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FRACTIONAL MAXIMAL FUNCTIONS IN
WEIGHTED BANACH FUNCTION SPACES

Abstract

We characterize the boundedness of fractional maximal functions
defined in general homogeneous type spaces from a weighted Banach
function spaces (X,σ) into another (Y, ω) .

1 Introduction

A homogeneous type space (X, d, µ) is a topological space with a complete
measure µ such that compactly supported functions are dense in the space
L1(X,µ). Moreover, it is assumed that there is a nonnegative real-valued
function d : X ×X → R satisfying the following conditions:

(i) d(x, x) = 0 for all x ∈ X;
(ii) d(x, y) > 0 for all x 6= y in X;
(iii) there is a constant a0 such that d(x, y) ≤ a0d(y, x) for all x, y in X;
(iv) there is a constant a1 such that d(x, y) ≤ a1(d(x, z) + d(z, y)) for all x,

y and z in X;
(v) for each neighborhood V of x in X there is r > 0 such that the ball

B(x, r) = {y ∈ X : d(x, y) < r} is contained in V .
Furthermore the balls B(x, r) are measurable for all x and r > 0 and there is
a constant b such that µB(x, 2r) ≤ bµB(x, r) for all ball with µB(x, r) > 0
(see [2], [3] and [20]).

For a locally summable function f : X → R and a locally finite measure σ
the fractional maximal function is defined by

Mγ(fdσ)(x) = sup(µB)γ−1

∫
B

|f(y)| dσ, 0 ≤ γ < 1,
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where the supremum is taken with respect to all balls B of positive measure
containing the point x.

Let σ be a measure on X. A real normed linear space Z = (Z, σ) of σ–
measurable functions f on X is said to be a Banach function space (BFS) if
in addition to the usual norm axioms it satisfies the following properties:

1) the norm ‖f‖Z = ‖f‖Z,σ is defined for every σ–measurable function f ,
and f ∈ Z if and only if ‖f‖Z <∞;

2) ‖f‖Z = ‖|f |‖Z for all f ∈ Z;

3) if 0 ≤ f ≤ g a.e., then ‖f‖Z ≤ ‖g‖Z ;

4) if 0 ≤ fn ↑ f a.e., then ‖fn‖Z ↑ ‖f‖Z ;

5) if σ(E) <∞, then ‖χE‖Z <∞ (where χE is the characteristic function
of the set E);

6) if σ(E) < ∞, then
∫
E
f(x) dσ ≤ CE‖f‖Z for some constant CE , 0 <

CE <∞ independent of f .

Given a BFS Z = (Z, σ), its associate space Z ′ = (Z ′, σ) given by

Z ′ = (Z ′, σ) =
{
f :
∫
X

f(x)g(x) dσ <∞ for every g ∈ Z
}

and endowed with the norm ‖f‖Z′ = sup
{∫

X
|f(x)g(x)| dσ : ‖g‖Z ≤ 1

}
is

also a Banach function space satisfying axioms 1)–6).
The spaces Z, Z ′ are complete normed linear spaces and Z ′′ = Z. The

Hölder inequality
∫
X
|f(x)g(x)| dσ ≤ ‖f‖Z‖g‖Z′ holds for all f ∈ Z and g ∈ Z ′

and is sharp. (See[1])
A function f in a BFS (Z, σ) has absolutely continuous norm (AC norm),

if
∥∥fχ

Ek

∥∥
Z
→ 0 for every sequence of set {Ek} ⊂ X such, that χ

Ek
(x) → 0

σ–a.e.
The distribution function σf of a σ measurable function f defined on X is

given by σf (λ) = σ{x ∈ X : |f | > λ}, λ ≥ 0.
Two functions, a σ–measurable f on X and µ–measurable g on Y , are said

to be equimeasurable if they have the same distribution function, that is, if
σf (λ) = µg(λ) for all λ ≥ 0.

Suppose f is a σ–measurable function on X. The decreasing rearrangement
of f is the function f∗σ defined on [0,∞) by f∗σ(t) = inf{λ : σf (λ) ≤ t}. As an
immediate consequence, we get f∗σ(t) = sup{λ : σf (λ) > t} = mσf (t) where
m is Lebesgue measure on [0,∞).
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A Banach function space Z is said to be a rearrangement–invariant space
(r.i. BFS) if ‖f‖ = ‖g‖ for every pair of equimeasurable functions f and g
defined on X.

The fundamental function ϕZ of a r.i. BFS Z over (X,σ) is defined for
each finite value of t belonging to the range of σ by ϕZ(t) = ‖χ

E
‖Z where E

is subset of Z with σ(E) = t. (For more details we refer the the reader to [1])

Proposition 1.1. [1, Theorem 5.2] Let (X,σ) be a nonatomic or a completely
atomic measure space, with atoms having equal measure. Let Z be a r.i. BFS
over (X,σ) and Z ′ its associate space of Z. Then ϕZ(t)ϕZ′(t) = t for each
finite value of t in the range of σ.

Proposition 1.2. [1, Corollary 5.3] Let (X,σ) be a nonatomic or a completely
atomic measure space, with atoms having equal measure. Let Z be a r.i. BFS
over (X,σ). Then the fundamental function ϕZ of Z is increasing, ϕZ(t) = 0

iff t = 0,
ϕZ(t)
t

is decreasing, ϕZ is continuous, except perhaps at the origin.

Let Z be a r.i. BFS over (X,σ) with fundamental function ϕZ . Let MZ

be the submultiplicative function MZ(t) = sups{
ϕZ(st)
ϕZ(s) }, (t > 0), and define

the lower and upper fundamental indices of Z by

β
Z

= sup
0<t<1

logMZ(t)
log t

, βZ = inf
t>1

logMZ(t)
log t

.

(See in [1] and [19]) Then 0 ≤ β
Z
≤ βZ ≤ 1 and βZ = 1− β

Z′
. We note that

βZ < 1 if and only if for some α < 1 there is a pair of positive constants C
and δ such that

ϕZ(u)
ϕZ(v)

≤ C
(
u

v

)α
if
v

u
< δ, (1.1)

while β
Z
> 0 if and only if for some η > 0 there is a pair of positive constant

C and δ such that
ϕZ(v)
ϕZ(u)

≤ C
(
v

u

)η
if
v

u
< δ. (1.2)

Lemma 1.1. [19, Lemma 2.1] Let (X,σ) be a nonatomic or a completely
atomic measure space, with atoms having equal measure. Let (Z, σ) be a r.i.
BFS with fundamental function ϕZ satisfying condition (1.1). Then for some
constant C(Z)

∫ t
0

1
ϕZ(s) ds ≤ C(Z)ϕZ′(t) for each finite value of t in the range

of σ
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Lemma 1.2. [19, Lemma 3.1] Let (X,σ) be a nonatomic or a completely
atomic measure space, with atoms having equal measure. Let Z be a r.i. BFS
with upper fundamental index strictly less than 1, and 1 ≤ r <∞. Then(∫ ∞

0

(
ϕZ(λ)

1
λ

∫ λ

0

f∗(s) ds
)r
dλ

λ

) 1
r

≤ c
(∫ ∞

0

(
ϕZ(λ)f∗(λ)

)r dλ
λ

) 1
r

.

Definition 1.1 (15, definition 1.f.4). Let 1 < p < ∞. A BFS Z is said
to satisfy an upper, resp. lower p–estimate, if for any sequence of disjoint
measurable subsets {Ei} and for all f ∈ Z we have∥∥∑

i

χ
Ei
f
∥∥
Z
≤ d1

(∑
i

‖χ
Ei
f‖pZ

) 1
p resp.

∥∥∑
i

χ
Ei
f
∥∥
Z
≥ d1

−1
(∑

i

‖χ
Ei
f‖pZ

) 1
p

where d1 is a finite positive constant independent of f ∈ Z and {Ei}.

Lemma 1.3. [15, p. 83] Let 1 < p < ∞. A BFS Y satisfies an upper,
respectively lower p–estimate if and only if Y ′ satisfies a lower, respectively
upper p′–estimate, where p′ = p

p−1 .

