,X, Y ),
the space of all weakly tensor integrable functions. In the present paper,
for 1 < p <∞, we define the spaces Lp(ν,X, Y ) and w-Lp(ν,X, Y ) of all
⊗̌p-integrable functions and weakly ⊗̌p-integrable functions respectively
and discuss several basic properties of these spaces. We also study vector
measure duality in Lp(ν,X, Y ) for 1 < p <∞.

1 Introduction, Notations and Preliminaries.

This paper may be considered as a continuation of the paper of Stefansson
[9] and our paper [1]. Throughout this paper, X and Y are two real Banach
spaces with topological duals X∗ and Y ∗ respectively. BX (respectively BX∗)
denotes the closed unit ball of X (respectively X∗) and X⊗̌Y is the injective
tensor product of X and Y (see [3, Chapter VIII]).

If X is a Banach lattice, then its dual X∗ is also a Banach lattice where
the positive cone is defined by x∗ ≥ θ in X∗ if and only if x∗(x) ≥ 0 for every
x ≥ θ in X (see [6, p.3]).
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If (Ω,Σ) is a measurable space, then the semivariation of a countably
additive vector measure ν : Σ → Y is defined by ‖ν‖(A) = sup{|y∗ν|(A) :
y∗ ∈ BY ∗} for A ∈ Σ, where |y∗ν| is the variation of the scalar measure y∗ν.

For 1 ≤ p < ∞, let Lp(ν) and w-Lp(ν) denote the Banach spaces of
all (‖ν‖-equivalence classes of) p-integrable and weakly p-integrable functions
f : Ω→ R with respect to ν respectively equipped with the norm

‖f‖p,ν = sup
{(∫

Ω

|f |p d|y∗ν|
)1/p

: y∗ ∈ BY ∗
}
.

The space w-Lp(ν) is a Banach lattice with respect to the natural order
‖ν‖-a.e. containing Lp(ν) as a closed sublattice (see [2, p.319], [10, p.227], [4,
p.7]).

Moreover, Lp(ν) is an order continuous Banach lattice with weak order
unit (see [7, p.912]).

Also for 1 ≤ p <∞, we have the following inclusions

Lp(ν) ⊂ w-Lp(ν) ⊂ w-L1(ν) and Lp(ν) ⊂ L1(ν) ⊂ w-L1(ν),

where the inclusion mappings are continuous. The space w-Lp(ν) has an order
continuous norm if and only if w-Lp(ν) = Lp(ν) (see [10, Theorem 10, p.228]
and [4, Corollary 3.10, p.13]).

For 1 ≤ p < ∞, the symbol Lp(µ,X) denotes the Banach space of all
(equivalence classes of) Bochner integrable functions f : Ω→ X with respect
to the scalar measure µ, equipped with the norm

‖f‖p =
(∫

Ω

‖f‖p d|µ|
)1/p

.

In [9] Stefansson defines a ν-measurable function f : Ω → X to be ⊗̌-
integrable with respect to ν if there exists a sequence of X-valued simple
functions {φn} such that

lim
n

sup
{∫

Ω

‖f − φn‖ d|y∗ν| : y∗ ∈ BY ∗
}

= 0.

In this case, we have
∫
E
f dν = limn

∫
E
φn dν for every E ∈ Σ and

∫
E
f dν

is called the ⊗̌-integral of f over E with respect to ν and the value of the
integral is an element of the injective tensor product X⊗̌Y . The space of all
⊗̌-integrable functions is denoted by L1(ν,X, Y ).

If N(f) = sup{
∫

Ω
‖f‖ d|y∗ν| : y∗ ∈ BY ∗}, then N(f) < ∞ if f is ⊗̌-

integrable.
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It has been shown in [9, Theorem 4, p.932] that L1(ν,X, Y ) is a Banach
space with respect to the norm N(·) and it is an order continuous Banach
lattice with weak order unit if X is an order continuous Banach lattice (see
[1, Theorem 1, p.5]).

Let y∗0 ∈ BY ∗ such that ‖ν‖ � |y∗0ν|, that is, λ = |y∗0ν| is a Rybakov
control measure for ν (see [3, Theorem 2, p.268]).

In [9] Stefansson also studies the integral of weakly ν-measurable functions
f : Ω → X and shows that if x∗f ∈ L1(y∗ν) for x∗ ∈ X∗, y∗ ∈ Y ∗, then for
every g ∈ L∞(|y∗0ν|), the map Ψg defined by

Ψg(x∗, y∗) =
∫

Ω

g · x∗f dy∗ν

is an element of B(X∗, Y ∗), the space of all bounded bilinear functionals on
X∗×Y ∗, and the generalized weak ⊗-integral of f over a set E ∈ Σ is defined
by the element ΨχE . Since X⊗̌Y ⊂ B(X∗, Y ∗), he defines f to be weakly
⊗̌-integrable if ΨχE ∈ X⊗̌Y and in this case ΨχE is the weak ⊗̌-integral of f
over E and is denoted by

∫
E
f dν.

