Zbigniew Duszyński, Pedagogical University, Institute of Mathematics, Chodkiewicza 30, 85-064 Bydgoszcz, Poland. email: imath@wsp.bydgoszcz.pl

THE OSCILLATION FUNCTION ON METRIC SPACES

Abstract

For each metric space (X, ξ) and each bounded function $f: X \to \mathbb{R}$ the family of the sets $\Omega_f(y) = \{x \in X : \omega_f(x) \ge y\}$ ($\omega_f(x)$ is the oscillation of f) has some well known properties. In this paper it is constructively shown that for each family $\{\Omega(y)\}_{y\in[0,1]}$ of subsets of X(separable and \mathfrak{c} -dense in itself) having similar properties there exists a function $f: X \to [0, 1]$ such that $\Omega_f(y) = \Omega(y)$ for each $y \in [0, 1]$.

Let X be any separable metric space of one's choice and $f: X \to \mathbb{R}$ an arbitrary function (\mathbb{R} denotes the set of all real numbers). We will use the following description of the set of *limit points of* f at x_0 denoted by $L(f, x_0): L(f, x_0)$ is the set of all points $y \in \mathbb{R}$ such that there exists a sequence $\{x_n\} \subset X$ with $\lim x_n = x_0, \quad x_n \neq x_0 \quad (n = 1, 2, ...)$ and $\lim f(x_n) = y$. It is well known that L(f, x) is closed in \mathbb{R} for each $x \in X$. Let us recall the natural definition of the function of oscillation for $f: X \to [0, 1]: \omega_f(x): = \max[L(f, x) \cup \{f(x)\}] - \min[L(f, x) \cup \{f(x)\}]$. For each $y \in [0, 1]$ let

$$\Omega_f(y) \colon = \{ x \in X \colon \omega_f(x) \ge y \}.$$

It is not difficult to see that the following facts hold for every function $f: X \to [0, 1]$.

- 1) The set $\Omega_f(y)$ is closed in (X, τ_X) , where the distance function on X defines the topology τ_X in a standard way,
- 2) If $y_1 < y_2$ then $\Omega_f(y_2) \subset \Omega_f(y_1)$,

485

Key Words: oscillation function, separable metric space Mathematical Reviews subject classification: 26A15

Received by the editors January 23,1999

^{*}A special case of this result was announced by the author at the conference "Problems in Real Analysis," Lódź, July 11-13, 1994 (see RAE, v.20, no.2, p.377)

3) The set $\bigcup_{y \in [0,1]} (\Omega_f(y) \times \{y\})$ is $\tau_X \times \tau$ -closed (τ — natural topology on \mathbb{R}).

Now let us take an arbitrary family $\{\Omega(y)\}_{y\in[0,1]}$ of nonempty subsets of X such that:

- 1°) The set $\Omega(y)$ is τ_X -closed for each $y \in [0, 1]$,
- 2°) If $y_1 < y_2$ then $\Omega(y_2) \subset \Omega(y_1)$,
- 3°) The set $\bigcup_{y \in [0,1]} (\Omega(y) \times \{y\})$ is $\tau_X \times \tau$ -closed,
- $4^{\circ}) \ \Omega(0) = X$

The main result of this paper is the following,

Theorem 1. Let X be an arbitrary \mathfrak{c} -dense ($\mathfrak{c} = card(\mathbb{R})$) in itself and separable metric space. For each family $\{\Omega(y)\}_{y \in [0,1]}$ that fulfills conditions $1^\circ) - 4^\circ$) above, there exists a function $f: X \to [0,1]$ such that for every $y \in [0,1]$ we have

 $0^{\circ}) \ \Omega(y) = \Omega_f(y).$

PROOF. In this proof we use the well known Cantor-Bendixson Theorem: each τ_X -closed subset A of separable metric space X can be represented as a sum of two disjoint subsets A_1 and A_2 , the first of which is a set of all points of condensation of A, and the second is denumerable. For each $y \in [0,1]$, let $\Omega(y) = A(y) \cup B(y)$ (note that $A(y) \cap B(y) = \emptyset$) where, from the Cantor-Bendixson Theorem, A(y) is τ_X -perfect and B(y) is denumerable. Let $B_a \equiv \{y \in [0,1]: a \in B(y)\}$ for each $a \in X$. The set F of all points a of X for which $B_a \neq \emptyset$ is at most denumerable. Proof of this fact is analogous to the proof of the lemma in [1], where the notions of condensation and closure are taken in the sense of τ_X .

For each $y \in [0, 1]$, let A'(y) denote a denumerable and dense set in $\Omega(y)$ and $U := \mathbb{Q} \cap [0, 1]$ where \mathbb{Q} is the set of all rational numbers. Our function f we define as follows:

$$f(x) = \begin{cases} \sup\{y \in U \colon x \in A'(y)\} & \text{for } x \in \bigcup_{y \in U} A'(y) \\ 0 & \text{otherwise} \end{cases}$$

First we shall prove the inclusion **[A]** $\Omega_f(y) \subset \Omega(y)$.

