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Abstract

It is shown that every uniform symmetric perfect set admits a min-
imal Denjoy Index. This minimal Denjoy Index and a point where it is
attained is found for many uniform symmetric perfect sets.

1 Introduction

The Denjoy Index α(x) of a point x in a perfect set P of real numbers measures
the size of complementary intervals relative to x. It is equal to (1− sp(x))−1,
where sp(x) is the symmetric porosity of x; see [1]. Denjoy used the Index
extensively in his books [2]. He also applied the Index to symmetric perfect
sets (Cantor-like sets) but did not carry out a detailed investigation. Recently,
Evans, Humke and Saxe [3] and the authors [4] found several new results on
the Denjoy Index of symmetric perfect sets. Before we explain some of these
results, let us briefly review the simple definitions of the Denjoy Index and
symmetric perfect sets.

Consider a perfect set P with x ∈ P . Let (a, b) and (c, d) be any comple-
mentary intervals of P such that a < b ≤ x ≤ c < d. If we reflect (a, b) at
x, we obtain the interval (2x − b, 2x − a). Consider the intersection I of this
interval with (c, d). If I is nonempty, write I = (x+ s, x+ t). Thus

s = max{x− b, c− x} and t = min{x− a, d− x}. (1.1)

Then the Denjoy Index α(x) of x is given by

α(x) := lim
h→0

sup
{
t

s

∣∣∣∣ t < h

}
, (1.2)
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where the supremum is taken over all quotients t/s with t < h obtained in the
way described above (the supremum of the empty set is defined as 1.)

Let λn, n ∈ N := {1, 2, 3, . . . }, be a sequence of positive numbers such that

∞∑
m=1

λm = 1 and µn :=
∞∑

m=n+1

λm < λn

for all n ∈ N (for convenience define µ0 = 1). Then the set

P := {T (X)|X ⊂ N},

where T (X) :=
∑
n∈X λn, is a symmetric perfect set. A convenient way to

refer to an arbitrary point x = T (X) ∈ P is to identify the subset X of N
with the 01-sequence xn, n ∈ N, where xn = 0 or xn = 1 according to whether
n 6∈ X or n ∈ X. This identification defines a one-to-one correspondence
between points in P and 01-sequences.

That our definition of symmetric perfect sets agrees with the one given
in [3] can be seen as follows (note that αn in [3] is identical to our εn). Define
ηn := µn/λn ∈ (0, 1) and εn := (1 − ηn)/(1 + ηn) ∈ (0, 1). Observe that P is
obtained in a similar way as the Cantor set by first removing the middle open
interval (µ1, λ1) of length ε1 from [0, 1], then removing open intervals (µ2, λ2)
and (λ1 + µ2, λ1 + λ2) of fractional length ε2 from the remaining two closed
intervals and so on, showing that P is a symmetric perfect set.

If ηn = η is constant, then we say that P = P (η) is a uniform symmetric
perfect set and µn = ηn

(1+η)n and λn = ηn−1

(1+η)n .

The Denjoy Index defines a function α : P (η) → [1,∞). The maximum
value of this function is 1− η + 1

η as shown in [3]. In [4] it is proved that the

minimal value of α is 1+η−η2

η(1+η) if 0 < η ≤ (
√

5− 1)/2, and it is attained at the
point given by the two-periodic sequence 101010 . . . . This leaves open the
question of the minimal Denjoy Index of P (η) if (

√
5− 1)/2 < η < 1.

The new results of this paper are the following. In Section 2 we prove that
a minimal value of α on P (η) exists. This is not clear from the definition
because α is not a continuous function. We conjecture that the minimum is
always attained at a periodic point (a point given by a periodic 01-sequence.)

In Section 3 we prove the Intersection Theorem 3.4 for complementary
intervals of P (η) which allows us to obtain a simpler expression for the Denjoy
Index in Theorem 4.1 of Section 4. In particular, the Denjoy Index of a periodic
point becomes accessible to computer calculations. At the end of Section 4 we
present a computer generated table of those points that minimize the Denjoy
Index on P (η) among all periodic points of period at most 11.
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The results from [4] and the table indicate that the point w given by the
two-periodic sequence 101010 . . . is of special interest. In Section 5 we use the
results from Section 4 to calculate the Denjoy Index of w. We find that it is
a piecewise rational function of η (with countably infinitely many “pieces”).
In Theorem 5.3, we show that w minimizes the Denjoy Index on P (η) if η
belongs to a union of countably many disjoint intervals which accumulate at
1.

