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Abstract

Let τ be a topology on the real numbers which is finer than the usual
topology such that Rτ is a weak P -space. In this paper, conditional
completeness and conditional σ-completeness of C(X) and C(X,Rτ )
are compared. In particular, it is shown for zero-dimensional spaces that
C(X,Rτ ) is conditionally σ-complete if and only if X is a P -space and
that C(X,Rτ ) is conditionally complete if and only if X is an extremally
disconnected P -space.

1 Introduction.

Given two topological spaces X and Y , C(X,Y ) denotes the set of continuous
functions f : X → Y . When Y = R we write C(X) instead and this set is
a ring under pointwise addition and multiplication. Furthermore C(X) is a
lattice, where the least upper bound of two functions f, g ∈ C(X) is defined
as (f ∨ g)(x) = max{f(x), g(x)} and the greatest lower bound is defined as
(f ∧ g)(x) = min{f(x), g(x)}.

Let Rτ denote the real numbers with topology τ . In this paper we will be
investigating completeness properties of C(X,Rτ ) when Rτ is a weak P -space,
that is when every countable subset of Rτ is closed. Recall that a lattice L
is conditionally (σ-)complete if every (countable) nonempty subset of L which
is bounded above has a supremum. These completeness properties can be
characterized using the topology on X. Before giving this characterization we
will need the following topological definitions.

Mathematical Reviews subject classification: Primary: 54C30; Secondary: 26A15
Key words: conditional completeness, P -space, density topology
Received by the editors July 23, 2007
Communicated by: Ciesielski

61



62 M. L. Knox

In a topological space X the closure of a subset A of X is denoted by
clXA and the interior of A is denoted by intXA. When a set is both open and
closed, it is called clopen. Given f ∈ C(X), the zeroset of f (denoted by Z(f))
is the set of x ∈ X such that f(x) = 0. A subset Z of X is called a zeroset if
Z = Z(f) for some f ∈ C(X). The set X r Z(f) is called the cozeroset of f
and is denoted by coz(f). Z[X] = {Z(f) : f ∈ C(X)} is the set of zerosets of
X. We will assume that all domain spaces X in C(X,Y ) are Tychonoff, that
is completely regular and Hausdorff. In a Tychonoff space the cozerosets form
a base for the topology. A space is called zero-dimensional if it has a base of
clopen sets.

The well-known Stone-Nakano Theorem, stated below, characterizes when
C(X) is conditionally (σ-) complete using topological properties of X. A space
X is called basically disconnected if clXcoz(f) is open for every f ∈ C(X) and
X is called extremally disconnected if clXO is open for every open subset O of
X. This theorem can be found in [5], [6], and [7].

Theorem 1.1 (Stone-Nakano). A space X is extremally disconnected if and
only if C(X) is conditionally complete. A space X is basically disconnected if
and only if C(X) is conditionally σ-complete.

In this paper we will provide a similar characterization for when C(X,Rτ )
is conditionally (σ-) complete for any weak P -space Rτ . One example of a
topology on R which makes Rτ a weak P -space is the density topology, which
we will now define. Let M be a Lebesgue measurable subset of R and let
m(M) denote the Lebesgue measure of M . Let M ′ = R rM . A point p ∈ R
is a density point of M if

lim
h→0+

m(M ∩ (p− h, p+ h))
2h

= 1.

We also say that p is a dispersion point of M if p is a density point of M ′.
The set M is called density open if every p ∈ M is a point of density of M .
The collection of density open subsets of R is a topology called the density
topology and we denote R with this topology by Rd. We use Rd to denote the
real numbers with the discrete topology and we denote the natural numbers
by N. It is known that the density topology is strictly finer than the usual
topology on R. As a result we see that C(X,Rd) ⊆ C(X) for any space X.
Elements of C(X,Rd) will be called density continuous functions. A proof
that Rd is a Tychonoff space which is not normal can be found in [2].

Although the set C(X,Rd) is a lattice, it cannot be assumed that it is a
group or a ring. In [3] a space X for which C(X,Rd) is a group or a ring
is called a density P -space. The following theorem from [3] classifies when a
space X is a density P -space.
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Theorem 1.2. For a space X, the following are equivalent:
(1) C(X,Rd) = C(X,Rd), i.e. every density continuous function is locally

constant.
(2) C(X,Rd) is a ring.
(3) C(X,Rd) is closed under multiplication.
(4) C(X,Rd) is a group.
(5) Z(f) is open for each f ∈ C(X,Rd).

Examples of density P -spaces include pseudocompact spaces and separable
spaces. Since R is connected as well as separable, it follows from the previous
theorem that the only elements of C(R,Rd) are the constant functions.