Proposition 1.3. [15, proposition 1.f.6] Let 1 < p < ∞. A BFS Y satis-
fies a lower p–estimate if and only if for every choice of {fi} in Y we have

‖
∑
i |fi|‖Z ≥ d1

−1
(∑

i ‖fi‖
p
Z

) 1
p .

Lemma 1.4. Let (Z, σ) be a r.i. BFS satisfying an upper p–estimate 1 < p.
Then the fundamental function ϕZ satisfies condition (1.1).

Proof. Since Z satisfies an upper p–estimate, ϕZ
(∑

i ti
)
≤ d1

(∑
i ϕ

p
Z(ti)

) 1
p

for every sequence {ti} in the range of σ. Therefore (see [8, Lemma 6.1.1] )

ϕpZ is concave and consequently
ϕpZ(t)
t

is decreasing and ϕZ satisfies condition

(1.1) with α = 1
p .

Next we assume that all BFS are defined over nonatomic measure or com-
pletely atomic measure spaces, with atoms having equal measure.

Throughout the paper the expressions of the form 0 ·∞, 0/0 and∞/∞ are
taken to be equal to zero.

Main Theorem. Let 1 < p < q < ∞, 0 < γ < 1. Let (Y, ω) be a BFS
satisfying an upper q estimate and let (Z, σ) be a r.i. BFS satisfying a lower
p–estimate with upper fundamental index strictly less 1. Then the following
two conditions are equivalent:
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(i) there exists a constant c1 > 0 such that for any f ∈ Z

‖Mγ(fdσ)‖Y ≤ c1
∥∥f∥∥

Z
; (1.3)

(ii) there exists a constant c2 > 0 such that for all balls B(x, r) ⊂ X

‖χ
B(x,r)‖Z′‖(µB(x, d(x, ·) + r))γ−1‖Y ≤ c2. (1.4)

For Y = Lp(ω) and Z = Lq(σ) 1 < p < q < ∞ this was proved in [11].
For homogeneous type spaces having group structure it was first obtained in
[21] (also see [18]). For Orlicz classes norm like inequalities were studied in
[9]. For a detailed account of this subject see the book of I. Genebashvili
, A.Gogatishvili, V.Kokilashvili and M.Krbec [8]. It should be noted that
condition (1.4), which is a natural extension for BFS of a well known condition
of M. Gabidzashvili, appears for the first time in [5, 13].

In section 2 we give another characterization of inequality (1.3) which is
a generalization of a well known result of E. Sawyer [16], for Lebesgue spaces
on Euclidean spaces and for homogeneous type spaces [17, 18]. In section 3
we give several characterization of weak type inequalities in weighted BFS for
integral transforms with positive kernels. In section 4 we give the proof of the
main theorem which is based on results established in sections 2 and 3.

2 Preliminary Results

First we give a familiar covering lemma which is valid for arbitrary spaces with
a quasi-metric.

Lemma A. [20, 8 lemma 1.3.1]. Let E be a bounded set in X and, for each
point x ∈ E let a ball Bx = B(x, rx) be given. Then from the family {Bx}x∈E
we can choose a (finite or infinite) sequence of pairwise disjoint balls (Bj)j for
which E ⊂ ∪j≥1N0Bj, N0 = a1(1 + 2a0), and for each Bx ∈ {Bx}x∈E there
exists a ball Bj0 such that x ∈ N0Bj0 and radBx ≤ 2 radBj0 .

Lemma A is now used to help in the proof of the following.

Theorem 2.1. Let (X,σ) be a nonatomic or a completely atomic measure
space, with atoms having equal measure. Let 0 ≤ γ < 1, 1 < r < ∞. Let
(Y, ω) a BFS over (X,σ) satisfying an upper r–estimate and (Z, σ) a r.i. BFS
over (X,σ) satisfying a lower r-estimate with upper fundamental index strictly
less than 1. Then the following two conditions are equivalent:

(i) there exists a constant c1 > 0 such that for any f ∈ Z

‖Mγ(fdσ)‖Y ≤ c1
∥∥f∥∥

Z
; (2.1)
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(ii) there exists a constant c2 > 0 such that for all balls B ⊂ X

‖Mγ(χ
B
dσ)‖Y ≤ c2

∥∥χ
B

∥∥
Z
. (2.2)

Proof. On substituting f = χ
B

in (2.1), we obtain (2.2). Therefore the
implication (i)⇒ (ii) is fulfilled. We will prove (ii)⇒ (i).

By the principle of duality it is sufficient to show, that∫
X

Mγ(f dσ)(x)|g(x)|dω ≤ c‖f‖Z‖g‖Y ′ ,

for all f ∈ Z and g ∈ Y ′. Let

N = a1(1 + 2a1(1 + a0)) and N1 = a1(1 + a2
1(1 + a0)(N + a0)).

Assume b > 2 to be a constant such that µ(N1B) ≤ bµB for an arbitrary ball
B. Further let B0 be an arbitrarily fixed ball and f an arbitrary integrable
function which is nonnegative almost everywhere and satisfies the condition
supp f ⊂ B0. Following the ideas of [11], we set

Ωk =
{
x ∈ X : Mγ(f)(x) > bk

}
, k ∈ Z.

Obviously, for each x ∈ Ωk there exists a ball B(y, r) 3 x such that

1
(µB(y, r))1−γ

∫
B(y,r)

f(z) dσ > bk.

The set of radii of such balls will be bounded by virtue of the fact that supp f ⊂
B0. Consider the values

Rkx = sup
{
r : ∃B(y, r) 3 x, 1

(µB(y, r))1−γ

∫
B(y,r)

f(z) dσ > bk
}
.

Obviously, for arbitrary x ∈ Ωk there exist yx ∈ X and rx >
Rkx
2 such that

1
(µB(yx, rx))1−γ

∫
B(yx,rx)

f(z) dσ > bk.

Along with this, for each ball B′ which contains the point x and for which
radB′ ≥ 2rx we have

1
(µB′)1−γ

∫
B′
f(z) dσ ≤ bk. (2.3)
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By Lemma A for each k there exists a sequence (Bkj )j≥1 of nonintersecting
balls such that ∪j≥1NB

k
j ⊃ Ωk and 1

(µBkj )1−γ

∫
Bkj
f(z) dσ > bk. Let us show

that if Bkj ∩Bni 6= ∅ and n > k, then

NBni ⊂ NBkj . (2.4)

To this end it will first be shown that if ri = radBi, rj = radBj , and n > k,

then rni <
rkj

a1(a0+N) . Assume the opposite, i.e., rkj ≤ a1(a0 +N)rni . Then for
y ∈ Bkj and x ∈ Bkj ∩Bni we will have

d(xni , y) ≤ a1

(
d(xni , x) + d(x, y)

)
≤ a1

(
rni + a1

(
a0d(xkj , x) + d(xkj , y)

))
< a1

(
rni + a1(1 + a0)rkj

)
≤ a1

(
1 + a2

1(1 + a0)(N + a0)
)
rni = N1r

n
i .

where xkj is the center of Bkj . Therefore Bkj ⊂ N1B
n
i . Along with this,

2rkj < N1r
n
i . Therefore by virtue of (2.3) we obtain

bn <
1

(µBni )1−γ

∫
Bni

f(z) dσ ≤ b

µ(N1Bni )1−γ

∫
N1Bni

f(z) dσ ≤ bk+1.

Thus n ≤ k, which leads to a contradiction. Therefore rkj > a1(a0 + N)rni .
Now for x ∈ NBni and y ∈ Bni ∩Bkj we derive

d(xkj , x) ≤ a1

(
d(xkj , y) + a1

(
a0d(xni , y) + d(xni , x)

))
≤ a1

(
rkj + a1(a0 +N)rni

)
≤ 2a1r

k
j < Nrkj .

Thus NBni ⊂ NBkj provided that Bkj ∩Bni 6= ∅ and n > k.
We introduce the sets

Ekj =
(
NBkj \

j−1⋃
i=1

NBki

)
∩
(
Ωk\Ωk+1

)
, k ∈ Z, j ∈ N.

and

Γl =
{

(k, j) : bl <
1

σ(NBkj )

∫
Bkj

f(x) dσ ≤ bl+1

}
, l ∈ Z.