An inspection of the table in Section 4 suggests several obvious conjectures
that we leave for further investigation.

2 Existence of the Minimal Denjoy Index

Consider the uniform symmetric perfect set P = P (η) for a given η ∈ (0, 1).
The right endpoint of a bounded complementary interval of P is given by T (A)
where A is a finite nonempty subset of N. We call p := maxA the level of
the complementary interval. Its length is λp − µp. The set P has also two
unbounded complementary intervals, namely (−∞, 0) and (1,∞). In all what
follows, we will replace these intervals by the bounded intervals (1 − 1/η, 0)
and (1, 1/η) which we call complementary intervals of level 0. Of course, this
convention does not affect the definition of the Denjoy Index.

We define an auxiliary function β : P → [1,∞] by

β(x) := sup
{
t

s

∣∣∣∣ a < b ≤ x ≤ c < d, and (a, b) and (c, d)
are complementary intervals of P

}
, (2.1)

where s, t are defined in (1.1). It is clear that

α(x) ≤ β(x) for all x ∈ P . (2.2)

We define a function S : P → P by

Sx :=

{
1+η
η x if x < 1/2,

1+η
η x− 1

η if x > 1/2.

In terms of the 01-sequences representing points in P , the map S is just the
shift to the left in the space of 01-sequences.

Lemma 2.1. For every x ∈ P , we have that β(x) ≥ β(Sx) and α(x) = α(Sx).

Proof. We assume that x < 1/2 (the case x > 1/2 is similar.) The func-
tion x 7→ 1+η

η x maps P ∩ [0, µ1] bijectively onto P . The interval (µ1, λ1) is
mapped onto (1, 1/η), and the interval (µ1−λ1, 0) is mapped onto (1−1/η, 0).
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Therefore, β(Sx) equals the right-hand side of (2.1) but with the additional
condition c < 1/2 and (a, b) = (1 − 1/η, 0) replaced by the shorter inter-
val (a, b) = (µ1 − λ1, 0). Evidently, this implies β(Sx) ≤ β(x). The second
statement is proved in a similar way.

Lemma 2.2. For every x ∈ P , the sequence β(Snx) is nonincreasing and
converges to α(x) as n→∞.

Proof. It follows from Lemma 2.1 that the sequence β(Snx) is nonincreasing.
Moreover, by (2.2) and Lemma 2.1,

β(Snx) ≥ α(Snx) = α(x)

for all n ∈ N. Let ε > 0 be given. According to (1.2) choose δ > 0 such that

t

s
≤ α(x) + ε if t < δ. (2.3)

Choose m ∈ N so large that λm < δ. Remove from [0, 1] all complementary
intervals of level at most m, and let J be the component of the resulting set
containing x. Note that J has length µm. Let I0, I1 be the open intervals
flanking J of length λm−µm. These intervals are contained in complementary
intervals of P . By choice of m, I0, I1 and J are all contained in (x− δ, x+ δ).
As in the proof of the previous lemma, we see that β(Smx) equals the right-
hand side of (2.1) but with the additional constraint that (a, b) and (c, d) lie
in J or equal I0 and I1, respectively. Hence, by (2.3), β(Smx) ≤ α(x) + ε.
Since ε > 0 was arbitrary, this yields that β(Snx) converges to α(x).

For n ∈ N, we define βn(x) as β(x) but allow only complementary intervals
of level at most n. Note that βn is well-defined on the set Pn that we obtain
by removing all complementary intervals of level at most n from [0, 1]. For
x ∈ P , we have that

β1(x) ≤ β2(x) ≤ · · · ≤ sup
n∈N

βn(x) = β(x). (2.4)

We now prove that α has a minimum value.

Theorem 2.3. The function β is lower semicontinuous on P . There is x ∈ P
such that β(x) = minβ(P ) = α(x) = minα(P ).

