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THE ABSOLUTE VALUE OF FUNCTIONS

Abstract

A real-valued function f defined on a topological space is called abso-
lutely polynomial if its absolute value can be written as a polynomial in f
with continuous coefficients. One motivation for studying such functions
comes from the theory of rings of continuous functions. While many real
functions are absolutely polynomial, we provide a number of interesting
explicit examples which are not. The absolutely polynomial criterion
turns out to be quite delicate, and we develop the theory in some detail.
Our study of absolutely polynomial functions is then widened to more
general topological spaces. Our results provide pertinent counterexam-
ples in the theory of rings of quotients of Φ–algebras.

1 Motivation

The original purpose of this paper was to provide a negative answer to the
following question.

Problem. Can the function
∣∣sin 1

x

∣∣ be written as a polynomial in sin 1
x with

continuous functions as coefficients?

On the surface, this may seem to be merely a technical issue in real anal-
ysis. However, the motivation is much deeper, since a negative answer has
important ring-theoretic consequences. A function that satisfies the condition
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stated in the Problem will be called absolutely polynomial, and we begin by
showing that sin 1

x is not absolutely polynomial. However, many standard
functions, including all rational functions and all piecewise continuous func-
tions, are absolutely polynomial. This distinction served to motivate a detailed
investigation into the properties of real functions that distinguish those that
are absolutely polynomial.

The familiar functions which are absolutely polynomial are of degree one
or two. We begin by producing an example of a (“generalized”) piecewise
linear function of bounded variation that is not absolutely polynomial, even
though small nearby perturbations are absolutely polynomial. The key to un-
derstanding the concept lies in the notion of the first (and subsequent) jump
ratio functions, as defined in section 3. One is led naturally to study, in turn,
monotone functions, functions of bounded variation, and regulated functions,
which are natural generalizations of piecewise continuous functions. A general
criterion, formulated in terms of the jump ratio functions, is provided for a
regulated function (that is continuous everywhere it is defined) to be abso-
lutely polynomial of degree n. Monotone functions are seen to be absolutely
polynomial of degree at most 4. This section concludes with an explicit fam-
ily of regulated functions that are absolutely polynomial of arbitrarily high
degree, as well as a regulated function that is locally (but not globally) abso-
lutely polynomial. Usually, one tries to avoid discontinuities and pathology.
We need them (to be bad enough) in order to get valid interesting examples.

Following our discussion of real-valued functions, we expand our investiga-
tions to a wide class of topological spaces. A topological space will be called
absolutely closed if every function on it is absolutely polynomial. The only
examples known, though, are discrete spaces. More interesting is the question
of whether a point in a topological space is absolutely isolated, meaning that
every continuous function which is defined everywhere except at the point is
absolutely polynomial. In particular, we discuss generalizations of our results
concerning real rational functions to other topological spaces.

Finally, we present some nontrivial algebraic consequences of our results.
An important motivation for the original problem was the question of how
the category of Φ–algebras behaves under the formation of rings of quotients.
Given a topological space X, we let C(X) denote the algebra of continuous
functions defined on all of X. If a given function f : X → R with dense open
domain is not absolutely polynomial, then the polynomial ring C(X)[ f ] is
not a Φ–algebra, even though it is a quotient ring of the Φ–algebra C(X).
Consequently, any topological space with a non-absolutely isolated point has
such a property — that one can construct a ring of quotients of the Φ–algebra
of continuous functions C(X) which is not a Φ–algebra. We conclude with
some open problems and directions for further study.
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2 The Key Result

We begin by presenting the basic result in real analysis that answers the orig-
inal question. The proof of this result forms the foundation of our generaliza-
tions.