Recall that a topological space X is called a P -space if Z(f) is open for all
f ∈ C(X). It is clear from the definitions that P -spaces are basically discon-
nected. Every P -space is a weak P -space: a space in which every countable
subset is closed. The space Rd is an example of a weak P -space which is not
a P -space. The next theorem gives a useful condition for checking when a
topological space X is a P -space.

Theorem 1.3. [4] A zero-dimensional space X is a P -space if and only if every
countable union of clopen sets is again clopen if and only if every countable
intersection of clopen sets is again clopen.

2 Conditional σ-Completeness and Completeness.

Let τ be a topology on R which is finer than the usual topology. We will use
Rτ to denote the real numbers equipped with this topology. It follows that
C(X,Rτ ) is a sublattice of C(X). Henceforth, unless stated otherwise, τ is a
topology on R which is finer than the usual topology such that Rτ is a weak
P -space. In this section we will determine when C(X,Rτ ) is conditionally
complete and when it is conditionally σ-complete.

Observe that it is possible for C(X,Rτ ) to be conditionally σ-complete
without C(X) being conditionally σ-complete. One example is R, which
is not basically disconnected so that C(R) is not conditionally σ-complete.
However the elements of C(R,Rd) are precisely the constant functions. Hence
C(R,Rd) is conditionally σ-complete. We would like to know if conditional
σ-completeness of C(X) implies the same condition for C(X,Rτ ). The next ex-
ample illustrates that a countable subset of C(X,Rτ ) which is bounded above
may have a supremum in C(X) without having a supremum in C(X,Rτ ).
In particular it is possible for C(X) to be conditionally σ-complete while
C(X,Rτ ) is not. To construct this example we need a few definitions.
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Definition 2.1. A family B of zerosets of X is called a z-filter if the following
conditions hold:

(1) ∅ /∈ F ;
(2) if Z1, Z2 ∈ F , then there exists Z3 ∈ F such that Z3 ⊆ Z1 ∩ Z2;
(3) if Z ∈ F and Z ′ ∈ Z[X] with Z ⊆ Z ′, then Z ′ ∈ F .

A z-ultrafilter on X is a z-filter which is not contained in any other distinct
z-filter. A straightforward Zorn’s Lemma argument shows that every z-filter
is contained in a z-ultrafilter.

Example 2.2. This example comes from Problem 4M of [1]. Let F = {S ⊂
N : S is cofinite}. It is easy to check that F is a z-filter on N which means
there exists a z-ultrafilter U containing F . Let Σ = N∪ {σ} where σ /∈ N and
define a topology on Σ as follows: all points of N are isolated and the open
neighborhoods of σ are the sets U ∪ {σ} for U ∈ U . Then according to 4M
of [1], Σ is an extremally disconnected topological space. Note that C(Σ) is
conditionally complete because Σ is extremally disconnected.

For each n ∈ N define a function fn : Σ→ R as

fn(x) =

{
1
n for x = 2n
0 otherwise.

It is easy to see that each fn ∈ C(Σ,Rτ ) ⊂ C(Σ). The space Σ is extremally
disconnected, so by the Stone-Nakano Theorem the set G = {fn : n ∈ N} has a
supremum in C(Σ). It is straightforward to check that the function f : Σ→ R
defined as

f(x) =

{
1
n if x = 2n for some n ∈ N
0 otherwise

is a continuous function. If G has a supremum in C(Σ,Rτ ), then that supre-
mum must be f . However f /∈ C(Σ,Rτ ). Thus G does not have a supremum
in C(Σ,Rτ ).

From the previous example we see that C(X) can be conditionally com-
plete without C(X,Rτ ) being even conditionally σ-complete. The property of
conditional σ-completeness of C(X,Rτ ) is related to P -spaces, as we see in
the next theorem.

Theorem 2.3. If X is a zero-dimensional space, then the following are equiv-
alent:

(1) X is a P-space.
(2) C(X,Rτ ) = C(X).
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(3) C(X,Rd) = C(X,Rτ ) = C(X).
(4) C(X,Rτ ) is conditionally σ-complete.
(5) C(X,Rd) is conditionally σ-complete.

Proof. Since X is a P -space if and only if Z(f) is open for all f ∈ C(X),
X is a P -space if and only if C(X,Rd) = C(X,Rτ ) = C(X). Hence (1) and
(3) are equivalent. Clearly (3) implies (2). To show (2) implies (1) we will
apply Theorem 1.3. Assume X is not a P -space. Then there exists a sequence
{Cn}n∈N of disjoint clopen subsets of X such that

⋃∞
n=1 Cn is not closed.