Let w-L1(ν,X, Y ) be the space of all weakly ⊗̌-integrable functions with
respect to the semivariation norm

‖f‖ν = sup
{∫

Ω

|x∗f | d|y∗ν| : x∗ ∈ BX∗ , y∗ ∈ BY ∗
}
.

It has been shown in [1, Theorem 7, p.15] that w-L1(ν,X, Y ) is an incomplete
normed linear space which is barrelled if ν is nonatomic.

Let 1 < p <∞. The main object of our paper is to extend the definition of
L1(ν,X, Y ) and w-L1(ν,X, Y ) to Lp(ν,X, Y ) and w-Lp(ν,X, Y ) respectively
and study some basic properties of these spaces. We also study vector measure
duality in Lp(ν,X, Y ) for 1 < p <∞, which is a generalization of the idea of
vector measure duality in Lp(ν) as introduced by Sánchez Pérez in [7].

2 The Spaces Lp(ν,X, Y ) and w-Lp(ν,X, Y ).

Definition 1. Let 1 < p <∞. A ν-measurable function f : Ω→ X is called
⊗̌p-integrable, if there exists a sequence {φn} of X-valued simple functions
such that lim

n
Np(f − φn) = 0, where

Np(f) = sup
{(∫

Ω

‖f‖p d|y∗ν|
)1/p

: y∗ ∈ BY ∗
}
.
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It is easy to prove that for 1 < p <∞, if a ν-measurable function f is ⊗̌p-
integrable then Np(f) < ∞ and if f and g are two ⊗̌p-integrable functions,
then (f + g) is ⊗̌p-integrable and Np(f + g) ≤ Np(f) +Np(g).

Theorem 1. Let 1 < p < ∞. A ν-measurable function f is ⊗̌p-integrable if
and only if ‖f‖p is ν-integrable.

Proof. The proof is similar to that of Theorem 1 of [9]. So we give a sketch
of the proof.

Let f be ⊗̌p-integrable. Then Np(f) <∞ and so it follows, by definition,
that ‖f‖ ∈ w-Lp(ν). Since Lp(ν) is a closed subspace of w-Lp(ν), we have
by a similar argument as given in ([9, Theorem 1]) that ‖f‖ ∈ Lp(ν), that is,
‖f‖p is ν-integrable.

Conversely, let ‖f‖p be ν-integrable. By [5, Theorem 2.2], the indefinite
integral of ‖f‖p with respect to ν is a countably additive Y -valued measure
and lim

‖ν‖(E)→0
Np(fχE) = 0.

Again, following the arguments as given in the sufficiency part of [9, The-
orem 1], we have that

lim
‖ν‖(E)→0

Np(fnχE) = 0 (1)

where {fn} is a sequence of countably valued functions converging ‖ν‖-a.e.
uniformly to f . Let us represent fn by

fn =
∞∑
k=1

xn,kχEn,k

with En,i ∩ En,j = ∅ if i 6= j, En,k ∈ Σ and xn,k ∈ X.
Applying equation (1), for each n we can choose pn so large that

sup
{∫

∪En,k
k>pn

‖fn‖p d|y∗ν| : y∗ ∈ BY ∗
}
<
‖ν‖(Ω)
n

.

If we take φn =
∑
k≤pn

xn,kχEn,k , then an easy calculation shows that

Np(f − φn)→ 0 as n→∞,

which implies that f is ⊗̌p-integrable and the proof is complete.

We denote the space of all ⊗̌p-integrable functions by Lp(ν,X, Y ).
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Remark 1. If X = R, then Lp(ν,X, Y ) = Lp(ν). So by the above theorem,
f ∈ Lp(ν) if and only if |f |p is ν-integrable which coincides with the Definition
1 of Lp(ν) as given in Sánchez Pérez (see [7, p.909]).

Remark 2. Lp(ν,X, Y ) ⊂ L1(ν,X, Y ), 1 ≤ p <∞. For, let f ∈ Lp(ν,X, Y ).
Then ‖f‖ ∈ Lp(ν). Since Lp(ν) is a subset of L1(ν) by [7, Remark 3, p.909],
we have ‖f‖ ∈ L1(ν) and hence f is ⊗̌-integrable by [9, Theorem 1, p.928],
which implies that f ∈ L1(ν,X, Y ).

Corollary 1. If f is ν-measurable and bounded, then f is ⊗̌p-integrable.

Corollary 2. Let f and g be two ν-measurable functions. If g is ⊗̌p-integrable
and ‖f‖ ≤ ‖g‖ ‖ν‖-a.e., then f is ⊗̌p-integrable.

For, since g is ⊗̌p-integrable, it follows that ‖g‖p ∈ L1(ν). Now ‖f‖ ≤ ‖g‖
‖ν‖-a.e. implies that ‖f‖p ≤ ‖g‖p ‖ν‖-a.e., for 1 ≤ p <∞. Therefore, by [10,
p.225], ‖f‖p ∈ L1(ν) which implies that f is ⊗̌p-integrable.