Proposition 2.1. There do not exist real-valued functions g0(x), . . . , gn(x)
which are continuous and defined for all x ∈ R such that

∣∣sin 1
x

∣∣ =
n∑
k=0

gk(x)
(

sin
1
x

)k
for all x 6= 0. (2.1)

Proof. Suppose we can find gk(x) satisfying (2.1). Set ck = gk(0) and define

r(z) =

∣∣∣∣∣ | z | −
n∑
k=0

ckz
k

∣∣∣∣∣ . (2.2)

Since | z | does not coincide with any polynomial on any interval containing 0,
there exist ε > 0 and −1 ≤ z0 ≤ 1 such that

r(z0) > ε. (2.3)

Choose δ > 0 such that

| gk(x)− ck | <
ε

n+ 1
, for | x | < δ. (2.4)

Then
∣∣∣ ∑n

k=0

[
gk(x)− ck

] (
sin 1

x

)k ∣∣∣ < ε, | x | < δ. Therefore, if (2.1) holds,∣∣∣∣∣ ∣∣sin 1
x

∣∣− n∑
k=0

ck

(
sin

1
x

)k ∣∣∣∣∣ < ε, | x | < δ. (2.5)

However, if we choose N sufficiently large so that x =
1

2Nπ + sin−1 z0
< δ,

then sin 1
x = z0, and hence (2.5) becomes r(z0) =

∣∣ | z0 | −∑n
k=0 ckz

k
0

∣∣ < ε.
But this contradicts (2.3).

Clearly, the basic method of proof is not particular to the function sin 1
x ,

or to the choice of absolute value. In fact, the same proof can be used to
establish a general result, of which Proposition 2.1 is merely one special case.

Theorem 2.2. Let f(x) be defined on dom f ⊂ R. Let Iδ = (x0 − δ, x0 + δ)
denote the open subinterval of width 2δ > 0 centered at a point x0, and define
f(Iδ) = { z = f(x)|x ∈ Iδ ∩ dom f }. Assume that the set J =

⋂
δ>0 f(Iδ)
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contains an open subinterval J0, which implies that f is discontinuous at x0.
Let ψ(z) be a continuous function which is not identically equal to a polynomial
on J0. Then there do not exist continuous functions g0(x), . . . , gn(x) ∈ C(R)
such that ψ(f(x)) =

∑n
k=0 gk(x)f(x)k for all x ∈ dom f. In particular, if

J contains an open subinterval (−ε, ε), then there do not exist continuous
functions g0(x), . . . , gn(x) such that | f(x) | =

∑n
k=0 gk(x)f(x)k for all x ∈

dom f.

3 Absolutely Polynomial Functions

Let us now concentrate on the general question of whether the absolute value1

of a given function f : R → R can be written as a polynomial in f with
continuous coefficients. Note that the domain of the function dom f ⊂ R need
not be the entire real line. We propose the following definition to study this
phenomenon. Let C(R) denote the ring of all continuous real-valued functions
defined on all of R, so g ∈ C(R) requires dom g = R.

Definition 3.1. A function f : R → R will be called absolutely polynomial if
there exist continuous functions g0, . . . , gn ∈ C(R) such that

| f(x) | =
n∑
k=0

gk(x) f(x)k for all x ∈ dom f. (3.1)

The degree of an absolutely polynomial function is the minimal n for which
an identity of the form (3.1) holds.

For example, if | f | ∈ C(R) is continuous on all of R = dom f , then f is
automatically absolutely polynomial of degree 0, since we can take g0 = | f |.
More generally, the absolutely polynomial functions of degree 0 are those whose
absolute value | f | can be continuously extended to all of R. (The character-
ization of functions which can be continuously extended to R is discussed in
more detail below.)

Proposition 3.2. A function f is absolutely polynomial of degree 0 if and
only if there exists g0 ∈ C(R) such that | f | = g0 | dom f .

If f(x) ≥ 0 for all x ∈ dom f and f is not continuously extendable to
R, then f is linearly (degree one) absolutely polynomial, since | f | = f ; a
similar result holds for any non-positive function f ≤ 0. Thus, only functions
of variable sign are candidates for not being absolutely polynomial. Moreover,

1This is the most interesting case, and so we shall concentrate on it in this section. Most
results can be extended without difficulty to other functions ψ, as described in Theorem
2.2. The appropriate modifications of our results and constructions are left to the reader.
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every function is the sum of two linearly absolutely polynomial functions —
being the sum of its positive and negative parts.