As is easy to verify,
⋃∞
j=1E

k
j = Ωk\Ωk+1 and Ekj ∩Eni = ∅ for k 6= n or i 6= j.

Therefore we have∫
X

Mγ(fdσ)(x)g(x) dω ≤
∞∑

k=−∞

∞∑
j=1

b(k+1)

∫
Ekj

g(x) dω (2.5)
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≤
∞∑

l=−∞

∑
(k,j)∈Γl

b
1

(µBkj )1−γ

∫
Bkj

f(z)dσ
∫
Ekj

g(x) dω

(2.6)

≤
∞∑

l=−∞

∑
(k,j)∈Γl

bl+2
σ(NBkj )

(µBkj )1−γ

∫
Ekj

g(x) dω. (2.7)

Now fix some k0 ∈ Z and l ∈ Z and consider the system of balls (Bkj )
(j,k)∈Γ

k0
l

.

where Γk0
l = {(k, j) ∈ Γl : k > k0}. Choose from the latter system a subsystem

of nonintersecting balls in the following manner: take all balls of “rank” k0,
i.e., all balls Bk0

j , j = 1, 2, . . .. Pass to “rank” k0 + 1. If some Bk0+1
j intersects

with no Bk0
j , then include it in the subsystem and otherwise discard. Next,

compare the balls of rank k0 + 2 with the ones already chosen in the above-
described manner and so on. We thus obtain the sequence of nonintersecting
balls {B̃i}i. According to (2.4), for every (k, j) ∈ Γk0

l NBkj ⊂ NB̃i0 for some
i0 ≥ 1, and therefore ∪∞i=1NB̃i = ∪

(k,j)∈Γ
k0
l

NBkj . Let Ẽi =
⋃

NBkj⊂N eBi
NBkj 6⊂N eBl, l<i

Ekj

and El = ∪∞i=1Ẽi. The family of sets {Ẽi} and {El} are pairwise disjoint as
{Ekj } is a pairwise disjoint family of sets. Hence we obtain

∑
(k,j)∈Γ

k0
l

bl+2
σ(NBkj )

(µ(Bkj ))1−γ

∫
Ekj

g(x)ω

≤
∞∑
i=1

∑
NBkj⊂N eBi

cbl+2
σ(NBkj )

µ(NBkj )1−γ

∫
Ekj

g(x)ω

≤
∞∑
i=1

∑
NBkj⊂N eBi

∫
Ekj

bl+2Mγ(χ
N eBi dσ)(x)g(x)dω(x)

≤
∞∑
i=1

∫
eEi cb

l+2Mγ(χ
N eBi dσ)(x)g(x)dω(x)

≤
∞∑
i=1

cbl+2‖Mγ(χ
N eBidσ)(x)‖Y ‖χ eEi g‖Y ′ ≤

∞∑
i=1

cbl+2‖χ
N eBi‖Z‖χ eEi g‖Y ′ .

(2.8)

Thus
bl <

1

σ(NB̃i)

∫
eBi f(x) dσ ≤ 1

σ(NB̃i)

∫
eBi∩G(l)

f dσ + bl−1,
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whereG(l) = {x : f(x) > bl−1}. We have bl−1(b−1) ≤ 1

σ(N eBi)
∫ eBi∩G(l)

f(x) dσ.
Therefore

∞∑
i=1

σ(NB̃i) ≤ b−l
b

b− 1

∞∑
i=1

∫
eBi∩G(l)

f(x) dσ ≤ b−l b

b− 1

∫
G(l)

f(x) dσ.

Since Z satisfies a lower r–estimate, Lemma 1.3 implies Y ′ satisfies a lower
r′–estimate By Hölder’s inequality, the right–hand side of (2.8) is bounded by

cbl+2

( ∞∑
i=1

(
‖χ

N eBi‖Z
)r) 1

r
( ∞∑
i=1

(
‖χ eEi g‖Y ′

)r′) 1
r′

≤ cbl+2ϕZ
(
b−l

b

b− 1

∫
G(l)

f(x) dσ
)
‖χ

El
g‖Y ′ .

Here the constant c does not depend on k0. Now letting k0 → −∞ and using
the Hölder inequality, we obtain from (2.5), (2.8) and the latter estimate that

∫
X

Mγ(fdσ)(x)g(x) dω ≤
( ∞∑
l=−∞

cb(l+2)rϕrZ
(
b−l

b

b− 1

∫
G(l)

f(x) dσ
)) 1

r

‖g‖Y ′ .

(2.9)
The sum in the right-hand side of (2.9) is bounded by

I =
∞∑

l=−∞

cb(l+2)rϕrZ

(
b−l

b

b− 1

∫
G(l)

f(x) dσ
)

≤
∞∑

l=−∞

c

∫ bl−1

bl−2
ϕrZ

(
1
t

∫
{x:f(x)>t}

f(x) dσ
)
tr
dt

t

≤c
∫ ∞

0

ϕrZ

(
1
t

∫ σ({x:f(x)>t})

0

f∗(s) ds
)
tr
dt

t

=cr
∫ ∞

0

ϕrZ

(
1
t

∫ σ({x:f(x)>t})
0

f∗(s) ds
)

(
1
t

∫ σ({x:f(x)>t})
0

f∗(s) ds
)r

×
∫ σ({x:f(x)>t})

0

(
1
t

∫ λ

0

f∗(s) ds
)r−1

f∗(λ)dλtr−1 dt

t
.
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Since
ϕZ(t)
t

is a decreasing function, we get

I ≤ c

r

∫ ∞
0

∫ σ({x:f(x)>t})

0

ϕrZ

(
1
t

∫ λ
0
f∗(s) ds

)
1
t

∫ λ
0
f∗(s) ds

f∗(λ)dλtr−1 dt

t

and the Fubini theorem yields

I ≤ cr
∫ ∞

0

f∗(λ)∫ λ
0
f∗(s) ds

∫ f∗(λ)

0

ϕrZ

(
1
t

∫ λ

0

f∗(s) ds
)
tr
dt

t
dλ.

To estimate the inside integral we use (1.1), since βZ is strictly less 1. We
can assume δ < 1. Then

I ≤ cCr

δαr

∫ ∞
0

f∗(λ)∫ λ
0
f∗(s) ds

ϕrZ

(
δ

f∗(λ)

∫ λ

0

f∗(s) ds
)
f∗(λ)αr

∫ f∗(λ)

0

t(1−α)r dt

t
dλ

=
cCr

(1− α)δαr

∫ ∞
0

f∗(λ)∫ λ
0
f∗(s) ds

ϕrZ

(
δ

f∗(λ)

∫ λ

0

f∗(s) ds
)
f∗(λ)rdλ.

As
R λ
0 f∗(s) ds

f∗(λ) ≥ λ and function
ϕZ(t)
t

is decreasing we have

I ≤ c
∫ ∞

0

(
ϕZ(λ)

1
λ

∫ λ

0

f∗(s) ds
)r
dλ

λ
.

Since upper fundamental index of Z strictly less 1 using Lemma 1.2, we get

I ≤ c
∫ ∞

0

(
ϕZ(λ)f∗(λ))r

dλ

λ
.

Now we prove that∫ ∞
0

(
ϕZ(λ)f∗(λ))r

dλ

λ
≤ c‖f‖rZ . (2.10)

Further as Z satisfies a lower r–estimate we obtain∫ ∞
0

(
ϕZ(λ)f∗(λ))r

dλ

λ
≤

+∞∑
k=−∞

(f∗(2k))r
∫ 2k+1

2k
ϕZ(λ)r

dλ

λ

≤ c
+∞∑

k=−∞

(f∗(2k))rϕrZ(2k)
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≤ c
+∞∑

k=−∞

(f∗(2k))r‖χ
{f∗(2k+1)<f(x)≤f∗(2k)}

‖rZ

≤ c
+∞∑

k=−∞

‖fχ
{f∗(2k+1)<f(x)≤f∗(2k)}

‖rZ ≤ c‖f‖rZ ;

i.e., (2.10) holds. Thus we have proved (2.1) for an arbitrary integrable func-
tion with compact support. Now let f be an arbitrary function. By virtue of
the foregoing arguments, for an arbitrary ballB0 we have ‖Mγ(χ

B0
fdσ)(x))‖Y ≤

‖χ
B0
f‖Z ≤ ‖f‖Z . Letting radB0 tend to infinity, by the 4) we obtain (2.1).

