Harry I. Miller, Department of Mathematics, Bilkent University, Ankara, Turkey - on leave from the University of Tennessee - Chattanooga. e-mail: hmiller@cecasun.utc.edu

Henry L. Wyzinski, Department of Mathematics, Indiana University N.W., Gary, IN 46408-1197. e-mail: hwyzin@iunhaw1.iun.indiana.edu

ON OPENNESS OF DENSITY POINTS UNDER MAPPINGS

Abstract

Basu and Ganguly recently proved a theorem connected to the classical theorem of Steinhaus which states that A - B has nonempty interior if A and B are Lebesgue measurable subsets of the real line, each having positive measure. The Basu and Ganguly paper deals with a particular 2-place function, namely f(x, y) = x/y. There is nothing special about ratios. We will extend their results to functions satisfying simple conditions on their partial derivatives. An n dimensional analogue is also presented.

1 Introduction

In a recent article [2] Basu and Ganguly proved that if $A_1, A_2 \subseteq \mathbb{R}$ (the real line) are Lebesgue measurable and each has positive Lebesgue measure, then $R[A_1^*: A_2^*]$ is an open set, where $A_i^* = \{x \in \mathbb{R} \setminus \{0\} : A_i \text{ has density 1 at } x\}$ and $R[A_1^*: A_2^*]$ denotes the collection of all numbers $\frac{x}{y}$ and $\frac{y}{x}$ where $x \in$ $A_1^*, y \in A_2^*$. This result is a contribution to the collection of analogues and extensions of a theorem of Steinhaus [5], that goes back to 1920. The purpose of this note is to show that there is nothing special about ratios and that analogous statements in \mathbb{R} and \mathbb{R}^n hold for 2-place functions satisfying simple conditions on their partial derivatives. That the Steinhaus theorem can be extended using general functions is not a new idea – for example see [1], [3] and [4].

Key Words: Steinhaus theorem, density points

Mathematical Reviews subject classification: 28A05

Received by the editors May 12, 1998

2 Results

We first consider the n = 1 dimensional extension of the result of Basu and Ganguly mentioned in the introduction.

Theorem 1. Suppose that $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, A and B are Lebesgue measurable subsets of \mathbb{R} and $x_0 \in \widetilde{A}$, $y_0 \in \widetilde{B}$ where \widetilde{A} and \widetilde{B} are the density points of A and B, respectively. Assume further that f_x , f_y (partial derivatives) exist and are continuous in a neighborhood of (x_0, y_0) and that $f_x(x_0, y_0) \neq 0$ and $f_y(x_0, y_0) \neq 0$. Then $t_0 := f(x_0, y_0)$ is an interior point of $f(\widetilde{A}, \widetilde{B}) :=$ $\left\{f(a, b): a \in \widetilde{A}, b \in \widetilde{B}\right\}$.

PROOF. Given $\delta > 0$, there exist $0 < \delta_1, \delta_2, \delta_3 < \delta$ such that for each $c \in N_3 := (t_0 - \delta_3, t_0 + \delta_3)$ and each $x \in N_1 := (x_0 - \delta_1, x_0 + \delta_1)$ there exists a unique $y \in N_2 := (y_0 - \delta_2, y_0 + \delta_2)$ such that f(x, y) = c and f_x, f_y exist and are continuous and non-zero on $N_1 \times N_2$. For each $c \in N_3$, let $g_c : N_1 \to N_2$ be defined as above, i.e., $g_c(x) = y$ and $f(x, g_c(x)) = f(x, y) = c$. For each $c \in N_3$, $g'_c(x) = \frac{-f_x(x_0, g_c(x))}{f_y(x, g_c(x))}$ for every $x \in N_1$. Set $M := \frac{-f_x(x_0, g_{t_0}(x_0))}{f_y(x_0, g_{t_0}(x_0))} = \frac{-f_x(x_0, y_0)}{f_y(x_0, g_{t_0}(x_0))}$. There exists a $d_1, 0 < d_1 < \delta_1$, such that $\frac{|M|}{2}d_1 < \delta_2$ and $g'_c(x) = M + C$.