Proposition 2.1 shows that sin 1
x is not absolutely polynomial. More gener-

ally, Theorem 2.2 implies that functions with certain “essential” discontinuities
are not absolutely polynomial. However, milder discontinuities are permitted.
For example, the function 1

x is quadratically (but not linearly) absolutely poly-
nomial. One has ∣∣∣∣ 1x

∣∣∣∣ = |x| ·
(

1
x

)2

,

and hence (3.1) holds with n = 2, g0(x) = g1(x) = 0, and g2(x) = | x |.
Clearly, a function f is absolutely polynomial of degree ≤ 2 if and only if 1/f
is absolutely polynomial of degree ≤ 2.

Note that the sum of two absolutely polynomial functions (when defined)
need not be absolutely polynomial; for example, sin 1

x is the sum of the non-
negative function 2 + sin 1

x and the nonpositive function −2. Similarly, the
product of two absolutely polynomial functions, or even a continuous function
with an absolutely polynomial function, need not be absolutely polynomial.
An example is given by multiplying the function 1

x by the continuous function

p(x) =

{
x sin 1

x x 6= 0,
0 x = 0.

(3.2)

Indeed, 1
x · p(x) = sin 1

x is our original non-absolutely polynomial example.
On the other hand, the product of an absolutely polynomial function and a
nonvanishing continuous function remains absolutely polynomial.

A more interesting question is whether the (odd) powers of an absolutely
polynomial function are absolutely polynomial. Of course, even powers of a
function are non-negative, and so trivially absolutely polynomial. The only
result we have been able to establish is in the linear case:

Proposition 3.3. If f is linearly absolutely polynomial, then every power fn

is also linearly absolutely polynomial.

Proof. We only need consider odd powers f2m+1. By assumption, we have
| f | = a+ bf for a, b ∈ C(R). We rewrite this as | f |− bf = a and take powers
of both sides:

2m+1∑
k=0

(
2m+ 1
k

)
bk | f |2m+1−k

fk = (| f | − bf)2m+1 = a2m+1. (3.3)

Note that | f |2m+1−k
fk = f2m+1 when k is even, while | f |2m+1−k

fk =
| f |2m+1 when k is odd. Therefore, we can rewrite (3.3) as

γ | f |2m+1 = α+ βf2m+1, (3.4)
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where α = a2m+1, β =
∑m
i=0

(
2m+1
2i+1

)
b2i+1 and γ =

∑m
i=0

(
2m+1

2i

)
b2i. Since

γ > 0 everywhere, (3.4) implies that | f |2m+1 = (α/γ) + (β/γ)f2m+1, so
f2m+1 is absolutely polynomial of degree at most 1. Note finally that an odd
power of a function is continuously extendable if and only if the function itself
is continuously extendable, and so Proposition 3.2 shows that the absolutely
polynomial degree of the odd powers of f is the same as that of f .

We do not know whether the odd powers of a quadratically absolutely
polynomial function are necessarily absolutely polynomial.

Definition 3.4. Define the support of a function q : R → R to be the set
supp q = {x|q(x) 6= 0} ⊂ dom q. The zero set of q is the set Z(q) = {x|q(x) =
0} = dom q \ supp q.

Quotients of absolutely polynomial functions, even when both numerator
and denominator are continuous but have overlapping zero sets, need not
be absolutely polynomial. For example, if we divide (3.2) by q(x) = x we
again recover p(x)/q(x) = sin 1

x , which is not absolutely polynomial. However,
certain types of quotients of continuous functions, including rational functions,
are always absolutely polynomial.