Theorem 2. Let 1 ≤ p <∞. Then Lp(ν,X, Y ) is a Banach space with respect
to the norm Np(·).

Proof. For p = 1, it has been shown in [9, Theorem 4, p.932] that L1(ν,X, Y )
is a Banach space. A similar proof applies for 1 < p < ∞ and is therefore
omitted.

Theorem 3. Let 1 ≤ p < ∞. If X is an order continuous Banach lattice,
then Lp(ν,X, Y ) is an order continuous Banach lattice with weak order unit.

Proof. The following proof is similar to the proof of Theorem 1 in [1, p.5] but
we include it for the sake of completeness. It is easy to see that Lp(ν,X, Y )
is a Banach lattice with respect to the norm Np(·) and usual order relation
where f1 ≤ f2 means f1(ω) ≤ f2(ω) ‖ν‖-a.e., for ω ∈ Ω.

In order to show that Lp(ν,X, Y ) is order continuous, we shall use the
following characterization:

A Banach lattice is order continuous if and only if every order bounded
increasing sequence is norm convergent (see [6, p.7]).

Let {fn} be an order bounded increasing sequence in Lp(ν,X, Y ). We can
assume that 0 ≤ fn ≤ fn+1 ≤ g where g ∈ Lp(ν,X, Y ). Set f(ω) = sup

n
fn(ω).

Since X is order complete and {fn} is increasing, we have f(ω) = lim
n
fn(ω)

and hence f is ν-measurable and ‖f‖ ≤ ‖g‖ ‖ν‖-a.e.. As g ∈ Lp(ν,X, Y ) we
have by Corollary 2 that f ∈ Lp(ν,X, Y ).
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Let ε > 0. Since (f1 − f) is ⊗̌p-integrable, ‖f1 − f‖p is ν-integrable. If

φ(B) =
∫
B

‖f1 − f‖p dν for B ∈ Σ,

then φ � ‖ν‖, by [5, Theorem 2.2] and so there exists a δ > 0 such that
‖ν‖(B) < δ implies that ‖φ‖(B) < ε/2; that is, sup{

∫
B
‖f1(ω)−f(ω)‖p d|y∗ν| :

y∗ ∈ BY ∗} < ε/2, which implies that∫
B

‖f1(ω)− f(ω)‖p d|y∗ν| < ε/2

for each y∗ ∈ BY ∗ and so

sup
{(∫

B

‖f1(ω)− f(ω)‖p d|y∗ν|
)1/p

: y∗ ∈ BY ∗
}
< ε1/p (2)

for each B ∈ Σ. Since fn(ω) → f(ω) pointwise, by Egoroff’s theorem, there
exists a set A ∈ Σ such that ‖ν‖(A) < δ and fn → f uniformly on Ω \ A. So
there exists a positive integer n0 such that ‖fn(ω)−f(ω)‖ < ε for all ω ∈ Ω\A
and for all n ≥ n0. Therefore

Np(fn − f) = sup
{(∫

Ω

‖fn(ω)− f(ω)‖p d|y∗ν|
)1/p

: y∗ ∈ BY ∗
}

≤ sup
{(∫

Ω\A
‖fn(ω)− f(ω)‖p d|y∗ν|

)1/p

: y∗ ∈ BY ∗
}

+ sup
{(∫

A

‖fn(ω)− f(ω)‖p d|y∗ν|
)1/p

: y∗ ∈ BY ∗
}
.

Now,

sup
{(∫

Ω\A
‖fn(ω)− f(ω)‖p d|y∗ν|

)1/p

: y∗ ∈ BY ∗
}

< ε sup{(|y∗ν|(Ω \A))1/p : y∗ ∈ BY ∗}
≤ ε{‖ν‖(Ω \A)}1/p < ε{‖ν‖(Ω)}1/p

for all n ≥ n0. Also, sup{(
∫
A
‖f1(ω) − f(ω)‖p d|y∗ν|)1/p : y∗ ∈ BY ∗} < ε1/p,

by (2), therefore Np(fn − f) < ε{‖ν‖(Ω)}1/p + ε1/p for n ≥ n0. This implies
that {fn} converges to f in Lp(ν,X, Y ) and so Lp(ν,X, Y ) is order continuous.

Finally, let us show that for any x ∈ X such that x > θ, xχΩ is a weak
order unit in Lp(ν,X, Y ).
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Note that an element e ≥ θ of a Banach lattice L is said to be a weak order
unit of L if e∧x = θ for x ∈ L implies x = θ, where y∧ z denotes the greatest
lower bound for y, z ∈ L (see [6, p.9]).

For any x(> θ) ∈ X, xχΩ is a weak order unit, for if inf{f(ω), xχΩ} = θ
for any f ∈ Lp(ν,X, Y ), then f(ω) = θ for all ω ∈ Ω, which implies that f ≡ 0.
Thus {xχΩ : x(> θ) ∈ X} is a family of weak order units in Lp(ν,X, Y ) and
the proof is complete.