There exists a d_1 , $0 < d_1 < \delta_1$, such that $\frac{|M|}{2}d_1 < \delta_2$ and $g'_c(x) = M + \varepsilon(x,c)$, where $|\varepsilon(x,c)| < \frac{|M|}{10}$ for all $c \in N_3$ satisfying $g_c(x_0) \in U_3 := \left(y_0 - \frac{|M|}{2}d_1, y_0 + \frac{|M|}{2}d_1\right)$ and for all $x \in U_1 := (x_0 - d_1, x_0 + d_1)$ (notice t_0 is an interior point of these c's) and such that $\frac{m(\tilde{A} \cap U_1)}{2d_1} > 0.95$ and $\frac{m(\tilde{B} \cap U_2)}{4|M|d_1} > 0.95$ where $U_2 := (y_0 - 2|M|d_1, y_0 + 2|M|d_1)$.

For the c's mentioned above $g_c\left(\widetilde{A} \cap U_1\right)$ is a measurable set with measure greater than $\left(\frac{9|M|}{10}\right)(2d_1)(0.95)$ and is contained in U_2 since $\frac{|M|}{2}d_1 + \frac{11|M|}{10}d_1 < 2|M|d_1$. This implies $g_c\left(\widetilde{A} \cap U_1\right) \cap \left(\widetilde{B} \cap U_2\right) \neq \emptyset$. Therefore, there exists an $x_c \in \widetilde{A} \cap U_1$ such that $g_c(x_c) \in \widetilde{B} \cap U_2$, or $f(x_c, g(x_c(x_c))) = c$ with $x_c \in \widetilde{A}$, $g_c(x_c) \in \widetilde{B}$ for each $c \in U'_3 := \{c \in N_3 : g_c(x_0) \in U_3\}$ and t_0 is an interior point of U'_3 .

We now proceed to the n dimensional extension of the Basu, Ganguly result.

Theorem 2. Suppose that $f: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$, A and B are Lebesgue measurable subsets of \mathbb{R}^n and $x_0 \in \widetilde{A}$, $y_0 \in \widetilde{B}$ where \widetilde{A} and \widetilde{B} are the density points of A and B respectively. Assume further that:

(α) The 2n² partial derivatives (n functions and 2n variables) exist and are continuous in some neighborhood of (x_0, y_0).

 (β)

$$\begin{vmatrix} D_1 f_1 & \cdot & \cdot & \cdot & D_n f_1 \\ \cdot & & & \cdot & \cdot \\ \cdot & & & \cdot & \cdot \\ D_1 f_n & \cdot & \cdot & \cdot & D_n f_n \end{vmatrix} (x_0, y_0) \neq 0$$

and

$$\begin{vmatrix} D_{n+1}f_1 & . & . & . & D_{2n}f_1 \\ . & . & . \\ . & . & . \\ . & . & . \\ D_{n+1}f_1 & . & . & . & D_{2n}f_n \end{vmatrix} (x_0, y_0) \neq 0$$

where $f = (f_1, f_2, ..., f_n)$.

Then $t_0 := f(x_0, y_0)$ is an interior point of $f(\widetilde{A}, \widetilde{B}) := \{f(a, b) : a \in \widetilde{A}, b \in \widetilde{B}\}.$

PROOF. f can be viewed as an $n \times 1$ column matrix. The $n \times n$ matrices $\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f}{\partial x_1} \frac{\partial f}{\partial x_2} \cdots \frac{\partial f}{\partial x_n} \end{bmatrix}$ and $\frac{\partial f}{\partial y} = \begin{bmatrix} \frac{\partial f}{\partial y_1} \frac{\partial f}{\partial y_2} \cdots \frac{\partial f}{\partial y_n} \end{bmatrix}$ are both invertible at (x_0, y_0) by the hypotheses of this theorem. By the implicit function theorem, there is a continuously differentiable function g(x,t) defined for x near x_0 and t near $t_0 = f(x_0, y_0)$ such that f(x, g(x, t)) = t. By implicit differentiation, we have $\frac{\partial g}{\partial x} = -\begin{bmatrix} \frac{\partial f}{\partial y} \end{bmatrix} \begin{bmatrix} \frac{\partial f}{\partial x} \end{bmatrix}$. Therefore $\frac{\partial g}{\partial x}$ is invertible at the point (x_0, t_0) . Hence, given $\delta > 0$, there exist $\delta_1, \delta_2, \delta_3$, with $0 < \delta_1, \delta_2, \delta_3 < \delta$ such that for each $c \in N_3 := N(t_0, \delta_3)$, the open ball in \mathbb{R}^n with center t_0 and radius δ_3 , and each $x \in N_1 := N(x_0, \delta_1)$, there exists a unique $y \in N_2 := N(y_0, \delta_2)$ such that f(x, y) = c. For each $c \in N_3$, let $g_c : N_1 \to N_2$ be defined as above, i.e., $g_c(x) = y$ with $f(x, g_c(x)) = f(x, y) = c$.

