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1 Introduction.

A transformation T : X → X of the measure space (X,B, µ) is measure
preserving if µ(T−1A) = µ(A), for all A ∈ B. A dynamical system (X,B, µ, T )
is aperiodic if the set of periodic points is of measure zero. (The periodic case
for most of the questions discussed in this talk is obvious, and hence most of
the time one should think of the aperiodic case.)

The Birkhoff Ergodic Theorem (see for example [31]) states the following:

Theorem 1.1. Assume that (X,B, µ) is a probability space, T : X → X is
invertible and measure preserving and f ∈ L1(X,B, µ). Then

lim
N→∞

1
N

N∑
k=1

f(T kx) = f(x) (1)

exists µ almost everywhere, and f is T invariant, that is, f(Tx) = f(x), µ
almost everywhere.

Mathematical Reviews subject classification: Primary: 37A05; Secondary: 28D05, 37A50,
47A35

Key words: ergodic theorem, maximal inequality Furstenberg averages, bilinear Hardy–
Littlewood maximal function

Received by the editors July 10, 2008
Communicated by: Paul D. Humke

∗Research supported by the Hungarian National Foundation for Scientific research T049727
and T075242.

1



2 Zoltán Buczolich

From (1) it follows that the tail of the ergodic averages, f(TNx)
N , converges

to 0, µ almost everywhere.
The study of the pointwise convergence of ergodic averages shares several

tools with Harmonic Analysis where pointwise convergence of Fourier series is
investigated. One important common tool is a weak (1, 1) maximal inequality
which, for the ergodic averages, comes from the Maximal Ergodic Theorem.
Suppose λ > 0 then with the conditions of Theorem 1.1 we have

µ

{
x : sup

N>0

1
N

N∑
k=1

f(T kx) > λ

}
≤
∫
|f |dµ
λ

. (2)

Usually the maximal function supN
1
N

∑N
k=1 f(T kx) does not belong to L1

and hence one cannot estimate its L1 norm by the L1 norm of f . Since (2)

holds for |f | one can use sup
N

1
N

N∑
k=1

|f(T kx)|, or sup
N

1
N
|
N∑
k=1

f(T kx)| in (2) as

well.
Recall that A ∈ B is T -invariant if 0 = µ(T−1A∆A) = µ((T−1A\A)∪(A\

T−1A)). The function f in Theorem 1.1 is the conditional expectation of f
with respect to the sigma algebra of the T invariant sets. The transformation
T is ergodic if for any T -invariant set A we have µ(A) = 0 or 1. In this case
the T invariant sigma algebra is trivial. Therefore, if T is ergodic then in the
above Theorem 1.1 we have

lim
N→∞

1
N

N∑
k=1

f(T kx) =
∫
X

fdµ for µ a.e. x.

2 Non L1 Results.

There are many ways one can generalize Birkhoff’s Ergodic theorem. First
I discuss one direction when functions not belonging to L1 are considered.
I worked for a long time with Henstock-Kurzweil integrals and, as a Ph.D.
student, got interested in ergodic averages of non-L1 functions.

However, working with non-L1 functions one needs to be cautious, since
answering one of my questions, P. Major proved the following theorem:

Theorem 2.1. There exists a function f : X → R, and S, T : X → X two
ergodic transformations on a probability space (X,µ) such that

lim
n→∞

1
n+ 1

n∑
k=0

f(Skx) = 0, µ a.e.
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and

lim
n→∞

1
n+ 1

n∑
k=0

f(T kx) = a 6= 0, µ a.e.

Clearly, by Theorem 1.1, f cannot belong to L1(X,µ), and this is bad
news for our “possible generalized integration process” because the generalized
integral suitable for f in the ergodic theorem would have to take the values 0
and a simultaneously.