3 Weak Type Inequalities for Integral Transforms in
Weighted BFS

In this section we shall present theorems on weak type estimates in a weighted
BFS for integral transforms with a positive kernel defined on homogeneous
type spaces. Let σ be a positive locally finite measure on X. Consider the
operator

K(fdσ)(x) = sup
t≥0

∣∣∣∣ ∫
X

k(x, y, t)f(y) dσ(y)
∣∣∣∣,

where K : X ×X × [0,∞)→ R is a non-negative measurable kernel.

Theorem 3.1. Let k : X×X×[0,∞)→ R be an arbitrary positive measurable
kernel, let σ and ν be positive locally finite measures on X such that ν{x} =
σ{x} = 0 for any x ∈ X, let (1 < p < q < ∞), let (Z, σ) be a BFS satisfying
a lower p–estimate and let (Y, ν) be a BFS satisfying an upper q–estimate
such that the characteristic function χ

E
has AC norm for every set E of finite

measure. If the condition

c0 = sup
∥∥χ

B(x,2N0r)

∥∥
Y

∥∥χ
X\B(x,r)k(x, ·, t)

∥∥
Z′
<∞, (3.1)

where the supremum is taken over all t ≥ 0, r ≥ 0 and all x ∈ X, N0 =
a1(1+2a0), (the constants a0 and a1 are from the definition of a quasi-metric),
then there exists a constant c > 0 such that for any f ∈ Z and arbitrary λ > 0

λ
∥∥χ{

x∈X: K(fdσ)(x)>λ

}∥∥
Y
≤ c
∥∥f∥∥

Z
. (3.2)

Proof. Let f be an arbitrary nonnegative function from (Z, σ) and λ >

0. Without loss of generality we assume that
∥∥χ

X

∥∥−1

Y

∥∥f∥∥
Z
< λ

2c0
, since
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otherwise we will have
∥∥χ

X

∥∥
Y
<∞ and∥∥χ{

x∈X: K(fdσ)(x)>λ

}∥∥
Y
≤
∥∥χ

X

∥∥
Y
≤ 2c0λ−1

∥∥f∥∥
Z

and the theorem will be proved. Let x ∈ Eλ = {x ∈ X : K(fdσ)(x) > λ}.
Then there exists r0 > 0 depending on x such that

∥∥χ
B(x,N0r0)

∥∥−1

Y

∥∥f∥∥
Z
≥ λ

2c0
(3.3)

and ∥∥χ
B(x,2N0r0)

∥∥−1

Y

∥∥f∥∥
Z
<

λ

2c0
. (3.4)

One can easily verify that there exists r0 > 0 for which (3.4) is fulfilled.
However (3.4) cannot hold for any r > 0, since in that case we will have∫

X\B(x,r)

f(y)k(x, y, t) dσ ≤
∥∥χ

X\B(x,r)f
∥∥
Z

∥∥χ
X\B(x,r)k(x, ·, t)

∥∥
Z′

≤ c0
∥∥f∥∥

Z

∥∥χ
B(x,2Nr)

∥∥−1

Y
<
λ

2
.

If in the latter inequality we pass to the limit as r → 0, then by virtue of the
condition σ{x} = 0 for arbitrary x ∈ X we will obtain K(fdσ)(x) ≤ λ

2 < λ,
which contradicts the condition x ∈ Eλ.

The above arguments imply in particular that there exists r > 0 for which
(3.3) holds. If we consider the supremum of such numbers r, then we will find
r0 > 0 for which both (3.3) and (3.4) are fulfilled. Then we obviously have∫

X\B(x,r0)

f(y)k(x, y, t) dσ ≤ c0
∥∥f∥∥

Z

∥∥χ
B(x,2Nr0)

∥∥−1

Y
<
λ

2
.

Hence for x ∈ Eλ and the corresponding r0 > 0 we obtain

sup
t≥0

∫
B(x,r0)

f(y)k(x, y, t) dσ ≥ λ

2
. (3.5)

For each k ∈ N we put rk = sup{r :
∥∥χ

B(x,N0r)

∥∥
Y
≤ 2−k

∥∥χ
B(x,N0r0)

∥∥
Y
}. The

sequence (rk)k≥0 thus chosen will be decreasing and tends to zero because
ν{x} = 0 and the fact that characteristic function has AC norm. We have∥∥χ

B(x,N0rk)

∥∥
Y
≤ 2−k

∥∥χ
B(x,N0r0)

∥∥
Y
≤
∥∥χ

B(x,2N0rk)

∥∥
Y
. (3.6)
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Let Bk = B(x, rk), k ≥ 0. Using condition (3.1), inequality (3.5) and a chain
of inequalities (3.6) we obtain

λ

2
≤ sup

t≥0

∫
B(x,r0)

f(y)k(x, y, t) dσ

= sup
t≥0

∞∑
k=0

∫
B(x,rk)\B(x,rk+1)

f(y)k(x, y, t) dσ

≤ sup
t≥0

∞∑
k=0

∥∥χ
B(x,rk)f

∥∥
Z

∥∥χ
X\B(x,rk+1)k(x, ·, t)

∥∥
Z′

≤ c0
∞∑
k=0

∥∥χ
B(x,rk)f

∥∥
Y

∥∥χ
B(x,2N0rk+1)

∥∥−1

Y

≤ c
∞∑
k=0

∥∥χ
B(x,N0rk)

∥∥ qp−1

Y

∥∥χ
B(x,rk)f

∥∥
Z

∥∥χ
B(x,N0rk)

∥∥− qp
Y

≤ c
∞∑
k=0

2−k( qp−1)
∥∥χ

B(x,N0r0)

∥∥ qp−1

Y

∥∥χ
B(x,rk)f

∥∥
Z

∥∥χ
B(x,N0rk)

∥∥− qp
Y
.

Since it is assumed that p < q <∞, we have cpq =
∑∞
k=0 2−k( qp−1) <∞. The

latter chain of inequalities implies

c−1
pq

∞∑
k=0

2−k( qp−1)λ

2

≤c
∞∑
k=0

2−k( qp−1)
∥∥χ

B(x,N0r0)

∥∥ qp−1

Y

∥∥χ
B(x,rk)f

∥∥
Z

∥∥χ
B(x,N0rk)

∥∥− qp
Y
.

Hence we conclude that there exist n0 and c > 0 such that

λ ≤ c
∥∥χ

B(x,N0r0)

∥∥ qp−1

Y

∥∥χ
B(x,rn0 )f

∥∥
Z

∥∥χ
B(x,N0rn0 )

∥∥− qp
Y
.

Taking (3.3) into account in the latter inequality we obtain

λ ≤ cλ1− qp
∥∥f∥∥ qp−1

Z

∥∥χ
B(x,rn0 )f

∥∥
Z

∥∥χ
B(x,N0rn0 )

∥∥− qp
Y

which implies
∥∥χ

B(x,N0rn0 )

∥∥
Y
≤ cλ−1

∥∥χ
B(x,rn0 )f

∥∥ pq
Z

∥∥f∥∥1− pq
Z

. To summarize the
obtained results, we conclude that for each x ∈ Eλ there exists a ball Bx
centered at the point x such that∥∥χ

N0Bx

∥∥
Y
≤ cλ−1

∥∥χ
Bx
f
∥∥ pq
Z

∥∥f∥∥1− pq
Z

. (3.7)
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Since (3.7) holds for any x ∈ Eλ, the family {Bx}x∈Eλ covers the set Eλ. Let
B0 be an arbitrary ball inX. By Lemma A from the family {Bx} we can choose
a sequence of nonintersecting balls (Bk)k such that Eλ ∩ B0 ⊂ ∪∞k≥1N0Bk.
Using that Y satisfies an upper q–estimate and Z, a lower p–estimate, (3.7)
implies

∥∥χ
Eλ∩B0

∥∥
Y
≤ c
(∑

k

∥∥χ
N0Bk

∥∥q
Y

) 1
q

≤ cλ−1

(∑
k

∥∥χ
Bk
f
∥∥p
Z

) 1
q ∥∥f∥∥1− pq

Z
≤ cλ−1

∥∥f∥∥ pq
Z

∥∥f∥∥1− pq
Z

and consequently
∥∥χ

Eλ∩B0
f
∥∥
Y
≤ cλ−1

∥∥f∥∥
Z

where the constant c does not
depend on B0, λ and f . If in the latter inequality we pass to the limit as
radB0 →∞, we will find that inequality (3.2) is valid.