Theorem 4 (Dominated Convergence Theorem). Let 1 ≤ p < ∞. Let
{fn} be a sequence of ⊗̌p-integrable functions which converges ‖ν‖-a.e. to
a function f and g be a ⊗̌p-integrable function such that ‖fn‖ ≤ ‖g‖ ‖ν‖-
a.e. for each n. Then f is ⊗̌p-integrable and lim

n
Np(fn − f) = 0 and hence

limn

∫
E
fn dν =

∫
E
f dν for all E ∈ Σ.

Proof. Since ‖fn‖ ≤ ‖g‖ ‖ν‖-a.e., it follows that ‖f‖ ≤ ‖g‖ ‖ν‖-a.e. and
hence by Corollary 2, f is ⊗̌p-integrable. That limnNp(fn − f) = 0 follows
from the arguments as given in the proof of Theorem 3. By an application
of Hölder’s inequality, it follows by an easy calculation that limn

∫
E
fn dν =∫

E
f dν for all E ∈ Σ.

Recall that a bounded set K of a Banach lattice X is L-weakly compact
if every disjoint sequence of the solid hull of K converges to zero in norm.
An operator T from a Banach space Z to X is L-weakly compact if T (BZ)
is L-weakly compact in X. As L-weakly compact sets are relatively weakly
compact, every L-weakly compact operator is weakly compact (see [4, p.9]).

The following theorem is a generalization of Proposition 3.3 of [4].

Theorem 5. If 1 < p <∞ and X is a Banach lattice, then the inclusion map
Lp(ν,X, Y ) ⊂ L1(ν,X, Y ) is a L-weakly compact operator. In particular, it is
a weakly compact operator.

Proof. We note that the unit ball BLp(ν,X,Y ) of Lp(ν,X, Y ) is a norm
bounded and solid subset of L1(ν,X, Y ). So it is enough to prove that every
disjoint sequence of BLp(ν,X,Y ) converges to zero in the norm of L1(ν,X, Y ).

Let {fn} be a disjoint sequence in BLp(ν,X,Y ) and put An = {ω ∈ Ω :
fn(ω) 6= θ} for all n. Then {An} is a disjoint sequence of measurable sets and
therefore ‖ν‖(An)→ 0 as n→∞ (see [3, Corollary 18, p.9]).
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By applying Hölder’s inequality we get that

N(fn) = N(fnχAn) = sup
‖y∗‖≤1

{∫
Ω

‖fnχAn‖ d|y∗ν|
}

= sup
‖y∗‖≤1

{∫
Ω

‖fn(ω)‖|χAn(ω)| d|y∗ν|
}

≤
{

sup
‖y∗‖≤1

(∫
Ω

‖fn(ω)‖p d|y∗ν|
) 1
p
}{

sup
‖y∗‖≤1

(∫
Ω

|χAn(ω)|q d|y∗ν|
) 1
q
}

(where 1
p + 1

q = 1),

= Np(fn)
{

sup
‖y∗‖≤1

(∫
An

d|y∗ν|
) 1
q
}

≤ Np(fn)(‖ν‖(An))1/q ≤ (‖ν‖(An))1/q → 0 as n→∞.

So the inclusion mapping Tp,ν : Lp(ν,X, Y ) → L1(ν,X, Y ) is a L-weakly
compact operator. In particular, it is a weakly compact operator for 1 < p <
∞.

Corollary 3. If 1 < p <∞, then the integration map

Ip,ν : Lp(ν,X, Y )→ X⊗̌Y

is weakly compact.

Proof. First we show that the integration map Iν : L1(ν,X, Y ) → X⊗̌Y
defined by

Iν(f) =
∫

Ω

f dν

is bounded. Now

‖Iν(f)‖ =
∥∥∥∥∫

Ω

f dν

∥∥∥∥ ≤ sup
‖x∗‖≤1
‖y∗‖≤1

(∫
Ω

|x∗f | d|y∗ν|
)

≤ sup
‖x∗‖≤1
‖y∗‖≤1

(∫
Ω

‖x∗‖‖f‖ d|y∗ν|
)

≤ sup
‖y∗‖≤1

(∫
Ω

‖f‖ d|y∗ν|
)

= N(f)
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which implies that Iν is bounded and ‖Iν‖ ≤ 1.
So Ip,ν = Iν ◦ Tp,ν from Lp(ν,X, Y ) to X⊗̌Y is weakly compact, where

Tp,ν is defined as in the proof of the previous theorem.

Definition 2. Let 1 < p <∞. A weakly ‖ν‖-measurable function f : Ω→ X
is said to have a generalized weak ⊗p-integral with respect to ν : Σ → Y if
|x∗f |p is |y∗ν|-integrable for all (x∗, y∗) ∈ X∗ × Y ∗, that is, |x∗f | ∈ w-Lp(ν).
Since w-Lp(ν) ⊂ w-L1(ν), the generalized weak ⊗p-integral of f over E ∈ Σ
is defined by the element ΨχE which is an element of B(X∗, Y ∗).