My thesis advisor M. Laczkovich asked whether in the above result the
two transformations S, and T can be irrational rotations of the unit circle,
T, equipped with the Lebesgue measure. In Major’s construction the two
transformations were conjugate and hence to answer Laczkovich’s question I
had to find a different approach, since different rotations have different rotation
number and hence cannot be conjugate. Following the suggestions of a referee
I stated the result about the two rotations in a slightly more general setting.
Assume that a Z2 action is generated by S and T on a finite nonatomic
Lebesgue measure space (X,S, µ) and T jSk for all (j, k) ∈ Z2 is a measure
preserving transformation on X. We say that the group action generated by
T and S is free if T jSkx 6= x for (j, k) 6= (0, 0) and µ a.e. x. In [17] I have
managed to prove the following theorem:

Theorem 2.2. Assume that (X,S, µ) is a finite non-atomic Lebesgue measure
space and S, T : X → X are two µ-ergodic transformations which generate a
free Z2 action on X. Then for any c1, c2 ∈ R there exists a µ-measurable
function f : X → R such that

MS
Nf(x) =

1
N + 1

N∑
j=0

f(Sjx)→ c1,

and

MT
Nf(x) =

1
N + 1

N∑
j=0

f(T jx)→ c2,

µ almost every x as N →∞.
Two different irrational rotations generate a free Z2 action on T and hence

Theorem 2.2 answers Laczkovich’s question.
There are some interesting recent results with respect to ergodic averages

of non L1 functions and rotations by Y. Sinai and C. Ulcigrai. In [37] the
authors consider trigonometric sums

1
N

N−1∑
k=0

1
1− e2πi(kα+x)

, (x, α) ∈ (0, 1)× (0, 1).
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The product space (0, 1) × (0, 1) is endowed with the uniform probability
distribution. It is proved that such trigonometric sums have a non-trivial joint
limiting distribution in x and α as N tends to ∞. This result also applies to
Birkhoff sums of a function with a singularity of type 1/x over a rotation.
This limiting distribution is determined by results from [36].

Motivated by these results I have managed to solve during the Summer of
2008 one of my open questions (see [7], [16]) concerning ergodic averages of
rotations of non-L1 functions.

Theorem 2.3 from [16] states the following:

Theorem 2.3. Let f : R→ R be a given measurable function, periodic by 1.
For an α ∈ R put

Mα
n f(x) =

1
n+ 1

n∑
k=0

f(x+ kα).

Let Γf denote the set of those α’s in (0, 1) for which Mα
n f(x) converges for

almost every x ∈ R. Then from |Γf | > 0 it follows that f is integrable on [0, 1].

In the above theorem |Γf | denotes the Lebesgue measure of Γf . By the
Birkhoff Ergodic Theorem if f is Lebesgue integrable on [0, 1] then Mα

n f(x)→∫ 1

0
f for any irrational number α and for almost every x ∈ R. Hence, when

|Γf | > 0 by the ergodic theorem all these limits Mα
n f(x) should be of the

same value, namely,
∫ 1

0
f. On the other hand, in [16] the following result is

also verified:

Theorem 2.4. For any sequence of independent irrationals {αj}∞j=1 there
exists a function f : R → R, periodic by 1 such that f 6∈ L1[0, 1] and
M

αj
n f(x)→ 0 for almost every x ∈ [0, 1].

This result implies that Γf can be dense for non-integrable functions. In
[39] R. Svetic improves this result by showing that there exists a non-integrable
f : T→ R such that Γf is c-dense in T. (A set S ⊂ T is c-dense if the cardinality
of S ∩ I equals continuum for every nonempty open interval I ⊂ T.)

It was not known whether Γf can be of Hausdorff dimension one. I adver-
tised this question at several places ( [7], [16]), and Svetic’s paper contained a
partial solution. Finally in [19] a non-L1 function is constructed for which Γf
is of Hausdorff dimension one, but of course, it is of zero Lebesgue measure.

3 The Squares and Good Sequences of Zero Banach Den-
sity.

Before turning to the L1 results we recall Banach’s principle, see for example
p. 91 of [31].
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Theorem 3.1. Let 1 ≤ p < ∞ and let Tn be a sequence of bounded linear
operators on Lp. If supn |Tnf | <∞ almost everywhere for all f ∈ Lp then the
set of f for which Tnf converges almost everywhere is closed in Lp.

In the ergodic setting one can think of the operators

Tnf(x) =
1
n

n∑
k=1

f(T kx).