Theorem 3.2. Let 1 < p < q < ∞ and (Z, σ) and (Y, ν) be BFS satisfying
the conditions of Theorem 3.1. Let k : X × X × [0,∞) → R be a positive
measurable kernel such that there exists a constant c1 with

k(a, y, t) ≤ c1k(x, y, t) (3.8)

for arbitrary t ≥ 0, a ∈ X, y ∈ X\B(a, r), r > 0 and x ∈ B(a, 2N0r). Then
conditions (3.1) and (3.2) are equivalent.

Proof. The implication (3.1) ⇒ (3.2) follows from Theorem 3.1 without
condition (3.8).

Let us prove the implication (3.2)⇒ (3.1). First it will be shown that for
any x ∈ X, r > 0 and t ≥ 0 we have∥∥χ

X\B(x,r)k(x, ·, t)
∥∥
Z′
<∞. (3.9)

Assume to the contrary that for some a ∈ X, r > 0 and t0 ≥ 0 we have∥∥χ
X\B(a,r)k(a, ·, t0)

∥∥
Z′

= ∞. Then by duality there exists nonnegative g :
X → R such that

∥∥χ
X\B(a,r)g

∥∥
Z
≤ 1 and

∫
X\B(a,r)

g(y)k(a, y, t0) dσ = +∞.
On the other hand, by condition (3.8) we have

T (gdσ)(x) ≥
∫
X\B(a,r)

g(y)k(x, y, t0) dσ ≥ c′
∫
X\B(a,r)

g(y)k(a, y, t0) dσ = +∞.

for arbitrary x ∈ B(a, r). Thus B(a, r) ⊂
{
x ∈ X : T (gdσ)(x) > λ

}
for arbi-

trary λ > 0. Thus by (3.2) we get
∥∥χ

B(a,r)

∥∥
Y
≤
∥∥χ{

x∈X: T (gdσ)(x)>λ

}∥∥
Y
≤ cλ−1.
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Recalling that λ is an arbitrary positive number, from the latter inequality we
conclude that

∥∥χ
B(a,r)

∥∥
Y

= 0 and by 6) µ(B(a, r)) = 0, which is impos-
sible. Therefore (3.9) holds. Now we can proceed proving the implication
(3.2)⇒ (3.1).

Let B(x, r) be an arbitrary ball and z ∈ B(x, 2N0r). By condition (3.8)
we have

T (fdσ)(z) ≥
∫
X\B(x,r)

f(y)k(z, y, t) dσ ≥ 1
c1

∫
X\B(x,r)

f(y)k(x, y, t) dσ, t ≥ 0,

for an arbitrary nonnegative function f : X → R. Therefore from (3.2) we
derive the inequality∥∥χ

B(x,2N0r)

∥∥
Y
≤
∥∥χ{

z∈X: T (fdσ)(z)> 1
2c1

R
X\B(x,r) f(y)k(x,y,t) dσ

}∥∥
Y

≤ 2c1c
(∫

X\B(x,r)

f(y)k(x, y, t) dσ
)−1∥∥f∥∥

Z
,

where the constants on the right-hand side do not depend on x ∈ X, r > 0
and t ≥ 0. In the latter inequality taking the supremum over all f such that
‖f‖Z ≤ 1 we obtain∥∥χ

B(x,2N0r)

∥∥
Y

∥∥χ
X\B(x,r)k(x, ·, t)

∥∥
Z′
≤ c

where the constant does not depend on x ∈ X, r > 0 and t ≥ 0. The latter
implies that condition (3.1) is fulfilled.

In the theorems proved above our consideration is limited to spaces for
which ν{x} = σ{x} = 0 for any x ∈ X. Below we will treat a more general
case.

Theorem 3.3. Let k : X×X×[0,∞)→ R be an arbitrary positive measurable
kernel. Let σ and ν be positive locally finite measures on X having only isolated
atoms. Let (Z, σ) be a BFS satisfying a lower p–estimate and (Y, ν) a BFS
satisfying an upper q–estimate such that the characteristic function χ

E
has AC

norm for every set E of finite measure, (1 < p < q <∞). Suppose

sup
t>0
x∈X

µ{x}>0

k(x, x, t)‖χ{x}‖Y ‖χ{x}‖Z′ <∞ (3.10)

is fulfilled along with (3.1). Then the conclusion of Theorem 3.1 is valid, i.e.,
(3.2) holds.



306 Amiran Gogatishvili

Proof. After analyzing Theorem 3.1 we find that in the general case inequal-
ity (3.7) holds for any x ∈ Eλ for which (3.3) and (3.4) are fulfilled simulta-
neously. For the case σ{x} > 0 inequality (3.4) may hold for arbitrary r > 0.
Nevertheless it will be shown below that inequality (3.7) remains valid for the
general case too. Let x ∈ Eλ, σ{x} > 0 and f(x)σ{x} supt≥0 k(x, x, t) < λ

2 .
Since then we have

lim
r→0

∫
B(x,r)

f(y)k(x, y, t) dσ = f(x)k(x, x, t)σ{x},

for each t ≥ 0 there will exist rt such that∫
B(x,rt)

f(y)k(x, y, t) dσ <
λ

2
. (3.11)

Let us show that in that case inequality (3.4) cannot be fulfilled for arbitrary
r > 0. Indeed, if this is so, then by virtue of (3.1), (3.4) and (3.11) we will
have

T (fdσ)(x) ≤ sup
t≥0

∫
B(x,rt)

f(y)k(x, y, t) dσ + sup
t≥0

∫
X\B(x,rt)

f(y)k(x, y, t) dσ

≤ sup
t≥0

∫
B(x,rt)

f(y)k(x, y, t) dσ + sup
t≥0

∥∥χ
X\B(x,rt)

k(x, ·, t)
∥∥
Z′

∥∥f∥∥
Z

≤ sup
t≥0

∫
B(x,rt)

f(y)k(x, y, t) dσ + c0 sup
t≥0

∥∥χ
B(x,2N0rt)

∥∥−1∥∥f∥∥
≤ sup
t≥0

∫
B(x,rt)

f(y)k(x, y, t) dσ +
λ

2
≤ λ

which contradicts x ∈ Eλ. The contradiction obtained shows that in the case
under consideration (3.4) cannot be fulfilled for any r > 0 and therefore, in
common with the proof of Theorem 3.1, we can find r > 0 such that (3.3) and
(3.4) will be fulfilled simultaneously, which fact leads to (3.7).

Assuming now that x ∈ Eλ, σ{x} > 0 and f(x)σ{x} supt≥0 k(x, y, t) ≥ λ
2 ,

we obtain

λ ≤2f(x)σ{x} sup
t≥0

k(x, x, t)

≤2f(x))
∥∥χ{x}∥∥−1

Y

∥∥χ{x}∥∥Z∥∥χ{x}∥∥Y sup
t≥0

k(x, x, t)
∥∥χ{x}∥∥Z′ .