Proof. Each function βn is continuous on P . It follows from (2.4) that β
is lower semicontinuous on P . Since P is compact, there is x ∈ P such that
β(x) = minβ(P ). By Lemma 2.2, the sequence β(Snx) is nonincreasing and
converges to α(x). Since β(x) is the minimum of β(P ), we obtain that β(x) =
β(Sx) = · · · = α(x). Finally, Lemma 2.2 implies that inf α(P ) = inf β(P ).
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3 The Intersection Theorem

Let P be a symmetric perfect set (not necessarily uniform). The complemen-
tary intervals of P within [0, 1] have the form (T (B)−λp+µp, T (B)), where B
is a finite nonempty subset of N and p = maxB. We set L(B) = T (B)−λp+µp.
In the following we will always assume that the length λp−µp of complemen-
tary intervals of level p is a nonincreasing function of p, that is, we assume
that

λp − µp ≥ λp+1 − µp+1 for all p ∈ N. (3.1)

This condition is equivalent to the condition that

λp ≥ 2λp+1 for all p ∈ N. (3.2)

It is satisfied if P is a uniform symmetric perfect set.
Let A, B be two finite nonempty subsets of N such that

−1
2
<
∑
i∈B

2−i −
∑
i∈A

2−i <
1
2
. (3.3)

Then there is a uniquely determined finite nonempty subset C = F (A,B) of
N such that ∑

i∈B
2−i −

∑
i∈A

2−i +
∑
i∈C

2−i =
1
2
. (3.4)

As an example, consider A = {3, 5} and B = {2, 4}. Then C = {2, 4, 5}.
Note that maxC ≤ maxA ∪B. Thus, by (3.1),

T (C)− L(C) ≥ min{T (A)− L(A), T (B)− L(B)}. (3.5)

Lemma 3.1. Let λn, n ∈ N, be any sequence of positive numbers which
satisfies condition (3.2). Let c1, . . . , ck be integers with cn ≥ −1 for all n =
1, . . . , k . Then

k∑
n=1

cn2−n = 0 implies
k∑

n=1

cnλn ≤ 0.

Proof. The proof is by induction on k. The case k = 1 is trivial. Assume
that the lemma is true with k replaced by k − 1 and let c1, . . . , ck ≥ −1 be
integers such that

∑k
n=1 cn2−n = 0. Then ck must be even and since ck ≥ −1

we have that ck ≥ 0. Since the case ck = 0 is trivial, we can write ck = 2m
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with m a positive integer. Using assumption (3.2), we obtain

k∑
n=1

cnλn =
k−2∑
n=1

cnλn + ck−1λk−1 + 2mλk

≤
k−2∑
n=1

cnλn + (ck−1 +m)λk−1 ≤ 0,

where we used the induction hypothesis at the end.

Lemma 3.2. Let A, B be two finite nonempty subsets of N which satisfy
condition (3.3). Let C = F (A,B) be determined according to (3.4). Then the
following inequalities hold

T (B)− T (A) + T (C) ≤ λ1,

T (B)− T (A) + L(C) ≥ µ1,

L(B)− L(A) + L(C) ≥ µ1,

L(B)− L(A) + T (C) ≤ λ1.

Proof. To prove the first inequality, write

T (B)− T (A) + T (C)− λ1 =
k∑
i=1

ciλi,

by collecting terms with the same λi. Clearly ci ∈ {−1, 0, 1, 2} for i ≥ 2.
Note that also c1 ≥ −1 because (3.4) implies that if 1 ∈ A then 1 ∈ B ∪ C.
By definition of C,

∑k
i=1 ci2

−i = 0. The first inequality now follows from
Lemma 3.1.

If A is a finite nonempty subset of N, let Ã be the finite nonempty subset
of N determined by ∑

i∈A
2−i +

∑
i∈Ã

2−i = 1.

Note that C = F (A,B) implies C̃ = F (B,A) = F (Ã, B̃). Also note that
L(A) = 1−T (Ã). We now obtain the second inequality from the first with A,
B interchanged and C replaced by C̃.

The third inequality follows from the first with A, B, C replaced by Ã,
B̃, C̃, respectively. In a similar way, the fourth inequality follows from the
second.
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We can now make a statement about the lengths of intersections of comple-
mentary intervals of P and complementary intervals of a second shifted copy
y + P of P .

Lemma 3.3. Let A, B be nonempty finite subsets of N satisfying (3.3), and
let C be defined according to (3.4). Let y ∈ R and set

I := (y + L(A), y + T (A)) ∩ (L(B), T (B)),
J := (y + L(C), y + T (C)) ∩ (µ1, λ1).

Then |I| ≤ |J | (|I| denotes the length of the interval I.)

Proof. Let p = maxA and q = maxB. We assume that p ≤ q (the case
p > q is treated similarly.) By (3.1),

T (B)− L(B) ≤ T (A)− L(A). (3.6)

By (3.5),
T (C)− L(C) ≥ T (B)− L(B). (3.7)

By (3.6) and since we may assume that I is nonempty, there are three cases
to consider.