Now X⊗̌Y ⊂ B(X∗, Y ∗) and if ΨχE ∈ X⊗̌Y for all E ∈ Σ, then f is said
to be weakly ⊗̌p-integrable and the weak ⊗̌p-integral of f over E, which is an
element of X⊗̌Y , is denoted by w-

∫
E
f dν.

For convenience, we write w-
∫
E
f dν as

∫
E
f dν when no confusion arises.

The set of all weakly ⊗̌p-integrable functions is denoted by w-Lp(ν,X, Y ).

For f ∈ w-Lp(ν,X, Y ), we define the norm of f as

Np,w(f) = sup
‖x∗‖≤1
‖y∗‖≤1

(∫
Ω

|x∗f |p d|y∗ν|
)1/p

.

Following the arguments as in the proof of Theorem 5 and Theorem 6 of [1] we
can show that if ν is non-atomic, then w-Lp(ν,X, Y ) is a normed linear space
which is not complete with respect to the above norm Np,w(·) but barrelled.

It follows easily from the definitions that

Lp(ν,X, Y ) ⊂ w-Lp(ν,X, Y ) ⊂ w-L1(ν,X, Y ) and
Lp(ν,X, Y ) ⊂ L1(ν,X, Y ) ⊂ w-L1(ν,X, Y ),

where the inclusion mappings are continuous.

Definition 3. Let 1 < p < ∞. Let us define a family of seminorms
{px∗,y∗} x∗∈X∗

y∗∈Y ∗
on w-Lp(ν,X, Y ) by

px∗,y∗(f) =
(∫

Ω

|x∗f |p d|y∗ν|
)1/p

, f ∈ w-Lp(ν,X, Y ).

Let τ be the locally convex topology on w-Lp(ν,X, Y ) generated by the above
family of seminorms.

The following two theorems are generalization of Proposition 2.7 and
Lemma 3.8 of [4] to w-Lp(ν,X, Y ) respectively.
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Theorem 6. If X is weakly sequentially complete, then w-Lp(ν,X, Y ) en-
dowed with the topology τ is sequentially complete.

Proof. Let {fn} be a τ -Cauchy sequence in w-Lp(ν,X, Y ). If x∗ ∈ X∗,
y∗ ∈ Y ∗ are arbitrary, then {x∗fn} is a Cauchy sequence in Lp(|y∗ν|). So it
is convergent to some element of Lp(|y∗ν|). Now select y∗0 ∈ BY ∗ such that
|y∗0ν| is a Rybakov control measure for ν.

We extract a subsequence {x∗fni} of {x∗fn} which is pointwise conver-
gent except for a set Ey∗0 ∈ Σ, with |y∗0ν|(Ey∗0 ) = 0. So, for each x∗ ∈ X∗,
{x∗fni(ω)} is a Cauchy sequence of scalars which implies that {fni(ω)} is a
weak Cauchy sequence in X. Since X is weakly sequentially complete, there
exists an fy∗0 (ω) ∈ X such that x∗fni(ω)→ x∗fy∗0 (ω) for all ω /∈ Ey∗0 . Fix any
y∗ ∈ Y ∗ and observe that {x∗fni(ω)} converges to x∗fy∗(ω) |y∗ν|-a.e. Now,
since {x∗fni} is a Cauchy sequence in Lp(|y∗ν|), it is bounded in Lp(|y∗ν|)
and since x∗fni → x∗fy∗ pointwise a.e., it follows by bounded convergence
theorem that x∗fy∗ ∈ Lp(|y∗ν|) and x∗fni → x∗fy∗ in Lp(|y∗ν|).

We can extract a subsequence {x∗fnij } of {x∗fni} which is pointwise con-
vergent to x∗fy∗ except for a set Ey∗ ∈ Σ with |y∗ν|(Ey∗) = 0.

Thus {x∗fnij (ω)} converges to x∗fy∗(ω) and {x∗fnij (ω)} converges to
x∗fy∗0 (ω) for every ω /∈ Ey∗ ∪ Ey∗0 with |y∗ν|(Ey∗ ∪ Ey∗0 ) = 0 and for each
x∗ ∈ X∗. Therefore it follows that x∗fy∗ = x∗fy∗0 a.e. for each x∗ ∈ X∗.

Hence x∗fy∗0 ∈ Lp(|y
∗ν|) for each x∗ ∈ X∗. Since y∗ is arbitrary, it follows

that x∗fy∗0 ∈ Lp(|y∗ν|) for each y∗ ∈ Y ∗ and for each x∗ ∈ X∗ and hence
fy∗0 ∈ w-Lp(ν,X, Y ). Since {x∗fn} is a Cauchy sequence in Lp(|y∗ν|) and
since its subsequence {x∗fni} converges to x∗fy∗0 in Lp(|y∗ν|), it follows that
{x∗fn} converges to x∗fy∗0 in Lp(|y∗ν|). This means that(∫

Ω

|x∗fn − x∗fy∗0 |
p d|y∗ν|

)1/p

→ 0 as n→∞

for each x∗ ∈ X∗ and y∗ ∈ Y ∗, which implies that px∗,y∗(fn − fy∗0 ) → 0 as
n → ∞; that is, fn → fy∗0 in the τ -topology of w-Lp(ν,X, Y ) and this shows
that w-Lp(ν,X, Y ) is sequentially complete with respect to the τ -topology.