By (3.10) the latter inequality gives rise to∥∥χ{x}∥∥Y ≤ cλ−1f(x)
∥∥χ{x}∥∥Z . (3.12)
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Since σ{x} > 0, the point x is isolated. Therefore there exists r > 0 such that
B(x,N0r) = {x}. Now (3.12) can be rewritten as∥∥χ

B(x,N0r)

∥∥
Y
≤ cλ−1

∥∥χ
B(x,N0r)

f
∥∥
Z
≤ cλ−1

∥∥χ
B(x,N0r)

f
∥∥ pq
Z

∥∥f∥∥1− pq
Z

which implies that (3.7) is valid. Thus for all x ∈ Eλ, ν{x} > 0 there exists
a ball Bx centered at the point x such that (3.7) is fulfilled. In common with
the proof of Theorem 3.1 we conclude that (3.2) is valid.

Theorem 3.4. Let 1 < p < q < ∞ and (Z, σ) and (Y, ν) be BFS satisfying
conditions of Theorem 3.3. Let k : X×X×[0,∞)→ R be a positive measurable
kernel satisfying the condition (3.8). Then the inequality (3.2) is equivalent to
the set of conditions (3.1) and (3.10).

Proof. As shown in the proof of the preceding theorem, conditions (3.1) and
(3.10) imply inequality (3.2) without condition (3.8). By the proof of Theorem
3.2 it remains to show that (3.2)⇒(3.10). Let σ{x} > 0. It is easy to verify
that T (fdσ)(x) > 1

2f(x)k(x, x, t)σ{x}, t ≥ 0. Therefore

{x} ⊂
{
y ∈ X : T (f)(y) >

1
2
f(x)k(x, x, t)σ{x}

}
.

By the latter inclusion and condition (3.2) we obtain∥∥χ{x}∥∥Y ≤ ∥∥χ{
y∈X: T (fdσ)(y)> 1

2 f(x)k(x,x,t)σ{x}

}∥∥
Y

≤ 2c
(
f(x)k(x, x, t)σ{x}

)−1∥∥f∥∥
Z
.

After taking the supremum over all f such that ‖f‖Z ≤ 1 we obtain∥∥χ{x}∥∥Y k(x, x, t)
∥∥χ{x}∥∥Z′ ≤ c.

Since the constant c does not depend on x and t, from the latter inequality
we conclude that condition (3.10) is fulfilled.

The analysis of the above theorems gives rise to the following two remarks:

Remark 3.1. When X = Rn and d is Euclidean distance, we can take the
constant N0 in the above theorems to be 1. This can be done because the
Besicovitch covering lemma (see [12, 13]) can be applied instead of Lemma A
to Euclidean spaces.
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Remark 3.2. When X = Rn and space the (Y, ν) is such that
∥∥χ

B(x,r)

∥∥
Y

is
continuous with respect to r, we can replace

∥∥χ
B(x,2N0r)

∥∥
Y

in condition (3.1)
by
∥∥χ

B(x,r)

∥∥
Y

and, accordingly, weaken condition (3.8) in Theorem 3.2 to:
there exists a constant c1 > 0 such that k(a, y, t) ≤ c1k(x, y, t) for arbitrary
t ≥ 0, a, x and y from X satisfying d(a, x) ≤ d(a, y).

Next we will consider the case where k(x, y, t) ≡ k(x, y). It will again be
assumed that the measure σ is locally finite. Let

K(fdσ)(x) =
∫
X

k(x, y)f(y) dσ, and K∗(fdσ)(x) =
∫
X

k(y, x)f(y) dσ.

We assume that if f is nonnegative, then for all λ > 0, all sets of the forms{
x ∈ X : K(fdσ)(x) > λ

}
are open.

Definition 3.1. A positive measurable kernel k : X×X → R is said to satisfy
condition (V ) (k ∈ V ) if there exists a constant c > 0 such that k(x, y) <
ck(x′, y) for arbitrary x, y and x′ from X such that d(x, x′) < Nd(x, y), where
N = 2N0.

Theorem 3.5. Let 1 < p < q < ∞. Let σ and ν be positive locally finite
measures on X having only isolated atoms, let (Z, σ) be a BFS satisfying a
lower p–estimate, let (Y, ν) be a r.i. BFS satisfying an upper q–estimate such
that the characteristic function χ

E
has AC norm for every set E of finite

measure and let k : X ×X → R be a positive measurable kernel satisfying the
condition (V ). Then the following conditions are equivalent:

i) there exists a constant c1 > 0 such that for arbitrary λ > 0 and nonneg-
ative f ∈ (Z, σ) ∥∥χ{

x∈X: K(fdσ)(x)>λ

}∥∥
Y
≤ c1λ−1

∥∥f∥∥
Z

; (3.13)

ii) there exists a constant c2 > 0 such that for an arbitrary ball B ⊂ X∥∥K∗(χ
B
dν)(x)

∥∥
Z′
≤ c2

∥∥χ
B

∥∥
Y ′

; (3.14)

iii)
sup
x∈X
r>0

∥∥χ
B(x,2N0r)

∥∥
Y

∥∥χ
X\B(x,r)k(x, ·)

∥∥
Z′
<∞. (3.15)
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Proof. The implication i)⇔iii) follows from Theorem 3.2. We will prove
ii)⇒iii). Applying the condition (V ) for the kernel for any y ∈ X\B(x, r), we
obtain

K∗
(
χ
B(x,2N0r)

dν
)
(y) =

∫
B(x,2N0r)

k(z, y) dν ≥ c−1k(x, y)ν(B(x, 2N0r)).

By the latter inequality and ((3.14)) using Proposition 1.1 we conclude that
(3.15) holds.

Finally, it will be shown that the implication i)⇒ii) is valid. We have∥∥K∗(χ
B
dν)
∥∥
Z′

= sup
∫
X
K∗
(
χ
B
dν)(x)g(x)dσ, where the exact upper bound

is taken with respect to all g for which
∥∥g∥∥

Z
≤ 1. By Fubini’s theorem∫

X
K∗
(
χ
B
dν)(x)g(x)dσ =

∫
B
K(gdσ)(y) dν. If we take λ =

(
K(gdσ)

)∗
ν
(t) by

definition of the decreasing rearrangement from inequality (3.13) we get that(
K(gdσ)

)∗
ν
(t) ≤ c

ϕY (t) . As Y satisfies an upper q–estimate (1 < q < ∞), by
Lemma 1.4 the fundamental function ϕY satisfies (1.1) and using Lemma 1.1
and Proposition 1.1 we get∫

B

K(gdσ)(y) dν =
∫ ∞

0

(
χ
B
K(g dσ)

)∗
ν
(t)dt

≤ c1
∫ νB

0

1
ϕY (t)

dt ≤ c2ϕY ′(νB) = c2
∥∥χ

B

∥∥
Y ′

and thereby prove the implication i)⇒ii) and, accordingly, the theorem.

In [6], [7] and [10] the two-weight problem was solved for integral transforms
with a positive kernel in Lebesgue spaces, in [14] for Lorentz spaces and in [9]
for Orlicz classes (also see [4], [18, [22] and [8]).

In the rest of this section we no longer assume that µ satisfies the doubling
condition. We will assume that for the space X there is a number L > 1
such that any ball B(x, r) contains at most L points xi with d(xi, xm) > r

2 .
The assumption that a measure µ given in X satisfies the doubling condition
guarantees the fulfillment of the above-formulated condition (see [2], Lemma
1.1). For such space X the following statements are valid.

Lemma B. Let Ω be an open subset of X and c ≥ 1. Then there exists a
sequence of balls Bj = B(xj , rj) such that

(i) Ω =
⋃∞
j=1Bj =

⋃∞
j=1Bj , where Bj = B(xj , crj);

(ii) there exists M = M(c, L, a0, a1) > 0 such that
∑∞
j=1 χBj

(x) ≤M ;

(iii) (X\Ω) ∩
=

Bj 6= ∅ for each
=

Bj = B(xj , 3ca1rj).
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This Lemma was formulated for bounded set in ([3], p. 623), but it is valid
for any open set.