Case 1: y + L(A) ≤ L(B) < T (B) ≤ y + T (A).
Then, by Lemma 3.2,

y + T (C) ≤ L(B)− L(A) + T (C) ≤ λ1,

y + L(C) ≥ T (B)− T (A) + L(C) ≥ µ1.

Hence, by (3.7), |J | = T (C)− L(C) ≥ T (B)− L(B) = |I|.
Case 2: L(B) ≤ y + L(A) ≤ T (B) ≤ y + T (A).

By Lemma 3.2, y + L(C) ≥ µ1. If y + T (C) ≤ λ1, then

|J | = T (C)− L(C) ≥ T (B)− L(B) ≥ |I|.

If y + T (C) > λ1, then by Lemma 3.2 and (3.7),

|J | =λ1 − y − L(C) ≥ L(B)− L(A) + T (C)− y − T (C) + T (B)− L(B)
=T (B)− y − L(A) = |I|.

Case 3: y + L(A) ≤ L(B) ≤ y + T (A) ≤ T (B).
By Lemma 3.2, y+ T (C) ≤ λ1. If y+L(C) ≥ µ1, then we argue as in Case 2.
If y + L(C) < µ1, then by Lemma 3.2 and (3.7),

|J | = y + T (C)− µ1 ≥ y + L(C) + T (B)− L(B)− T (B) + T (A)− L(C)
= y + T (A)− L(B) = |I|.

The proof is complete.



336 R. E. Svetic and H. Volkmer

The following theorem will be useful for the calculation of Denjoy indices.

Theorem 3.4 (Intersection Theorem). Let x ∈ P with x > 1/2. Let (a, b),
(c, d) be two complementary intervals of P with 0 < a < b < 1/2 < x ≤ c <
d < 1. Assume that I := (a, b) ∩ (2x − d, 2x − c) is nonempty. Then there
exists another complementary interval (c1, d1) with x ≤ c1 < d1 < 1 such that
the length of (µ1, λ1) ∩ (2x− d1, 2x− c1) is at least |I|.

Proof. We use Lemma 3.3 with y := 2x − 1 > 0. Note that (c, d) is a
complementary interval of P if and only if (2x−d, 2x− c) is a complementary
interval of y + P . Let (a, b) = (L(B), T (B)) and (2x − d, 2x − c) = (y +
L(A), y+ T (A)). Since neither A nor B contain 1, condition (3.3) is satisfied.
Let C be defined as in (3.4). Set (2x−d1, 2x−c1) := (y+L(C), y+T (C)). Let
J be defined as in Lemma 3.3. By Lemma 3.3, |J | ≥ |I| which is the desired
statement.

Of course, a similar theorem holds when x < 1/2.

4 Simplified Calculation of Denjoy Indices

Consider a uniform symmetric perfect set P = P (η). For x ∈ P and x < 1/2,
we define γ(x) as β(x) but allowing only (a, b) = (1− 1/η, 0), that is,

γ(x) := sup
{
t

s

∣∣∣∣ x ≤ c < d, and (c, d) is a
complementary interval of P

}
, (4.1)

where
s = max{x, c− x}, t = min{x− 1 + 1/η, d− x}. (4.2)

Similarly, for x ∈ P and x > 1/2, allowing only (c, d) = (1, 1/η), define

γ(x) := sup
{
t

s

∣∣∣∣ a < b ≤ x, and (a, b) is a
complementary interval of P

}
, (4.3)

where
s = max{x− b, 1− x}, t = min{x− a, 1/η − x}. (4.4)

Clearly, we have that γ(x) = γ(1− x) and γ(x) ≤ β(x) for all x ∈ P .