486

- <u>A.1</u> Let us take an arbitrary point $y_0 \in [0, 1]$ and $x \in \Omega_f(y_0)$.
- A.1.1 If $f(x) \ge y_0$ then the definition of f and condition 3°) imply that there exists $y_1 \in U$ such that $x \in A'(y_1)$ and $y_1 \ge y_0$. Since $\Omega(y_1) \subset \Omega(y_0)$, then $x \in \Omega(y_0)$.
- A.1.2 Let $y' = \max L(f, x) \ge y_0$. Therefore, there exists a sequence $\{x_n\} \subset X$ such that $x_n \in \bigcup_{y \in U} A'(y) \quad (x_n \neq x, n \in \mathbb{N}), \quad \lim x_n = x, \\ \lim f(x_n) = y' \text{ and } y' \ge y_0.$

From the definition of f we infer that $f(x_n) = \sup\{y \in U : x_n \in A'(y)\}$. Consider two cases:

- (a) Presume that $y' > y_0$. Then there exists the subsequence $\{x_{n_m}\}$ of $\{x_n\}$ such that $f(x_{n_m}) = y_{n_m} > y_0$. Then $\Omega(y_{n_m}) \subset \Omega(y_0)$ and $x_{n_m} \in \Omega(y_0)$. Since $x_{n_m} \xrightarrow{m \to \infty} x$ and $\Omega(y_0)$ is τ_X -closed we obtain that $x \in \Omega(y_0)$.
- (b) Suppose that $y' = y_0$, i.e. max $L(f, x) = y_0$ and for the sequence $\{x_n\}$ we have $\lim f(x_n) = y_0$. There are two cases:
 - (b') If for infinite number of points of $\{x_n\}$ the value of f is greater than y_0 , then there exists the subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $f(x_{n_k}) = y_{n_k} > y_0$. Therefore, as in (a), we have $x_{n_k} \xrightarrow{k \to \infty} x$, $x_{n_k} \in \Omega(y_0)$ and since $\Omega(y_0)$ is closed $x \in \Omega(y_0)$.
 - (b") If there are only a finite number of elements of the subsequence $\{x_n\}$ whose values of f are greater than y_0 , then without loss of generality, we can assume that for each $n \in \mathbb{N}$ $f(x_n) = \sup\{y \in U:$ $x \in A'(y)\} \leq y_0$. If $x \notin \Omega(y_0)$, then for a certain n_0 , points x_n with $n \geq n_0$ also do not belong to $\Omega(y_0)$. This means that for a sufficiently small number $\delta > 0$

$$x \in \bigcup_{\substack{y \in U\\ y \le y_0 - \delta}} A'(y) \quad \text{for each } n > n_0.$$

Hence $\lim f(x_n) \le y_0 - \delta < y_0$ i.e. $\lim f(x_n) < y_0$, a contradiction.

- **[B]** $\Omega(y) \subset \Omega_f(y)$.
- <u>B.1</u> Let y_0 be an arbitrary point point from $U \setminus \{0\}$.
- B.1.1 Let $x \in A'(y_0)$. From the definition of f we have $\omega_f(x) \ge y_0$ and hence $x \in \Omega_f(y_0)$.

- B.1.2 Let $x \in A(y_0) \setminus A'(y_0)$. Then there exists a sequence $\{x_n\}$ such that $x_n \in A'(y_0)$ $(x_n \neq x, n \in \mathbb{N})$ and $\lim x_n = x$. From the formula for f we infer that $f(x_n) \geq y_0$ $(n \in \mathbb{N})$. Since $\max[L(f, x) \cup \{f(x)\}] \geq \overline{\lim} f(x_n) \geq y_0$ then again $\omega_f(x) \geq y_0$. Therefore $x \in \Omega_f(y_0)$.
 - <u>B.2</u> Let $y_0 \in [0,1] \setminus U$ be an arbitrary fixed point. Let us take the sequence $\{y_m\} \subset U$ such that $y_m < y_0 \ (m \in \mathbb{N})$ and $\lim y_m = y_0$.
- B.2.1 Let $x \in A(y_0)$, then for every $m \in \mathbb{N} \ x \in A(y_m)$. Simultaneously for each $m \in \mathbb{N}$ there exists a sequence $\{x_n^{(m)}\}$ such that $x_n^{(m)} \neq x$, $x_n^{(m)} \to x$ and $x_n^{(m)} \in A'(y_m)$. Let us take an open ball V_1 with center at x and choose $x_{n_1}^{(1)} \neq x$ belonging to V_1 . Next, for m = 2 let us take the ball V_2 with center at x such that $x_{n_1}^{(1)} \notin V_2$ and choose $x_{n_2}^{(2)} \in V_2$, $x_{n_2}^{(2)} \neq$ x. Proceeding by induction and having chosen for some k a point $x_{n_k}^{(k)} \in V_k$, let us take the ball V_{k+1} (with center x) such that $x_{n_k}^{(k)} \notin V_{k+1}$ and choose a point $x_{n_{k+1}}^{(k+1)} \neq x$. Denote $x_{n_m}^{(m)} = t_m$, $m \in \mathbb{N}$. Finally, we obtain the inductively defined sequence $\{t_m\} \subset X$ such that $t_m \neq t_{m'}$ for $m \neq m'$, $t_m \neq x$, $t_m \in A'(y_m)$ and $\lim t_m = x$. From the definition of f we obtain $f(t_m) \geq y_m$. Since $\max[L(f, x) \cup \{f(x)\}] \geq \liminf f(t_m) \geq y_0$, then $x \in \Omega_f(y_0)$.
- B.2.2 For $x \in B(y_0)$ the proof is obvious.

<u>B.3</u> For $y_0 = 0$ the proof is also obvious.

Corollary 1. The function f defined above is of the second class of Baire.

References

- Z. Duszyński, On the function of oscillation, Problemy Matematyczne 14, Bydgoszcz 1995, 15–20.
- [2] R. Sikorski, *Funkcje rzeczywiste*, PWN, Warszawa, 1958 (in Polish).