Theorem 7. Let 1 ≤ p < ∞ and let X be a weakly sequentially complete
Banach lattice with X∗ as its dual Banach lattice. Let {fn} be a norm bounded,
positive, increasing sequence in w-Lp(ν,X, Y ). Then f = sup

n
fn exists weakly

in X, that is, x∗f = sup
n
x∗fn for each x∗ ∈ X∗ and f ∈ w-Lp(ν,X, Y ).

Proof. Let y∗0 ∈ BY ∗ be such that |y∗0ν| is a Rybakov control measure for ν.
Since {fn} is a norm bounded, positive, increasing sequence in w-Lp(ν,X, Y )
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and X∗ is a Banach lattice, for each x∗ ∈ X∗, {x∗fn} is a norm bounded, pos-
itive, increasing sequence in Lp(|y∗0ν|). Since Lp(|y∗0ν|) is weakly sequentially
complete and {x∗fn} is a norm bounded, increasing sequence in Lp(|y∗0ν|),
the sequence {x∗fn} converges in norm to an element of Lp(|y∗0ν|). So, there
exists a subsequence {x∗fnk} of {x∗fn} which is pointwise convergent except
for a set Ey∗0 ∈ Σ with |y∗0ν|(Ey∗0 ) = 0. So, for each x∗ ∈ X∗, {x∗fnk(ω)} is
a Cauchy sequence of scalars ‖ν‖-a.e. which implies that {fnk(ω)} is a weak
Cauchy sequence in X ‖ν‖-a.e. Since X is weakly sequentially complete, there
exist f(ω) ∈ X such that x∗fnk(ω)→ x∗f(ω) for all ω /∈ Ey∗0 .

Since {x∗fnk} is norm bounded in Lp(|y∗0ν|) and x∗fnk → x∗f pointwise
a.e., it follows by bounded convergence theorem that x∗f ∈ Lp(|y∗0ν|).

Again, since {x∗fn} is a positive increasing sequence, it follows that the
sequence {x∗fn} converges pointwise to x∗f and so sup

n
x∗fn = x∗f for each

x∗ ∈ X∗; that is, sup
n
fn = f exists weakly in X.

For an arbitrary y∗ ∈ Y ∗ we can apply the same argument as above to
obtain a function x∗fy∗ in Lp(|y∗ν|) such that {x∗fn} converges to fy∗ in
Lp(|y∗ν|) and hence also pointwise except for a set Ey∗ for which |y∗ν|(Ey∗) =
0. Therefore it follows that x∗fy∗(ω) = x∗f(ω) for every ω /∈ Ey∗ ∪ Ey∗0 with
|y∗ν|(Ey∗ ∪ Ey∗0 ) = 0 and for each x∗ ∈ X∗.

So x∗fy∗ = x∗f a.e. for each x∗ ∈ X∗. Then x∗fy∗ ∈ Lp(|y∗ν|) for each
x∗ ∈ X∗.

Since y∗ ∈ Y ∗ is arbitrary, it follows that x∗f ∈ Lp(|y∗ν|) for each y∗ ∈ Y ∗
and x∗ ∈ X∗ and hence f ∈ w-Lp(ν,X, Y ).

3 Vector Measure Duality.

Let 1 < p < ∞ and q is the real number that satisfies 1
p + 1

q = 1. It is well
known that if (Ω,Σ, µ) is a finite measure space, then Lp(µ,X)∗ = Lq(µ,X∗)
if and only if X∗ has the Radon-Nikodym property (RNP) with respect to µ
(see [3, Theorem 1, p.98]). For example, reflexive Banach spaces and separable
dual spaces have the RNP.

In [7, p.915] Sánchez Pérez has shown by a counter example that the dual
of Lp(ν) is different from Lq(ν) even for reflexive Banach spaces. He has,
however, introduced a new concept known as vector measure duality in Lp(ν)
and has shown that (Lp(ν))ν = Lq(ν) (see [7, Proposition 8, p.914]).

In [8] Sánchez Pérez has applied this vector measure duality theory for
tensor product representations of Lp-spaces of vector measures.

In this section we generalize the idea of vector measure duality to the space
Lp(ν,X, Y ). We proceed as follows :
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Let (Ω,Σ, µ) be a complete finite measure space and let (E, ‖ · ‖E) be a
Köthe function space (Banach function space) over (Ω,Σ, µ) such that L∞ ⊂
E ⊂ L1, where the inclusion maps are continuous. Let L0 denote the space of
all µ-equivalence classes of Σ-measurable real valued functions. Let E′ be the
Köthe dual of E where E′ is defined by

E′ =
{
v ∈ L0 :

∫
Ω

|u(ω)v(ω)| dµ <∞, for all u ∈ E
}
.