Theorem 4.1. For every x ∈ P = P (η),

β(x) = sup
m≥0

γ(Smx) and α(x) = lim sup
m→∞

γ(Smx).
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Proof. Let x ∈ P . By Lemma 2.2, we need only verify the equation for β(x).
By Lemma 2.1, γ(Smx) ≤ β(Smx) ≤ β(x), hence β(x) ≥ supm≥0 γ(Smx). To
show the reversed inequality, let (a, b), (c, d) be complementary intervals of P
with a < b ≤ x ≤ c < d. Let s, t be defined by (1.1). The proof will be
complete once we have shown that

t

s
≤ γ(Smx) for some m ≥ 0. (4.5)

We may assume that x < 1/2. If the level of (a, b) is 0, then (4.5) is true
with m = 0. If the level of (c, d) is 0, then t/s < 1 unless (a, b) has also
level 0. Hence (4.5) is true. Now assume that the levels of (a, b) and (c, d)
are at least 1. Choose the maximal n ≥ 0 such that a and d both belong
to the same component J of Pn (recall that Pm, m ∈ N, is the set that we
obtain by removing all of the complementary intervals of level at most m
from [0, 1] and P0 := [0, 1]). Assume that x lies in the left interval H of
J ∩ Pn+1 (the other case is similar.) Because of the maximality of n, there
are two possibilities: 1) (c, d) has level n + 1 and lies in the middle of J
or 2) (c, d) lies in the right interval of J ∩ Pn+1. Note that Sn(P ∩ J) is
equal to P . Therefore, in the second case, by the Intersection Theorem, we
may replace (a, b) by another complementary interval (a1, b1) and (c, d) by
the complementary interval (c1, d1) in the middle of J in such a way that the
corresponding quotient t1/s1 is larger than t/s. Hence, in order to show (4.5),
it is sufficient to consider the first case. If x belongs to the left interval of
H ∩ Pn+2, then t/s < 1. So assume that x belongs to the right interval of
H ∩ Pn+2. Now the affine-linear extension of the restriction of Sn+1 to H
maps H onto [0, 1], x to Sn+1x, (a, b) to a complementary interval of P and
(c, d) to (1, 1/η). Hence (4.5) is true with m = n+ 1.

It is easy to see that, if x < 1/2 and Sx < 1/2, then γ(Sx) ≤ γ(x). The
same is true if x > 1/2 and Sx > 1/2. This means that some of the numbers
γ(Smx) can be omitted in the formula for β(x) in Theorem 4.1. For example,
if x is given by the sequence 000110 . . . , then γ(S2x) ≤ γ(Sx) ≤ γ(x) and
γ(S4x) ≤ γ(S3x); hence γ(Sx), γ(S2x) and γ(S4x) cannot contribute to the
supremum supm≥0 γ(Smx).

We note the following corollary of Theorem 4.1.

Corollary 4.2. Let x be an r-periodic point of P = P (η), that is, Srx = x.
Then

α(x) = β(x) = max{γ(Smx) |m = 0, . . . , r − 1}.

The supremum (4.1) defining γ(x) is taken over an infinite set of t/s-
quotients. We now show that finitely many of these quotients suffice. For
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each k ∈ N, let τk ∈ (0, 1) be the unique solution of

µk =
1− η
2− η

. (4.6)

The solution is unique because µk is an increasing function of η whereas the
right-hand side of (4.6) is a decreasing function of η.

Lemma 4.3. Let ` ∈ N, 0 < η ≤ τ` and x ∈ P = P (η) with x < 1/2. Then

γ(x) ≥ 1 +
λ` − µ`

x− 1 + 1/η
.

Proof. We claim that there is a complementary interval (c, d) of level at
most ` to the right of x whose intersection with the reflection of (1 − 1/η, 0)
at x has length at least λ` − µ`. In fact, write [0, 1] as a disjoint union of
the complementary intervals of P of level between 1 and ` and a collection of
closed intervals of length µ`.

The claim follows from the inequality 1/η − 1 ≥ µ` + 2(λ` − µ`) which is
true because it is equivalent to η ≤ τ`. The desired inequality for γ(x) follows
easily.

Theorem 4.4. Let ` ∈ N, 0 < η ≤ τ` and x ∈ P = P (η) with 0 < x < 1/2.
Choose q ≥ ` so large that

µq−`+1 <
x

x− 1 + 1/η
. (4.7)

Then γ(x) is equal to the supremum (4.1) taken only over the finitely many
complementary intervals (c, d) of P whose level is at most q.

Proof. Let (c, d) be a complementary interval of P of level m > q to the
right of x. Let s, t be defined by (4.2). Then

t

s
≤ x+ λm − µm

x
= 1 +

λm − µm
x

.

Since m > q, λm−µm

x < λ`−µ`

x−1+1/η . Hence, by Lemma 4.3, t/s < γ(x) which
implies the statement of the theorem.