In the Harmonic Analysis setting the partial sums of Fourier series can be
considered. The weak (1, 1) inequality in (2) holds for all L1 functions. Letting
λ→ +∞ one can see by using the remark after (2) that supn |Tnf | <∞ almost
everywhere for all f ∈ L1. Hence it is sufficient to verify the almost everywhere
convergence of Tnf(x) for some nice set (like bounded functions, or continuous
functions) of functions which is dense in L1 and then by Banach’s principle
the almost everywhere convergence follows for all functions in L1.

Research related to almost everywhere convergence of ergodic averages
along the squares was initiated by questions of A. Bellow (see [8]) and of H.
Furstenberg, [25]. Results of Bourgain [10], [11], [12] imply that if f ∈ Lp(µ),
for some p > 1 then the non-conventional ergodic averages

lim
N→∞

1
N

N∑
n=1

f(Tn
2
(x)) (3)

converge almost everywhere. Bourgain also asked in [10], [14] whether this
result is true for p = 1, that is, for L1 functions. In Section 6 of [9], V.
Bergelson writes the following about it: “The case p = 1 is still open and
is perhaps one of the central open problems in that branch of ergodic theory
which deals with almost everywhere convergence”. On p. 64 of [27] R. L. Jones
writes the following: “There is an important open problem associated with
subsequences. At this time, there is no known example of a subsequence that
is good for a.e. convergence for all f ∈ L1, and has successive gaps increasing
to infinity. In particular, the question of a.e. convergence for f ∈ L1 along the
squares is open, and probably very difficult. The techniques used in Section 4
and Section 6, including the Calderón-Zygmund decomposition, do not seem
to apply.”

Definition 3.2. A sequence {nk}∞k=1 is L1-universally bad if for all ergodic
aperiodic dynamical systems there is some f ∈ L1 such that

lim
N→∞

1
N

N∑
k=1

f(Tnkx)
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fails to exist for all x in a set of positive measure.

By the Conze principle and the Banach principle of Sawyer ([35], [38]) a
sequence {nk}∞k=1 is not L1-universally bad if and only if there exists a constant
C < ∞ such that for all systems (X,Σ, µ, T ) and all f ∈ L1(µ) we have the
following weak (1, 1) inequality for all t > 0:

µ

({
x : sup

N≥1

∣∣∣∣∣ 1
N

N∑
k=1

f(Tnkx)

∣∣∣∣∣ > t

})
≤ C

t

∫
|f |dµ. (4)

In [21] we prove that

Theorem 3.3. The sequence {k2}∞k=1 is L1-universally bad.

This theorem is proved by showing that there is no constant C such that
the weak (1, 1) inequality in (4) holds. The proof is quite complicated. In
[20] we try to make it more accessible by discussing its heuristic background.
We started to work on this paper in 2003 during my one semester visit to
University of North Texas and the paper [21] went through several revisions
and phases.

An infinite set A ⊂ N is of zero Banach density if

lim
k→∞

sup
n∈N

#(A ∩ [n, n+ k])
k + 1

= 0.

I learned from M. Keane in 2003 that at that time it was not known whether
there exists a sequence (nk) such that nk+1 − nk →∞ and for any f ∈ L1(µ)

lim
N→∞

1
N

N∑
k=1

f(Tnkx) (5)

converges µ almost everywhere.
A sequence satisfying nk+1 − nk →∞ is of zero Banach density.
J. Rosenblatt and M. Wierdl ([33] Conjecture 4.1) had the following con-

jecture:

Conjecture 3.4. Suppose that the sequence (nk) has zero Banach density and
let (X,Σ, µ, T ) be an aperiodic dynamical system. Then for some f ∈ L1(µ)
the averages (5) do not converge almost everywhere.

In [18] the following theorem is proved.
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Theorem 3.5. There exists a sequence (nk) satisfying nk+1 − nk →∞ (and
hence of zero Banach density) which is universally L1-good, that is, for any
invertible aperiodic ergodic dynamical system (X,Σ, µ, T ) and f ∈ L1(µ) we
have

lim
N→∞

A(f, x,N) = lim
K→∞

1
K

K∑
k=1

f(Tnkx) =
∫
X

fdµ, (6)

for µ almost every x ∈ X.