Then the associated norm ‖ · ‖E′ on E′ is defined by

‖v‖E′ = sup
{∫

Ω

|u(ω)v(ω)| dµ : u ∈ E.‖u‖ ≤ 1
}
.

Let X be an order continuous Banach lattice. By L0(X) we denote the
set of equivalence classes of strongly Σ-measurable functions f : Ω → X .
For f ∈ L0(X), let f̃(ω) = ‖f(ω)‖X for ω ∈ Ω. So f̃ ∈ L0. The space
E(X) = {f ∈ L0(X) : f̃ ∈ E} equipped with the norm ‖f‖E(X) = ‖f̃‖E is
called a Köthe-Bochner space.

Definition 4. Let µ be a control measure for the vector measure ν : Σ→ Y .
Let E(X) be a Köthe-Bochner space on (Ω,Σ, µ). Consider the linear

space L0(µ,X) of µ-a.e. equivalence classes of simple functions f : Ω → X
that satisfy:

1. The function fg̃ ∈ L1(ν,X, Y ) where g̃(ω) = ‖g(ω)‖X , g ∈ E(X).

2. The norm ‖f‖(E(X))ν = sup
‖g̃‖E≤1

N(fg̃) is finite.

We define the Banach space (E(X))ν of all X-valued µ-measurable func-
tions as the completion of the space L0(µ,X) with respect to the norm given
in (2). The same expression can be used for every f ∈ (E(X))ν .

Theorem 8. Let 1 < p < ∞. If f ∈ Lq(ν,X, Y ) and g ∈ Lp(ν,X, Y ), then
fg̃ ∈ L1(ν,X, Y ) and N(fg̃) is finite.

Proof. Since f ∈ Lq(ν,X, Y ), ‖f‖ ∈ Lq(ν) and since g ∈ Lp(ν,X, Y ), g̃ ∈
Lp(ν).

Now ‖f‖ ∈ Lq(ν) and g̃ ∈ Lp(ν) implies that ‖fg̃‖ ∈ L1(ν), that is,
fg̃ ∈ L1(ν,X, Y ).
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Also

N(fg̃) = sup
‖y∗‖≤1

∫
Ω

‖fg̃‖ d|y∗ν|

≤
{

sup
‖y∗‖≤1

(∫
Ω

|g̃|p d|y∗ν|
)1/p}{

sup
‖y∗‖≤1

(∫
Ω

‖f‖q d|y∗ν|
)1/q}

= ‖g̃‖p,νNq(f) <∞.

We are now in a position to extend Proposition 8 of [7] to Lp(ν,X, Y ).

Theorem 9. Let 1 < p <∞. Then (Lp(ν,X, Y ))ν = Lq(ν,X, Y ).

Proof. Let f ∈ L0(µ,X). Then for all g ∈ Lp(ν,X, Y ) we have, by Theorem
8, that

‖f‖(Lp(ν,X,Y ))ν = sup
‖g̃‖p,ν≤1

N(fg̃) ≤ sup
‖g̃‖p,ν≤1

‖g̃‖p,νNq(f) ≤ Nq(f).

Next, let f ∈ Lq(ν,X, Y ). Then, by Definition 1, there exists a sequence of
X-valued simple functions {φn} such that lim

n
Nq(f − φn) = 0 as n→∞.

Since (Lp(ν,X, Y ))ν is the completion of L0(µ,X) with respect to the norm
given in Definition 4, it follows that

‖f − φn‖(Lp(ν,X,Y ))ν ≤ Nq(f − φn)→ 0 as n→∞.

Therefore,

‖f‖(Lp(ν,X,Y ))ν = lim
n
‖φn‖(Lp(ν,X,Y ))ν ≤ lim

n
Nq(φn) = Nq(f). (3)

On the other hand, let f ∈ Lq(ν,X, Y ). Then, f̃ ∈ Lq(ν). Define the function

g =
f̃q−1

(‖f̃‖q,ν)q/p
x, where ‖x‖ = 1. Then

‖g‖p =
f̃ (q−1)p

(‖f̃‖q,ν)q
‖x‖p =

f̃q

(‖f̃‖q,ν)q
.

Since f̃ ∈ Lq(ν), it follows that ‖g‖p ∈ L1(ν), which implies that g ∈
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Lp(ν,X, Y ), by Theorem 1. Hence, we have

Np(g) = sup
‖y∗‖≤1

(∫
Ω

‖g‖p d|y∗ν|
)1/p

= sup
‖y∗‖≤1

(∫
Ω

f̃q

(‖f̃‖q,ν)q
d|y∗ν|

)1/p

=

sup
‖y∗‖≤1

(∫
Ω

f̃q d|y∗ν|
)1/p

sup
‖y∗‖≤1

(∫
Ω

f̃q d|y∗ν|
)1/p

= 1.