Theorem 3.6. Let σ and ν be positive locally finite measures on X let (Z, σ)
be a BFS satisfying a lower p–estimate 1 < p < ∞, let (Y, ν) be a r.i. BFS
satisfying an upper p–estimate with lower fundamental index strictly greater
than 0 and let k : X ×X → R be a positive measurable kernel satisfying (V ).
Then the following conditions are equivalent:

i) there exists a constant c1 > 0 such that for arbitrary λ > 0 and nonneg-
ative f ∈ (Z, σ) ∥∥χ{

x∈X: K(fdσ)(x)>λ

}∥∥
Y
≤ c1λ−1

∥∥f∥∥
Z

; (3.16)

ii) there exists a constant c2 > 0 such that for an arbitrary ball B ⊂ X∥∥K∗(χ
B
dν)(x)

∥∥
Z′
≤ c2

∥∥χ
B

∥∥
Y ′
. (3.17)

Proof. Let f be a bounded nonnegative function with compact support. For
given λ > 0 we set Ωλ =

{
x ∈ X : K(fdσ)(x) > λ

}
. Let Bj = B(xj , rj) be the

sequence of balls from Lemma B for the number c = 2a1. Then there exists
a constant c3 > 0 such that (see, for instance, [16]) K

(
χ
X\cBj

fσ
)
(x) ≤ c3λ

for any x ∈ Bj , where cBj = B(xj , crj). Hence K(χ
cBj

fσ)(x) > c3λ for any
x ∈ Bj ∩ Ω2c3λ. Then,

νΩ2c3λ ≤
∞∑
j=1

ν
(
Bj ∩ Ω2c3λ

)
=
∑
j∈F

+
∑
j∈G

ν
(
Bj ∩ Ω2c3λ

)
= I1 + I2,

where F =
{
j : ν

(
Bj ∩ Ω2c3λ

)
> εν(cBj)

}
, G =

{
ν
(
Bj ∩ Ω2c3λ

)
≤ εν(cBj)

}
,

and the number ε will be chosen below so that 0 < ε < 1.
Applying the Fubini theorem, the Hölder inequality and condition (3.17)

we obtain for j ∈ F

c3λν(cBj) ≤ c3ε−1λν
(
Bj ∩ Ω2c3λ

)
≤ ε−1

∫
Bj

(∫
cBj

k(x, y)f(y) dσ(y)
)
dν(x)

≤ ε−1

∫
cBj

(∫
Bj

k(x, y) dν(x)
)
f(y) dσ(y) = ε−1

∫
cBj

K∗(χ
Bj
dν)(y)f(y) dσ

≤ ε−1
∥∥K∗(χ

cBj
dν)χ

cBj

∥∥
Z′

∥∥χ
cBj

f
∥∥
Z
≤ ε−1c2

∥∥χ
cBj

∥∥
Y ′

∥∥χ
cBj

f
∥∥
Z
.

Therefore λν(cBj) ≤ c−1
3 ε−1c2

∥∥χ
cBj

∥∥
Y ′

∥∥χ
cBj

f
∥∥
Z
. The summation of the

latter inequality, applying Hölder’s inequality, the fact that Z satisfies a lower
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p–estimate, Y satisfies an upper p–estimate and, by Lemma 1.4, Y ′ satisfies a
lower p′–estimate and

∑∞
j=1 χcBj ≤M , gives

I1 ≤ λ−1c4

( ∞∑
j=1

∥∥χ
cBj

∥∥p′
Y ′

) 1
p′
( ∞∑
j=1

∥∥χ
cBj

f
∥∥p
Z

) 1
p

≤ λ−1c5
∥∥χΩ2c3λ

∥∥
Y ′

∥∥f∥∥
Z
.

By Proposition 1.1 we obtain I1 ≤
c5ν
(

Ω2c3λ

)
λ
∥∥χΩ2c3λ

∥∥
Y

∥∥f∥∥
Z
. Next for j ∈ G we

obtain ν
(
Bj ∩ Ω2c3λ

)
≤ εν(cBj). ThereforeI2 ≤ εMνΩλ. Finally, since the

lower fundamental index β
Y
> 0, ϕY satisfies (1.2) and therefore we find

that λ
∥∥χΩ2c3λ

∥∥
Y
≤ c5

∥∥f∥∥
Z

+ εηMλ
∥∥χΩ2c3λ

∥∥
Y
. Taking the exact upper bound

with respect to λ, 0 < λ < s
2c3

, we obtain sup0<λ<s λ
∥∥χΩλ

∥∥
Y
≤ c5

∥∥f∥∥
Z

+
εηM sup0<λ<s λ

∥∥χΩλ

∥∥
Y
. If we set ε = 1

2M(2c3)
1
η

, the latter inequality will im-

ply sup0<λ<s λ
∥∥χΩλ

∥∥
Y
≤ c5

∥∥f∥∥
Z

+ 1
2 sup0<λ<s λ

∥∥χΩλ

∥∥
Y
. If the second term

on the right-hand side is assumed to be finite, then from the latter inequal-
ity we obtain sup0<λ<s λ

∥∥χΩλ

∥∥
Y
≤ 2c5

∥∥f∥∥
Z

Letting s tend to infinity, we
concluded that (3.16) holds.

It remains to show that for arbitrary finite s

sup
0<λ<s

λ
∥∥χΩλ

∥∥
Y
<∞. (3.18)

Let supp f ⊂ B, where B = B(x0, r) is a ball in X. It is obvious that
λ
∥∥χ

B(x0,2a1r)

∥∥
Y
≤ s

∥∥χ
B(x0,2a1r)

∥∥
Y
< ∞. Therefore it is sufficient to show

that supλ>0 λ
∥∥χΩλ\B(x0,2a1r)

∥∥
Y
< ∞. Let x ∈ Ωλ\B(x0, 2a1r) and Bx =

B(x0, 2d(x0, x)). For x′ ∈ Bx and y ∈ B we have 2a1d(x0, y) ≤ d(x0, x) ≤
a1

(
d(x0, y) + d(y, x)

)
. Hence d(x0, y) ≤ a0d(x, y). Further for x′ ∈ Bx and

y ∈ B we have

d(x′, y) ≤ a1

(
d(x′, x0) + d(x0, y)

)
≤ a1a0d(x, y) + 2a1a0d(x0, x)

≤ a1a0d(x, y) + 2a2
1a0

(
d(x0, y) + d(y, x)

)
≤ a1a0d(x, y) + 4a2

1a
2
0d(x, y) = (a1a0 + 4a2

1a
2
0)d(x, y).

Now by virtue of the remark made at the beginning of the proof of Proposition
3.1 from [10] there exists a constant c′ such that k(x, y) ≤ c′k(x′, y) for any
x′ ∈ Bx and y ∈ B. Therefore using (3.17) and the Hölder inequality we
obtain

λν(Bx) ≤ ν(Bx)
∫
B

k(x, y)f(y) dσ(y) ≤
∥∥χ

Bx

∥∥
Z

∥∥χ
Bx
k(x, ·)ν(Bx)

∥∥
Z′
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≤ c5
∥∥χ

Bx

∥∥
Z

∥∥χ
B
K∗(χ

Bx
dν)
∥∥
Z′
≤ c6

∥∥χ
Bx

∥∥
Z

∥∥χ
Bx

∥∥
Y ′
.

Hence by Proposition 1.1 we conclude that λ
∥∥χ

Bx

∥∥
Y
≤ c6

∥∥χ
Bx

∥∥
Z

Since
Ωλ\B(x0, 2a1r) ⊂ ∪Bx and balls Bx have a common center, by virtue of
the axiom 6) the latter estimate implies that (3.18) is valid. Thus the impli-
cation (3.17)⇒ (3.16) is proved for functions f with a compact support. One
can easily pass over to the general case.

The implication (3.16)⇒ (3.17) is proved by Theorem 3.5.
Theorem 3.6 for Lebesgue spaces was proved in [11] with another proof is

in [22]. For Orlicz classes It was established in [9], (also see [8]).

4 Proof of the Main Theorem

Using the results of the preceding sections we will prove the main theorem of
this paper.
Proof of the Main Theorem. Our aim is to show that the implication
(1.3)⇔ (1.4) is valid. First we will prove the implication (1.4)⇒ (1.3). Con-
sider an operator on (Z, σ) in the form Tγ(fdω)(x) =

∫
X

|f(y)|
(µB(x,d(x,y)))1−γ dω.