Theorem 3.5 implies that Conjecture 3.4 is false. It also provides an expla-
nation why it was so difficult to obtain the result that nk = k2 is L1-universally
bad.

In a recent paper [40], R. Urban and J. Zienkiewicz showed the following:

Theorem 3.6. The sequence bkαc, 1 < α < 1.001 is universally L1 good.

4 Assani’s L1 Counting Problem in Ergodic Theory.

Learning about our work in [21], I. Assani suggested to look at his L1 Counting
Problem in Ergodic Theory as well.

Suppose that (X,B, µ) is a probability measure space, T is an invertible
measure preserving transformation and f belongs to L1

+(µ), that is, f is non-
negative and belongs to L1(µ). As we remarked it after Theorem 1.1, f(Tnx)

n
converges to 0, µ almost everywhere. Therefore,

Nn(f)(x) = #
{
k :

f(T kx)
k

>
1
n

}
is finite µ almost everywhere. Assani’s counting problem was originally men-
tioned in [1], [2], later also discussed by R. Jones, J. Rosenblatt, D. Rudolph
and M. Wierdl in [28] and [34].

Problem 4.1 (Counting Problem I). Given f ∈ L1
+(µ) do we have

sup
n

Nn(f)(x)
n

<∞, µ a.e.?

In Assani [1] and [2] the maximal operator supn
Nn(f)(x)

n is used to study
the pointwise convergence of Nn(f)(x)

n .
If f ∈ Lp+ for p > 1, or f ∈ L+ logL+ and the transformation T is ergodic,

then Nn(f)(x)
n converges almost everywhere to

∫
fdµ.

If T is not ergodic, then the limit is the conditional expectation of the
function f with respect to the σ field of the invariant sets for T . Hence, the
limit is the same as the limit of the ergodic averages 1

N

∑N
n=1 f(Tnx).
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It is natural to ask whether Nn(f)(x)
n also converges a.e., when f ∈ L1(µ).

By using a generalized version of the Stein-Sawyer result from Assani [1]
one can state the following equivalent problem to the counting problem.

Problem 4.2 (Counting Problem II.). Does there exist a finite positive con-
stant C such that for all measure preserving systems and all λ > 0

µ

{
x : sup

n

Nn(f)(x)
n

> λ

}
≤ C

λ
‖f‖1?

In our joint paper [6] with I. Assani and D. Mauldin we proved the following
theorem which gives a negative answer to both counting problems.

Theorem 4.3. In any nonatomic, invertible ergodic system (X,B, µ, T ) there
exists f ∈ L1

+ such that supn
Nn(f)(x)

n =∞ almost everywhere.

Definition 4.4. Let (X,B, µ, T ) be a measure preserving system. The Return
Times for the Tail Property holds in Lr(µ), 1 ≤ r ≤ ∞ if for each f ∈ Lr(µ)
we can find a set Xf of full measure such that for all x ∈ Xf for all measure
preserving systems (Y,G, ν, S) and each g ∈ L1(ν) the sequence f(Tnx)·g(Sny)

n
converges to zero for almost every y.

Using Theorem 4.3 and results from [1] it is not difficult to show that the
next corollary holds. The details of its verification can be found in [7].

Corollary 4.5. The Return Times for the Tail Property does not hold for
r = 1.

There are several other interesting consequences of Theorem 4.3. For ex-
ample, it implies that Bourgain’s Return Time Theorem does not hold for
pairs of (L1, L1) functions, for the details we refer to [6] and [7].

5 The Bilinear Hardy–Littlewood Maximal Function.

First we recall the definition of the original Hardy–Littlewood maximal func-
tion:

H∗ : f ∈ L1 → H∗f(x) = sup
t

1
2t

∫ t

−t
f(x+ u)du.

It maps L1 functions into weak L1, that is, by a theorem of F. Riesz [32] it
satisfies the following weak type (1, 1) inequality:

m{x : H∗f(x) > s} ≤
∫
|f |dm
s

.
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Calderón introduced in the 1960’s the bilinear Hardy–Littlewood maximal
function. For f, g measurable we put

M∗(f, g)(x) = sup
t

1
2t

∫ t

−t
f(x+ s)g(x+ 2s)ds.