Define f : X → R by

fn(x) =

{
1
n if x ∈ Cn for some n ∈ N
0 otherwise.

Then f ∈ C(X). Note that A = { 1
n : n ∈ N} is a closed subset of Rτ because

Rτ is a weak P -space. However, f−1(A) =
⋃∞
n=1 Cn is not closed in X, so

f /∈ C(X,Rτ ). As a result we see that C(X,Rτ ) 6= C(X) and hence (2) implies
(1).

Next suppose (1) holds. We will show (4) and (5). X is zero-dimensional
and basically disconnected because it is a P -space. Since C(X,Rd) = C(X,Rτ ) =
C(X), C(X,Rd) and C(X,Rτ ) are also conditionally σ-complete.

Now assume (4) is true. We will use Theorem 1.3 to show (1). Let {Cn}n∈N
be a sequence of disjoint clopen subsets of X and for each n ∈ N define a
function fn : X → R as

fn(x) =

{
1
n if x ∈ Cn
0 otherwise.

It is easy to see that fn ∈ C(X,Rd) ⊆ C(X,Rτ ) for all n. By hypothesis the
set {fn : n ∈ N} has a supremum and it follows that the supremum must be
the function f defined above. The set A = { 1

n : n ∈ N} is closed in Rτ since
it is a weak P -space. Then continuity of f implies f−1(A) =

⋃∞
n=1 Cn is also

closed as needed.
The proof of (5) implies (1) is identical to that of (4) implies (1); simply

note that fn ∈ C(X,Rd) for all n.

Observe that it is necessary to assumeX is zero-dimensional in the previous
theorem. Consider the space R, which is neither zero-dimensional or a P -
space. The only elements of C(R,Rτ ) are the constant functions so that
C(R,Rτ ) = C(R,Rd) is conditionally σ-complete.
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Corollary 2.4. If X is zero-dimensional and C(X,Rτ ) is conditionally σ-
complete, then C(X) is conditionally σ-complete.

Proof. By Theorem 2.3 if X is a zero-dimensional space and C(X,Rτ ) is
conditionally σ-complete, then X is a P -space. Since every P -space is basically
disconnected, C(X) is conditionally σ-complete.

Example 2.5. To see that the converse of Corollary 2.4 fails, consider again
the space Σ from Example 2.2. Since Σ is basically disconnected, Σ is zero-
dimensional. As we have already seen C(Σ) is conditionally σ-complete. But
C(Σ,Rτ ) is not conditionally σ-complete because Σ is not a P -space.

For a zero-dimensional space X, we have established that C(X,Rτ ) is
conditionally σ-complete precisely when X is a P -space. The next result
should not be surprising.

Theorem 2.6. For any space X, the following are equivalent:
(1) X is an extremally disconnected P -space.
(2) X is extremally disconnected and C(X,Rτ ) = C(X).
(3) C(X,Rτ ) is conditionally complete and X is zero-dimensional.
(4) C(X,Rd) is conditionally complete and X is zero-dimensional.

Proof. The equivalence of (1) and (2) follows from Theorem 2.3.
We will now show that (2) implies (3). Every extremally disconnected space

is zero-dimensional. Therefore X is zero-dimensional. Since X is extremally
disconnected, we know C(X) is conditionally complete by the Stone-Nakano
Theorem. Then C(X,Rτ ) = C(X) where X is extremally disconnected implies
C(X,Rτ ) is conditionally complete.

Next assume (3) holds. If C(X,Rτ ) is conditionally complete, then C(X,Rτ )
is conditionally σ-complete. By Theorem 2.3, C(X,Rd) = C(X,Rτ ) = C(X)
and so C(X,Rd) is conditionally complete. It follows that (3) implies (4).

Finally assume C(X,Rd) is conditionally complete and that X is zero-
dimensional. It follows from Theorem 2.3 that C(X,Rτ ) = C(X). Also C(X)
is conditionally complete, which implies X is extremally disconnected. There-
fore (4) implies (1).

Note that if X is of nonmeasurable cardinality and satisfies the conditions
of Theorem 2.6, then X is discrete. See Problem 12H of [1] for more informa-
tion on extremally disconnected P -spaces.

Corollary 2.7. If X is zero-dimensional and C(X,Rτ ) is conditionally com-
plete, then C(X) is conditionally complete.
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Proof. According to Theorem 2.6, if X is zero-dimensional and C(X,Rτ ) is
conditionally complete, then X is extremally disconnected. Hence C(X) is
conditionally complete.
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