Since g̃ ∈ Lp(ν) and ‖g̃‖p,ν = Np(g) = 1, we have, by Definition 4, that

‖f‖(Lp(ν,X,Y ))ν ≥ N(fg̃) = sup
‖y∗‖≤1

∫
Ω

‖fg̃‖ d|y∗ν|

= sup
‖y∗‖≤1

∫
Ω

‖f(ω)‖ ‖f(ω)‖q−1

sup
‖y∗‖≤1

(∫
Ω

‖f(ω)‖q d|y∗ν|
)1/p

d|y∗ν|

= sup
‖y∗‖≤1

(∫
Ω

‖f‖q d|y∗ν|
)1/q

= Nq(f),

that is,
Nq(f) ≤ ‖f‖(Lp(ν,X,Y ))ν . (4)

Thus it follows from (3) and (4) that

‖f‖(Lp(ν,X,Y ))ν = Nq(f)

and consequently we have (Lp(ν,X, Y ))ν = Lq(ν,X, Y ) and the theorem is
proved.

Definition 5. Let f ∈ L1(ν,X, Y ). We define other norm M(·) on L1(ν,X, Y )
as

M(f) = sup
A∈Σ

∥∥∥∫
A

f dν
∥∥∥.

We show that M(f) ≤ N(f) ≤ 2M(f) and so these two norms on
L1(ν,X, Y ) are equivalent.

It follows easily by an elementary calculation that M(f) ≤ N(f).
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On the other hand, let F : Σ→ X⊗̌Y be defined by

F (A) =
∫
A

f dν

for A ∈ Σ. Let π be a partition of Ω. For x∗ ⊗ y∗ ∈ X∗ ⊗ Y ∗, the algebraic
tensor product of X∗ and Y ∗, such that ‖x∗‖ ≤ 1, ‖y∗‖ ≤ 1, we have∑

A∈π
|(x∗ ⊗ y∗)F (A)| ≤ 2 sup

H⊆Ω
{‖F (H)‖X⊗̌Y },

by [3, p.5], which implies that ‖F‖(Ω) ≤ 2 sup
H⊆Ω
{‖F (H)‖X⊗̌Y } and so by [9,

Theorem 2, p.929], we have

sup
‖x∗‖≤1
‖y∗‖≤1

(∫
Ω

|x∗f | d|y∗ν|
)
≤ 2M(f)

and from this it follows that N(f) ≤ 2M(f) and so

M(f) ≤ N(f) ≤ 2M(f).

Therefore, we see that the normM(·) defined above is equivalent to the original
norm N(·) of L1(ν,X, Y ).

Now, the norm ‖ · ‖(E(X))ν defined earlier on the Köthe-Bochner space
E(X) is given by

‖f‖(E(X))ν = sup
‖g̃‖E≤1

N(fg̃).

Using the equivalent formula M(·) for the norm of L1(ν,X, Y ) we see that the
following norm is equivalent to the norm of (E(X))ν defined earlier:

|||f |||(E(X))ν = sup
‖g̃‖E≤1

M(fg̃) = sup
‖g̃‖E≤1

sup
A∈Σ

∥∥∥∫
A

fg̃ dν
∥∥∥
X⊗̌Y

.

Now putting Lq(ν,X, Y ) in place of E(X) we have the following Lemma:

Lemma. Let 1 < p <∞. Then

Np(g) = |||g|||(Lq(ν,X,Y ))ν = sup
‖f̃‖q,ν≤1

∥∥∥∫
Ω

f̃g dν
∥∥∥
X⊗̌Y

for every g ∈ Lp(ν,X, Y ).
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The result is a direct consequence of Theorem 9 and the definition of the
equivalent norm for the space Lq(ν,X, Y )ν .

Theorem 10. Let 1 < p < ∞ and f ∈ Lq(ν,X, Y ). Then the operator
Tf : Lp(ν,X, Y ) → X⊗̌Y defined by Tf (g) =

∫
Ω
fg̃ dν is well defined and

‖Tf‖ = Nq(f), where g̃(ω) = ‖g(ω)‖X .

Proof. Let f ∈ Lq(ν,X, Y ) and g ∈ Lp(ν,X, Y ). Since f ∈ Lq(ν,X, Y ) we
have ‖f‖ ∈ Lq(ν) and g ∈ Lp(ν,X, Y ) implies g̃ ∈ Lp(ν) and so ‖fg̃‖ ∈ L1(ν).
Therefore fg̃ ∈ L1(ν,X, Y ) and we have

∫
Ω
fg̃ dν ∈ X⊗̌Y . Now

‖Tf‖ = sup
Np(g)≤1

‖Tf (g)‖X⊗̌Y = sup
Np(g)≤1

∥∥∥∫
Ω

fg̃ dν
∥∥∥
X⊗̌Y

= sup
‖g̃‖p,ν≤1

∥∥∥∫
Ω

fg̃ dν
∥∥∥
X⊗̌Y

= Nq(f),

by the above lemma.
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