Conjecture 5.1 (Calderón’s conjecture). M∗ is integrable as soon as f and
g are in L2.

After the results by M. Lacey and C. Thiele in [30], finally M. Lacey in
[29] proved a theorem which implies the following:

Theorem 5.2. Let 1 < p, q < ∞, and set 1
r = 1

p + 1
q . If 2

3 < r ≤ 1 then M∗

extends to a bounded map from Lp × Lq into Lr.

This theorem settles Calderón’s conjecture.
If r > 1 then Hölder’s inequality used for the x variable implies that

M∗ maps into Lr. Hölder’s inequality and the weak type (1, 1) property of
H∗ implies that M∗(f, g) is almost everywhere finite if f ∈ Lp, g ∈ Lq and
1
p + 1

q ≤ 1. It is a very interesting fact that Theorem 5.2 goes beyond the range
of exponents used for usual Hölder duality statements.

Problem 5.3. It is not known what happens if 3/2 < 1
p + 1

q ≤ 2? Lacey’s
method does not work for r ≤ 2/3.

Lacey’s method was reproved and generalized for maximal multilinear av-
erages by C. Demeter, T. Tao and C. Thiele in [24].

One can consider the Ergodic Theory/discrete version of the above continu-
ous Hardy–Littlewood maximal functions and as the Correspondance Principle
proved in the Appendix of [24] shows, quite often the results for the discrete
Ergodic version are equivalent to the continuous version.

Suppose f1, ..., fk are measurable functions and (X,Σ, µ, T ) a dynamical
system. The Furstenberg averages are defined as

1
N

N∑
n=1

k∏
j=1

fj(T jnx).

In the Ergodic Theory proof of Szemerédi’s theorem Furstenberg showed that
the weak-lim inf of certain multilinear averages (which became later the Fursten-
berg averages) is positive.

We consider the ergodic version of the Bilinear Hardy–Littlewood function,
which is a very special case of the symmetric Furstenberg averages. Suppose T
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is an ergodic measure preserving transformation on a non-atomic probability
measure space. We consider the maximal function:

M(f, g)(x)def= sup
N

1
2N + 1

N∑
n=−N

f(Tnx)g(T 2nx) (7)

for functions f ∈ Lp and g ∈ Lq. The equivalent problem to Problem 5.3 in
this setting is to find the range of values p, q ≥ 1 for which M(f, g)(x) < ∞,
µ almost everywhere.

While for Szemerédi’s theorem the Furstenberg averages are interesting
for large values of k, for our problem the smallest possible multilinear case,
the bilinear case, seems to be different and in many ways more challenging.
The trilinear Hardy–Littlewood maximal function can be defined the following
way:

R∗(f, g, h)(x) = sup
t

1
2t

∫ t

−t
f(x+ s)g(x+ 2s)h(x+ 3s)ds.

From the dependence of the monomials x+s, x+2s, and x+3s, C. Demeter in
[23] deduced some negative results for the trilinear Hardy–Littlewood maximal
function. For example the following theorem is valid for the ergodic version of
these averages (see [23]):

Theorem 5.4. Define p0 = 1+ log6 2
1+log6 2 and consider p < p0. In every ergodic

dynamical system (X,Σ, µ, T ) there are three functions f, g, h ∈ Lp(X) such
that

lim sup
N→∞

1
N

N∑
n=1

f(Tnx)g(T 2nx)h(T 3nx) =∞

for µ a.e. x ∈ X.

For the bilinear Hardy–Littlewood M∗, the monomials x + s and x + 2s
are “independent” and no negative result are known close to L1.

A good indicator of the behavior of the ergodic averages is given by the tail

of the averages
f(TNx)g(T 2Nx)

2N + 1
. The maximal function associated with the

tail of the ergodic averages sup
n

f(Tnx)
n

, satisfies similar weak type inequal-

ities as the maximal function for the ergodic averages. Since M(f, g)(x) ≥

sup
N

f(TNx)g(T 2Nx)
2N + 1

, I. Assani suggested that we should first try to find out

what happens to the maximal function

R∗(f, g)(x) = sup
n

f(Tnx)g(T 2n(x))
n

.
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In [3] we prove the following theorem:

Theorem 5.5. Let (X,B, µ, T ) be an ergodic measure preserving transforma-
tion on a finite non-atomic measure space. Then for all p, q ≥ 1 such that
1
p + 1

q < 2, R∗ maps Lp × Lq into Lr as soon as 0 < r < 1/2.

