THE OSCILLATION FUNCTION ON METRIC SPACES

Abstract

For each metric space (X, ξ) and each bounded function $f: X \rightarrow \mathbb{R}$ the family of the sets $\Omega_{f}(y)=\left\{x \in X: \omega_{f}(x) \geq y\right\}\left(\omega_{f}(x)\right.$ is the oscillation of f) has some well known properties. In this paper it is constructively shown that for each family $\{\Omega(y)\}_{y \in[0,1]}$ of subsets of X (separable and \mathfrak{c}-dense in itself) having similar properties there exists a function $f: X \rightarrow[0,1]$ such that $\Omega_{f}(y)=\Omega(y)$ for each $y \in[0,1]$.

Let X be any separable metric space of one's choice and $f: X \rightarrow \mathbb{R}$ an arbitrary function (\mathbb{R} denotes the set of all real numbers). We will use the following description of the set of limit points of f at x_{0} denoted by $L\left(f, x_{0}\right): L\left(f, x_{0}\right)$ is the set of all points $y \in \mathbb{R}$ such that there exists a sequence $\left\{x_{n}\right\} \subset X$ with $\lim x_{n}=x_{0}, \quad x_{n} \neq x_{0} \quad(n=1,2, \ldots)$ and $\lim f\left(x_{n}\right)=y$. It is well known that $L(f, x)$ is closed in \mathbb{R} for each $x \in X$. Let us recall the natural definition of the function of oscillation for $f: X \rightarrow[0,1]: \omega_{f}(x):=$ $\max [L(f, x) \cup\{f(x)\}]-\min [L(f, x) \cup\{f(x)\}]$. For each $y \in[0,1]$ let

$$
\Omega_{f}(y):=\left\{x \in X: \omega_{f}(x) \geq y\right\}
$$

It is not difficult to see that the following facts hold for every function $f: X \rightarrow[0,1]$.

1) The set $\Omega_{f}(y)$ is closed in $\left(X, \tau_{X}\right)$, where the distance function on X defines the topology τ_{X} in a standard way,
2) If $y_{1}<y_{2}$ then $\Omega_{f}\left(y_{2}\right) \subset \Omega_{f}\left(y_{1}\right)$,

[^0]3) The set $\bigcup_{y \in[0,1]}\left(\Omega_{f}(y) \times\{y\}\right)$ is $\tau_{X} \times \tau$-closed $(\tau-$ natural topology on \mathbb{R}).

Now let us take an arbitrary family $\{\Omega(y)\}_{y \in[0,1]}$ of nonempty subsets of X such that:
1°) The set $\Omega(y)$ is τ_{X}-closed for each $y \in[0,1]$,
2°) If $y_{1}<y_{2}$ then $\Omega\left(y_{2}\right) \subset \Omega\left(y_{1}\right)$,
$\left.3^{\circ}\right)$ The set $\bigcup_{y \in[0,1]}(\Omega(y) \times\{y\})$ is $\tau_{X} \times \tau$-closed,
$\left.4^{\circ}\right) \Omega(0)=X$
The main result of this paper is the following,
Theorem 1. Let X be an arbitrary \mathfrak{c}-dense $(\mathfrak{c}=\operatorname{card}(\mathbb{R}))$ in itself and separable metric space. For each family $\{\Omega(y)\}_{y \in[0,1]}$ that fulfills conditions $\left.1^{\circ}\right)-4^{\circ}$) above, there exists a function $f: X \rightarrow[0,1]$ such that for every $y \in[0,1]$ we have
$\left.0^{\circ}\right) \Omega(y)=\Omega_{f}(y)$.
Proof. In this proof we use the well known Cantor-Bendixson Theorem: each τ_{X}-closed subset A of separable metric space X can be represented as a sum of two disjoint subsets A_{1} and A_{2}, the first of which is a set of all points of condensation of A, and the second is denumerable. For each $y \in[0,1]$, let $\Omega(y)=A(y) \cup B(y) \quad$ (note that $A(y) \cap B(y)=\varnothing$) where, from the CantorBendixson Theorem, $A(y)$ is $\tau_{X^{-}}$perfect and $B(y)$ is denumerable. Let $B_{a} \equiv$ $\{y \in[0,1]: a \in B(y)\}$ for each $a \in X$. The set F of all points a of X for which $B_{a} \neq \varnothing$ is at most denumerable. Proof of this fact is analogous to the proof of the lemma in [1], where the notions of condensation and closure are taken in the sense of τ_{X}.