Set $J_{g_{t_0}}(x_0) = \det\left(\frac{\partial g_{t_0}}{\partial x}\right)(x_0) = M_1$, which, by the above, is not zero.

By the assumption of the continuity of the $2n^2$ partial derivatives there exists a d_1 , $0 < d_1 < \delta$, such that $\frac{|M_1|}{2}d_1 < \delta_2$ and $J_{g_c}(x) = M_1 + \varepsilon(x,c)$ where $|\varepsilon(x,c)| < \frac{|M_1|}{10}$ for all $x \in U_1 := N(x_0,d_1)$ and for all $c \in C := \left\{c \in N_3; g_c(x_0) \in U_3 := N\left(y_0, \frac{|M_1|}{2}d_1\right)\right\}$ and $||g_c(x) - g_c(x_0)|| < M_2||x - x_0||$ for every $x \in U_1$ and every $c \in C$ and $\frac{m(\widetilde{A}\cap U_1)}{m(U_1)} > \frac{1}{q}$ and $\frac{m(\widetilde{B}\cap U_2)}{m(U_2)} > \frac{1}{q}$ where $U_2 := N\left(y_0, M_2d_1 + \frac{|M_1|}{2}d_1\right)$ and where $q = \left[\frac{9}{10}|M_1|\frac{m(U_1)}{m(U_2)} + 1\right]$.

Notice that $t_0 = f(x_0, y_0)$ is an interior point of C. By the definitions of U_1, U_2, U_3 and $C, g_c \left(\widetilde{A} \cap U_1 \right) \subseteq U_2$ for every $c \in C$ and $m \left(g_c \left(\widetilde{A} \cap U_1 \right) \right) = \int_{\widetilde{A} \cap U_1} |J_{g_c}(x)| dx > \frac{9}{10} |M_1| m \left(\widetilde{A} \cap U_1 \right) > \frac{9}{10} |M_1| \frac{1}{q} m(U_1)$ for each $c \in C$.

Furthermore $\frac{9}{10}|M_1|\frac{1}{q}m(U_1) + \frac{1}{q}m(U_2) = \frac{1}{q}\left[\frac{9}{10}|M_1|\frac{m(U_1)}{m(U_2)} + 1\right]m(U_2) = m(U_2)$ and therefore $g_c\left(\widetilde{A} \cap U_1\right) \cap \left(\widetilde{B} \cap U_2\right) \neq \emptyset$ for every $c \in C$. Hence, for each $c \in C$, there exist $a_c \in \widetilde{A}$ and $b_c \in \widetilde{B}$ with $g_c(a_c) = b_c$ or $f(a_c, b_c) = c$. Therefore, t_0 is an interior point of $\left\{f(x, y) \colon x \in \widetilde{A}, y \in \widetilde{B}\right\}$.

References

- P. Erdős and J. C. Oxtoby, Partition of the Plane into Sets Having Positive Measure in Every Non-null Measurable Product Set, Trans. Amer. Math. Soc. 79(1955), 91–102.
- [2] D. K. Ganguly and S. Basu, On Some Properties of Sets with Positive Measure, Czech. Math. J. 44(119) 1994, 405–411.
- [3] H. I. Miller, Generalization of a Classical Theorem of Measure Theory, Radovi XLV, Akademija Nauka i Umjetnosti BiH, knjiga 12, Sarajevo 1973, 45–48.
- W. Sander, Verallgemeinerungen eines satzes von H. Steinhaus, Manuscripta Mathematica, 18(1976), 25–42.
- [5] H. Steinhaus, Sur les distances des points des ensembles de mesure, Fund. Math. 1(1920), 93–104.