Corollary 4.2 and Theorem 4.4 make it possible to calculate Denjoy Indices
of periodic points. The following computer generated table gives a periodic
point that minimizes the Denjoy Index on P (η) among all periodic points with
period at most 11 for the indicated intervals for η. For example, the first line
means that the point x given by the two-periodic sequence 101010 . . . has the
minimal Denjoy Index among all periodic points with period at most 11 for η
between 0 and (approximately) 0.806963.
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0 < η < 0.806963 10
0.806963 < η < 0.874620 101
0.874620 < η < 0.945218 10
0.945218 < η < 0.957011 10101
0.957011 < η < 0.969684 1001
0.969684 < η < 0.985147 10
0.985147 < η < 0.991289 1010101
0.991289 < η < 0.992287 100101
0.992287 < η < 0.996159 10
0.996159 < η < 0.997104 101010101
0.997104 < η < 0.998058 1001
0.998058 < η < 0.999029 10
0.999029 < η < 0.999305 10101010101
0.999305 < η < 0.999513 10100101

5 The Denjoy Index of a Two-Periodic Point

Let P = P (η) for some η ∈ (0, 1). Let w ∈ P be the point defined by the
two-periodic sequence 101010 . . . . Then w =

∑∞
n=0 λ2n+1 = 1+η

1+2η . In the
following we will obtain an explicit formula for α(w).

Since Sw = 1 − w, by Corollary 4.2, α(w) = β(w) = γ(w). Our goal is
to show that only the complementary intervals (a, b) = (ak, bk) of level k ≥ 0
which are closest to 1 − w are needed to evaluate γ(w) according to (4.3). If
k is even, then a computation gives

ak =
η

1 + 2η

(
1− 1 + η − η2

η2
µk

)
and bk =

η

1 + 2η
(1− µk).

If k is odd, then we obtain

ak =
η

1 + 2η
(1 + µk) and bk =

η

1 + 2η

(
1 +

1 + η − η2

η2
µk

)
.

Note that

a0 < b0 < a2 < b2 < a4 < b4 < · · · < 1− w < · · · < a3 < b3 < a1 < b1.

For every even k ≥ 0, let ηk ∈ [0, 1) be the unique solution of the equation

µk =
1− η2

1 + η − η2
. (5.1)
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For odd k, let ηk ∈ (0, 1) be the unique solution of the equation µk = 1−η
η .

Note that 0 = η0 < η1 < η2 < η3 < . . . and ηk → 1. For example, we find
that

η1 = 1/
√

2 = 0.707106 . . . , η2 = 0.871156 . . . , and η3 = 0.903408 . . . .

Lemma 5.1. Let k ≥ 0 be even. If ηk < η ≤ ηk+1, then

2w − bk+1 < 1 ≤ 2w − ak+1 < 2w − bk+2 < 2w − ak+2 < 2w − bk
≤ 1/η < 2w − ak.

If ηk+1 < η ≤ ηk+2, then 2w − ak+1 < 1 < 2w − bk+2 < 2w − ak+2 < 1/η <
2w − bk.

Proof. It is easy to verify that the three inequalities 2w − bk+1 < 1, 1/η <
2w − ak and ηk < η are equivalent. Also the inequalities 1 ≤ 2w − ak+1,
2w− bk ≤ 1/η and η ≤ ηk+1 are equivalent. Finally, (2w− bk+2, 2w− ak+2) ⊂
(1, 1/η) for all η ∈ (ηk, ηk+2].

Let s = sk, t = tk be given by (4.4) with a = ak, b = bk and x = w. By
the lemma, if k ≥ 0 is even and ηk < η ≤ ηk+2, then

tk+2

sk+2
=
w − ak+2

w − bk+2
=
η + (1 + η − η2)µk+2

η(1 + ηµk+2)
.

If ηk < η ≤ ηk+1, then

tk+1

sk+1
=
w − ak+1

1− w
=

1− ηµk+1

η
and

tk
sk

=
1/η − w
w − bk

=
1 + η − η2

η(1 + ηµk)
.

Theorem 5.2. Let k ≥ 0 be even. If ηk < η ≤ ηk+1, then

α(w) = max
{
tk
sk
,
tk+2

sk+2

}
.

If ηk+1 < η ≤ ηk+2, then α(w) = tk+2
sk+2

.