For each $y \in[0,1]$, let $A^{\prime}(y)$ denote a denumerable and dense set in $\Omega(y)$ and $U:=\mathbb{Q} \cap[0,1]$ where \mathbb{Q} is the set of all rational numbers. Our function f we define as follows:

$$
f(x)= \begin{cases}\sup \left\{y \in U: x \in A^{\prime}(y)\right\} & \text { for } x \in \bigcup_{y \in U} A^{\prime}(y) \\ 0 & \text { otherwise }\end{cases}
$$

First we shall prove the inclusion
$[\mathbf{A}] \Omega_{f}(y) \subset \Omega(y)$.
A. 1 Let us take an arbitrary point $y_{0} \in[0,1]$ and $x \in \Omega_{f}\left(y_{0}\right)$.
A.1.1 If $f(x) \geq y_{0}$ then the definition of f and condition 3°) imply that there exists $y_{1} \in U$ such that $x \in A^{\prime}\left(y_{1}\right)$ and $y_{1} \geq y_{0}$. Since $\Omega\left(y_{1}\right) \subset \Omega\left(y_{0}\right)$, then $x \in \Omega\left(y_{0}\right)$.
A.1.2 Let $y^{\prime}=\max L(f, x) \geq y_{0}$. Therefore, there exists a sequence $\left\{x_{n}\right\} \subset X$ such that $x_{n} \in \bigcup_{y \in U} A^{\prime}(y) \quad\left(x_{n} \neq x, n \in \mathbb{N}\right), \quad \lim x_{n}=x$, $\lim f\left(x_{n}\right)=y^{\prime}$ and $y^{\prime} \geq y_{0}$.
From the definition of f we infer that $f\left(x_{n}\right)=\sup \left\{y \in U: x_{n} \in A^{\prime}(y)\right\}$. Consider two cases:
(a) Presume that $y^{\prime}>y_{0}$. Then there exists the subsequence $\left\{x_{n_{m}}\right\}$ of $\left\{x_{n}\right\}$ such that $f\left(x_{n_{m}}\right)=y_{n_{m}}>y_{0}$. Then $\Omega\left(y_{n_{m}}\right) \subset \Omega\left(y_{0}\right)$ and $x_{n_{m}} \in \Omega\left(y_{0}\right)$. Since $x_{n_{m}} \xrightarrow{m \rightarrow \infty} x$ and $\Omega\left(y_{0}\right)$ is τ_{X}-closed we obtain that $x \in \Omega\left(y_{0}\right)$.
(b) Suppose that $y^{\prime}=y_{0}$, i.e. $\max L(f, x)=y_{0}$ and for the sequence $\left\{x_{n}\right\}$ we have $\lim f\left(x_{n}\right)=y_{0}$. There are two cases:
(b') If for infinite number of points of $\left\{x_{n}\right\}$ the value of f is greater than y_{0}, then there exists the subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $f\left(x_{n_{k}}\right)=y_{n_{k}}>y_{0}$. Therefore, as in (a), we have $x_{n_{k}} \xrightarrow{k \rightarrow \infty} x$, $x_{n_{k}} \in \Omega\left(y_{0}\right)$ and since $\Omega\left(y_{0}\right)$ is closed $x \in \Omega\left(y_{0}\right)$.
(b") If there are only a finite number of elements of the subsequence $\left\{x_{n}\right\}$ whose values of f are greater than y_{0}, then without loss of generality, we can assume that for each $n \in \mathbb{N} \quad f\left(x_{n}\right)=\sup \{y \in U$: $\left.x \in A^{\prime}(y)\right\} \leq y_{0}$. If $x \notin \Omega\left(y_{0}\right)$, then for a certain n_{0}, points x_{n} with $n \geq n_{0}$ also do not belong to $\Omega\left(y_{0}\right)$. This means that for a sufficiently small number $\delta>0$

$$
x \in \bigcup_{\substack{y \in U \\ y \leq y_{0}-\delta}} A^{\prime}(y) \quad \text { for each } n>n_{0}
$$