The latter operator is an analog of the Riesz potential for homogeneous type
spaces.

First note that condition (1.4) implies that there exists a constant c such
that

sup
∥∥χ

B(x,2N0r)

∥∥
Z′

∥∥χ
X\B(x,r)(µB(x, d(x, ·))γ−1

∥∥
Y
< c,

for all x ∈ X and r > 0. Indeed by the doubling condition for y ∈ X\B(x, r)
we have that

µB(x, d(x, y) + 2N0r) ≤ µB(x, (2N0 + 1)d(x, y)) ≤ b′µB(x, d(x, y))

and therefore∥∥χ
B(x,2N0r)

∥∥
Z′

∥∥χ
X\B(x,r)(µB(x, d(x, ·))γ−1

∥∥
Y

≤ b′
∥∥χ

B(x,2N0r)

∥∥
Z′

∥∥(µB(x, d(x, d(x, ·) + 2N0r)γ−1
∥∥
Y
≤ b′c2.

By Lemma 1.3 (Z ′, σ) is a r.i. BFS satisfying an upper p′–estimate and (Y ′, ω)
is a BFS satisfying a lower q′–estimate. As q′ < p′ when p < q, using The-
orem 3.5, for (Z ′, σ) and (Y ′, ω) we conclude that

∥∥χ{
x∈X: Tγ (f dω)(x)>λ

}∥∥
Z′
≤

c3λ
−1
∥∥f(x)

∥∥
Y ′

with the constant c3 not depending on λ > 0 and f is valid.
Further, again by virtue of Theorem 3.5 the latter inequality implies that

there exists a constant c4 > 0 such that for any ball B ⊂ X we have∥∥T ∗γ (χ
B
σ)
∥∥
Y
≤ c4

∥∥χ
B

∥∥
Z

(4.1)
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where T ∗γ (ϕσ)(x) =
∫
X

|ϕ(y)|
(µB(y,d(x,y)))1−γ dσ.

On the other hand, there exist constants c3 > 0 and c4 > 0 such that

c3µB
(
y, d(x, y)

)
≤ µB

(
x, d(x, y)

)
≤ c5µB

(
y, d(x, y)

)
. (4.2)

The latter follows from the fact that B(x, d(x, y)) ⊂ B(a1(a0 + 1)d(x, y)).
Indeed, let d(x, z) ≤ d(x, y). Then d(y, z) ≤ a1

(
d(y, x) + d(x, z)

)
≤ a1(a0 +

1)d(x, y). By virtue of the doubling property for measure we obtain

µB
(
y, a1(a0 + 1)d(x, y)

)
≤ c6µB

(
y, d(x, y)

)
.

Hence we conclude that (4.2) is valid. Next, from (4.2) and (4.1) we derive∥∥Tγ(χ
B
σ)
∥∥
Y
≤ c7

∥∥χ
B

∥∥
Z
. (4.3)

Now use inequality (see in [10]) Mγ(ϕσ)(x) ≤ c7Tγ(ϕσ)(x), from (4.3) we
obtain

∥∥Mγ(χ
B
σ)
∥∥
Y
≤ c8

∥∥χ
B

∥∥
Z
. By Theorem 2.1 we conclude that inequality

(1.3) is valid. Thus we have proved the implication (1.4)⇒ (1.3). Let us show
the validity of the inverse implication (1.3) ⇒ (1.4). Fix an arbitrary ball
B(x, r) and assume f(y) = χ

B(x,r)(y). Obviously we have

Mγ(fσ)(y) ≥ σ(B(x, d(x, y) + r) ∩B(x, r))
µB(x, d(x, y) + r)1−γ ≥ σ(B(x, r))

µB(x, d(x, y) + r)1−γ .

Therefore (1.4) implies

σ(B(x, r))
∥∥µB(x, d(x, ·) + r)γ−1

∥∥
Y
≤ ≤ c

∥∥χ
B(x,r)

∥∥
Z
.

From the latter inequality using Proposition 1.1 we obtain (1.4).

Definition 4.1. The measure ν satisfies the reverse doubling condition (ν ∈
(RD)) if there exist numbers δ and ε from (0, 1) such that νB(x, r1) ≤
ενB(x, r2) for µB(x, r1) ≤ δµB(x, r2), 0 < r1 < r2.

In the particular case where measure σ satisfies the reverse doubling con-
dition, (1.4) in the main theorem can be replaced by a simpler condition.

Theorem 4.1. Let 1 < p < q <∞, 0 < γ < 1, let (Y, ω) be a BFS satisfying
an upper q–estimate, let (Z, σ) be a r.i. BFS satisfying a lower p–estimate
with upper fundamental index strictly less than 1 and let measure σ satisfy the
reverse doubling condition. Then (1.3) holds iff

sup
x∈X
r>0

(
µB(x, r)

)γ−1∥∥χ
B(x,r)

∥∥
Z′

∥∥χ
B(x,r)

∥∥
Y
<∞. (4.4)
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Proof. The implication (1.3)⇒ (4.4) is obtained immediately by substituting
the function f(y) = χB(y) into (1.3).

By the main theorem, to prove the implication (4.4) ⇒ (1.3) it is suffi-
cient to show that if σ ∈ (RD), then (4.4) ⇒ (1.4). Let x ∈ X and r > 0
be fixed. Choose numbers rk (k = 0, 1, . . .) such that r0 = r and by in-
duction rk = inf

{
r : µB(x, rk−1) < δµB(x, r)

}
. Obviously, µB(x, rk−1) <

δµB(x, rk) < cµB(x, rk−1). Again applying the condition (RD), we obtain
σB(x, r0) ≤ εkσB(x, rk) k = 1, 2, . . . . Since the upper fundamental index of
Z is strictly less than 1, that ϕZ satisfies (1.2) and on using this the latter
inequalities imply∥∥χ

B(x,r)

∥∥
Z′

∥∥(µB(x, d(x, ·) + r)
)γ−1∥∥

Y
≤
∥∥χ

B(x,r)

∥∥
Z′

(
µB(x, r)

)γ−1∥∥χ
B(x,r)

∥∥
Y

+
∥∥χ

B(x,r0)

∥∥
Z′

∞∑
k=1

∥∥χ
B(x,rk)\B(x,rk−1)

(
µB(x, d(x, ·))

)γ−1∥∥
Y

≤c
∞∑
k=0

ϕZ′(εkσB(x, rk))
∥∥χ

B(x,rk)

∥∥
Y

(
µB(x, d(x, rk))

)γ−1

≤c
∞∑
k=0

εαkϕZ′(σB(x, rk))
∥∥χ

B(x,rk)

∥∥
Y

(
µB(x, d(x, rk))

)γ−1

≤c
∞∑
k=0

εαk
(
µB(x, d(x, rk))

)γ−1∥∥χ
B(x,rk)

∥∥
Z′

∥∥χ
B(x,rk)

∥∥
Y

≤c
∞∑
k=0

εαk <∞.

Therefore (1.3) holds. This completes the proof of Theorem 4.1.

For Lebesgue spaces this theorem was proved in [11] and for Orlicz classes,
in [9]. (See also [8], [18] and [21])

Acknowledgment. I wish to express my gratitude to the Royal Society and
NATO for support under their Postdoctoral Fellowship program to visit the
School of Mathematics at Cardiff during 1997/98. I also thank the Georgian
Academy of Sciences for partial support under grant No. 1.7 of the Georgian
Academy of Sciences.

References

[1] C. Bennett and R. Sharpley, Interpolation of operators, Pure Appl. Math.
129, Academic Press, 1988



Fractional Maximal Functions 315

[2] R. R. Coifman and G. Weiss,Analyse harmonique non-commutative sur
certains espaces homogenes, Lecture Notes in Math. 242, Springer-Verlag,
Berlin and New York, 1971.

[3] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use
in Analysis, Bull. Amer. Math. Soc., 83 (1977), 569–645.

[4] B. Franchi, C. Gutiérrez and R. Wheeden, Weighted Sobolev-Poincaré
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