Proof. Assume that ηk < η ≤ ηk+2. We claim that all the complementary
intervals (a, b) of level at least k + 3 are without interest in the formula (4.3)
for γ(w). Let (a, b) be such an interval and let s, t be as in (4.4) with x = w.
Then

t

s
≤ 1 +

λk+3 − µk+3

1− w
. (5.2)
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Since (2w − bk+2, 2w − ak+2) ⊂ (1, 1/η),

tk+2

sk+2
≥ 1/η − w

1/η − w − λk+2 + µk+2
> 1 +

λk+2 − µk+2

1/η − w
.

Hence, we are done once we have shown that λk+3−µk+3
1−w ≤ λk+2−µk+2

1/η−w which is

equivalent to 1 ≤ 2η2. The latter is true when η ≥ η1 = 1/
√

2. If k = 0 and
0 < η ≤ η1, then one can show by a more careful estimation that the right-
hand side of the inequality (5.2) is less than t2/s2 (without using an estimate
for t2/s2). This establishes our claim.

Between (ak, bk) and (ak+1, bk+1) there are no complementary intervals of
level at most k + 1, and exactly one of level k + 2, namely (ak+2, bk+2). By
Lemma 5.1, 2w− bk+1 < 1 and 2w− ak > 1/η. Thus the only complementary
intervals (a, b) of level at most k+ 2 which are of interest in (4.3) are (am, bm)
with m = k, k + 1, k + 2.

We have shown that α(w) is the maximum of the three quotients tm/sm
with m = k, k + 1, k + 2. If ηk < η ≤ ηk+1, then tk+1/sk+1 ≤ tk/sk because
a calculation shows that the latter is equivalent to η ≤ ηk+1. Therefore, the
statement of the theorem is proved in this case. If ηk+1 < η ≤ ηk+2, then
tk/sk and tk+1/sk+1 are both at most 1, hence the theorem is proved in this
case as well.

By some additional work, one can show that, if k ≥ 0 is even, there is a
uniquely determined νk ∈ (ηk, ηk+1) such that α(w) = tk/sk for ηk < η ≤ νk
and α(w) = tk+2/sk+2 for νk < η ≤ ηk+2. For example,

α(w) =
t0
s0

=
1 + η − η2

η(1 + η)
if 0 < η ≤ ν0 = 0.637708 . . .

and

α(w) =
t2
s2

=
1 + 3η + 2η2 − η3

1 + 2η + η2 + η3
if ν0 < η ≤ η2. (5.3)

We now turn to the question whether α(w) is the minimal Denjoy Index
of points in P (η). Note that the solutions η = τk defined by (4.6) satisfy

0 = η0 < τ1 < η1 < τ2 < η2 < τ3 < . . . .

Theorem 5.3. Let k ≥ 2 be even and let νk ≤ η ≤ τk+2. Then α(w) =
minα(P ).
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Proof. By definition of νk and Theorem 5.2, we have that α(w) = tk+2/sk+2.
Since (2w − bk+2, 2w − ak+2) ⊂ (3w − 1, 1/η), we find that

α(w) = β(w) ≤ 2w − 1 + λk+2 − µk+2

2w − 1
= 1 +

λk+2 − µk+2

2w − 1
. (5.4)

By Theorem 2.3, to prove the theorem it is sufficient to show that β(y) > β(w)
for every y ∈ P different from w and 1 − w. Let y ∈ P be different from w
and 1− w. Then its representing 01-sequence contains two consecutive 1’s or
0’s. By Lemma 2.1 and since β(y) = β(1 − y) it is sufficient to consider the
case that the sequence starts with 00. Then 0 ≤ y ≤ µ2. Therefore, Lemma
4.3 yields β(y) ≥ γ(y) ≥ 1 + λk+2−µk+2

µ2−1+1/η . Using (5.4), β(y) > β(w) will follow
if 1

2w−1 <
1

µ2+1/η−1 . This inequality is equivalent to η > η2 which is true.

It is shown in [4] that α(w) = minα(P ) for all 0 < η ≤ (
√

5 − 1)/2 =
0.618033 . . . . By a more careful estimation of β2(x) for 0 ≤ x ≤ µ2, one can
show that this remains true for all 0 < η ≤ τ2 = 0.801937 . . . in agreement with
our table in Section 4. The table also shows that w does not minimize α for
all η. For example, if y ∈ P is given by the 3-periodic sequence (101)(101) . . .
and η = 0.85, then (5.3) gives α(w) = 1.085282 . . . .

Using the results from Section 4 one can compute α(y) = 1.078163 . . .
which is smaller.
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