Hence $\lim f\left(x_{n}\right) \leq y_{0}-\delta<y_{0}$ i.e. $\lim f\left(x_{n}\right)<y_{0}$, a contradiction.
$[\mathrm{B}] \Omega(y) \subset \Omega_{f}(y)$.
B. 1 Let y_{0} be an arbitrary point point from $U \backslash\{0\}$.
B.1.1 Let $x \in A^{\prime}\left(y_{0}\right)$. From the definition of f we have $\omega_{f}(x) \geq y_{0}$ and hence $x \in \Omega_{f}\left(y_{0}\right)$.
B.1.2 Let $x \in A\left(y_{0}\right) \backslash A^{\prime}\left(y_{0}\right)$. Then there exists a sequence $\left\{x_{n}\right\}$ such that $x_{n} \in$ $A^{\prime}\left(y_{0}\right)\left(x_{n} \neq x, n \in \mathbb{N}\right)$ and $\lim x_{n}=x$. From the formula for f we infer that $f\left(x_{n}\right) \geq y_{0}(n \in \mathbb{N})$. Since $\max [L(f, x) \cup\{f(x)\}] \geq \overline{\lim } f\left(x_{n}\right) \geq y_{0}$ then again $\omega_{f}(x) \geq y_{0}$. Therefore $x \in \Omega_{f}\left(y_{0}\right)$.
B. 2 Let $y_{0} \in[0,1] \backslash U$ be an arbitrary fixed point. Let us take the sequence $\left\{y_{m}\right\} \subset U$ such that $y_{m}<y_{0}(m \in \mathbb{N})$ and $\lim y_{m}=y_{0}$.
B.2.1 Let $x \in A\left(y_{0}\right)$, then for every $m \in \mathbb{N} x \in A\left(y_{m}\right)$. Simultaneously for each $m \in \mathbb{N}$ there exists a sequence $\left\{x_{n}^{(m)}\right\}$ such that $x_{n}^{(m)} \neq x$, $x_{n}^{(m)} \rightarrow x$ and $x_{n}^{(m)} \in A^{\prime}\left(y_{m}\right)$. Let us take an open ball V_{1} with center at x and choose $x_{n_{1}}^{(1)} \neq x$ belonging to V_{1}. Next, for $m=2$ let us take the ball V_{2} with center at x such that $x_{n_{1}}^{(1)} \notin V_{2}$ and choose $x_{n_{2}}^{(2)} \in V_{2}, x_{n_{2}}^{(2)} \neq$ x. Proceeding by induction and having chosen for some k a point $x_{n_{k}}^{(k)} \in V_{k}$, let us take the ball V_{k+1} (with center x) such that $x_{n_{k}}^{(k)} \notin V_{k+1}$ and choose a point $x_{n_{k+1}}^{(k+1)} \neq x$. Denote $x_{n_{m}}^{(m)}=t_{m}, m \in \mathbb{N}$. Finally, we obtain the inductively defined sequence $\left\{t_{m}\right\} \subset X$ such that $t_{m} \neq t_{m^{\prime}}$ for $m \neq m^{\prime}, t_{m} \neq x, t_{m} \in A^{\prime}\left(y_{m}\right)$ and $\lim t_{m}=x$. From the definition of f we obtain $f\left(t_{m}\right) \geq y_{m}$. Since $\max [L(f, x) \cup\{f(x)\}] \geq \overline{\lim } f\left(t_{m}\right) \geq y_{0}$, then $x \in \Omega_{f}\left(y_{0}\right)$.
B.2.2 For $x \in B\left(y_{0}\right)$ the proof is obvious.
B. 3 For $y_{0}=0$ the proof is also obvious.

Corollary 1. The function f defined above is of the second class of Baire.

References

[1] Z. Duszyński, On the function of oscillation, Problemy Matematyczne 14, Bydgoszcz 1995, 15-20.
[2] R. Sikorski, Funkcje rzeczywiste, PWN, Warszawa, 1958 (in Polish).

[^0]: Key Words: oscillation function, separable metric space
 Mathematical Reviews subject classification: 26A15
 Received by the editors January 23,1999

 * A special case of this result was announced by the author at the conference "Problems in Real Analysis," Lódź, July 11-13, 1994 (see RAE, v.20, no.2, p.377)