In [5] we also show the following:

Theorem 5.6. Let (X,B, µ, T ) be an ergodic measure preserving transforma-
tion on a finite non-atomic measure space. Then there exist functions f, g both
in L1

+(X) for which the maximal function

R∗(f, g)(x) = sup
n

f(Tnx)g(T 2nx)
n

is not finite a.e.

Since Theorem 5.5 implies that R∗(f, g) is finite almost everywhere for
(f, g) ∈ Lp × Lq when p, q ≥ 1 and 1

p + 1
q < 2 the above two theorems give

a complete characterization of the range of values (p, q) for which R∗(f, g) is
finite almost everywhere.

Theorem 5.6 solves an open problem in Ergodic Theory. The averages

FN (f, g)(x) =
1

2N + 1

N∑
n=−N

f(Tnx)g(T 2nx)

are special (bilinear and symmetric) Furstenberg averages. A deep result of
J. Bourgain, [15], showed that these averages converge almost everywhere as
soon as the Hölderian duality is respected, (that is, 1

p + 1
q ≤ 1). Theorem 5.6

shows that these averages do not converge for pairs of (L1, L1) functions as
the tail of these averages does not converge a.e. to zero for some functions
f, g ∈ L1.

In [3] Theorem 5.5 is deduced from the following maximal inequality:

Theorem 5.7. Given p > 1 there exists a universal finite constant C∗p such
that if (X,B, µ, T ) is any invertible ergodic dynamical system on a non-atomic
finite measure space (X,B, µ) then the following holds. For every function
f ∈ Lp, |f | > 1, for every g ∈ L1, |g| > 1, and for each s > 0 we have

µ

{
x : sup

0<l

f(T lx)g(T 2lx)
l

≥ s
}
≤ C∗p

√
||f ||pp||g||1

s
. (8)
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Therefore, for such functions f and g we have

f(T lx)g(T 2lx)
l

→ 0 as l→∞. (9)

Furthermore, for 1 < p < 2 there exists a universal constant C such that

C∗p ≤
C

p− 1
.

A similar maximal inequality can be obtained if one considers instead f ∈
L1 and g ∈ Lp.

By Theorem 5.5 for the maximal function R∗ there is nothing magic about

2/3, like in Problem 5.3. For R∗ one can go beyond
1
p

+
1
q
< 3/2. In fact, R∗

maps functions in Lp ×Lq into any of the Lr spaces as long as 1 ≤ 1
p + 1

q < 2
and 0 < r < 1/2.

Remark 5.8. The maximal inequality in Theorem 5.7 is good enough to
derive Theorem 5.5 but it is not homogeneous with respect to f , or g. During
the 2007 Ergodic Theory workshop at University of North Carolina at Chapel
Hill, J.P. Conze asked if this inequality could be made homogeneous with
respect to f and g.

In [4] we prove the following version of Theorem 5.7:

Theorem 5.9. For each 1 < p < ∞ there exists a finite constant Cp such
that for each f, g ≥ 0 and for all λ > 0 we have

µ

{
x : sup

n≥1

f(Tnx)g(T 2nx)
n

> λ

}
≤ Cp

(
‖f‖p‖g‖1

λ

)1/2

, (10)

and there exists C̃ such that for any 1 < p < 2 we have

Cp ≤
C̃

p− 1
. (11)

At the same meeting a question was raised about the almost everywhere
finiteness of R∗(f, g) for pairs of functions in (L logL,L1). In [4] we could
prove:

Theorem 5.10. If α > 2 and the pair of non-negative functions (f, g) belongs

to (L(logL)2α, L1) then R∗(f, g) = sup
n

f(Tnx)g(T 2nx)
n

is a.e. finite.

The problem whether this Theorem is true for functions in (L logL,L1)
seems to be still unsolved.
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