Theorem 3.5. Suppose p, q ∈ C(R) are continuous functions and suppose
there exist continuous functions u, v ∈ C(R) such that

up+ vq = 1 for all x ∈ R. (3.5)

Then the quotient p/q, which is defined on supp q, is at most quadratically
absolutely polynomial.

Proof. We have∣∣∣∣ pq
∣∣∣∣ =
| p | | q |
q2

= | p | | q |
(
up+ vq

q

)2

= | p | | q |
(
u
p

q
+ v

)2

. (3.6)

The latter expression is clearly a polynomial of degree 2 in p/q with continuous
coefficients.

For example, the function tanx = sinx/ cosx is quadratically absolutely
polynomial, because sin2 x + cos2 x = 1. Incidentally, it is easy to see that
tanx is not linearly absolutely polynomial.

Theorem 3.6. Suppose p, q ∈ C(R) are continuous functions, with disjoint
zero sets Z(p) ∩ Z(q) = ∅. Then the quotient p/q is absolutely polynomial.

Proof. The function h = p2 + q2 is always positive, and so 1/h ∈ C(R)
is continuous. Moreover, one has (p/h)p + (q/h)q = 1, and so one can use
Theorem 3.5 with u = p/h, v = q/h.
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Remark. When the above holds, not only is p/q absolutely polynomial, but
so are its powers. Indeed, we raise (3.5) to the 2nth power, which makes 1 a
linear combination pn and qn with continuous coefficients.

Corollary 3.7. Any rational function over the real field is absolutely polyno-
mial.

Proof. Any rational function can be written as a quotient p/q of relatively
prime polynomials, which implies that p and q have disjoint zero sets. Alter-
natively, one can use the Euclidean algorithm to construct real polynomials u
and v such that up+ vq = 1 and appeal to Theorem 3.5.

In order to investigate more general singularities, we first require some
basic definitions. Given a set S ⊂ R, we let S+ denote the set of right-hand
accumulation points, so that x ∈ S+ if and only if there exists a decreasing
sequence of points xj ∈ S with xj → x+ converging to x from the right.
Similarly, S− will denote the set of all left-hand accumulation points. Note
that S+ ∪ S− ∪ S = S equals the closure of S, while S \ (S+ ∪ S−) are
the isolated points of S. Let S± = S+ ∩ S− denote the set of two-sided
accumulation points, and S0 = S± ∩ S those that belong to S.

The following terminology has been adapted from Bourbaki, [1][§II.1.3] and
Dieudonné, [2][§VII.6], who considered the particular case of functions whose
domain is an interval.

Definition 3.8. A function f : R → R will be called regulated if, for every
x ∈ (dom f)+, the right hand limit f(x+) exists, and for every x ∈ (dom f)−,
the left hand limit f(x−) exists.

Every monotone function is regulated, as is every function of bounded vari-
ation, being the difference of two monotone functions, [11][ p. 86]. According
to a remark in Bourbaki, [1][p. II.6], the regulated functions defined on an
interval form an algebra — indeed, they form what we will later call a Φ–
algebra, cf. Definition 5.1, that is uniformly closed, [1][p. II.5]. The following
basic characterization of regulated functions can be found in [1, 2].

Theorem 3.9. A function f whose domain is a compact interval is regulated
if and only if it is the uniform limit of step functions.

Classically, the condition that a real function f be “continuous at a point
x” requires that x ∈ (dom f)0 is a two-sided accumulation point in its domain,
and f(x+) = f(x−) = f(x). We wish to extend this usual notion of conti-
nuity to other types of points, and the following definition provides a natural
generalization.
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Definition 3.10. Let f : R→ R be regulated. A point x0 ∈ R will be called
a point of generalized continuity of f if either f is continuous at x0, or f is
not defined at x0, but has a limit as x→ x0.

Note that points of generalized continuity all belong to the closure dom f
of the domain of f . In particular, all isolated points in the domain of f are
included as points of generalized continuity.

Definition 3.11. The continuity set C(f) ⊂ R of a regulated function f : R→
R is the set of all points of generalized continuity x ∈ dom f . The discontinuity
set is defined as D(f) = dom f \ C(f). The set of two-sided discontinuities of
f is

D(f)∗ = {x ∈ (dom f)±|f(x+) 6= f(x−)}. (3.7)

Note that f may or may not be defined at points on its discontinuity
set. For us, the most important (and easiest to analyze) case is when D(f) ∩
dom f = ∅; so that f is not actually defined at any discontinuity point. This
implies that every discontinuity is a two-sided discontinuity, so D(f) = D(f)∗,
cf. (3.7).

Remark. If f is not regulated, then one enlarges its discontinuity set D(f) to
include all right hand accumulation points x ∈ (dom f)+ where the right hand
limit f(x+) does not exist, and, similarly, all left hand accumulation points
x ∈ (dom f)− where f(x−) does not exist.

Definition 3.12. A function f is called generalized continuous if D(f) = ∅,
so that every point in dom f is a point of generalized continuity.

Remark. In particular, every generalized continuous function is regulated.
In Bourbaki, [1][Théorème II.3], it is proved that the discontinuity set of a
regulated function whose domain is an interval is a countable set.

The generalized continuous functions are those that can be continuously
interpolated — meaning continuously extended to all of R.

Definition 3.13. A continuous extension of a function f : R→ R is a function
h ∈ C(R) such that h | dom f = f .

Proposition 3.14. A function f admits a continuous extension if and only
if f is generalized continuous.

Proof. The proof of the direct statement is easy. To prove the converse, let
a = inf{dom f}, b = sup{dom f}, so that dom f ⊂ [ a, b ]. Given a < x < b,
define

mx = sup {y ∈ dom f |x ≥ y}, Mx = inf{y ∈ dom f |x ≤ y}.
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Note that mx = Mx if and only if either x ∈ dom f ∪ (dom f)± is either in the
domain of f or is a two-sided accumulation point thereof. The function

h(x) =



f(a+), x ≤ a,
f(b−), x ≥ b,
f(x), x ∈ dom f,

f(x+) = f(x−), x ∈ (dom f)±,
(x−mx)f(Mx)+(Mx−x)f(mx)

Mx−mx
, a < x < b, mx 6= Mx,

defines a continuous extension to f .
Proposition 3.14 generalizes the classical interpolation result that any func-

tion whose domain is a discrete subset of R has a continuous extension. Com-
bining Propositions 3.2 and 3.14, we deduce the following characterization of
absolutely polynomial functions of degree 0.

Corollary 3.15. A function f is absolutely polynomial of degree 0 if and only
if | f | is generalized continuous.

We next recall the standard definition of piecewise continuity, which is
usually stated just in the case that the domain of f is an interval, or, more
generally, a set of the form dom f = I \ D, where I ⊂ R is an interval, and
D ⊂ I a discrete subset.

Definition 3.16. A function f : R→ R is called piecewise continuous if it is
regulated and its discontinuity set D(f) is a discrete set which has no accu-
mulation point in R.

Theorem 3.17. A piecewise continuous function on R is absolutely polyno-
mial of degree at most 2. The degree is equal to

(a) 0 if | f | is generalized continuous,

(b) 1 if (a) fails, and at each x ∈ D(f) ∩ (dom f)0 either

i) f(x), f(x+), and f(x−) all have the same sign (including 0) or,

ii) exactly two of the three values f(x), f(x+), f(x−) are equal,

(c) 2 if there exist one or more points in x ∈ D(f) ∩ (dom f)0 where f(x),
f(x+), f(x−), are different, not all having the same sign.

Proof. Assume that case (a) does not hold. We then begin by assuming that
all the discontinuities in f are two-sided, D(f) = D(f)∗, and, moreover, f is
not defined at any discontinuity point, D(f) ∩ dom f = ∅. This means that
the only discontinuities xj ∈ D(f) are where f(x+

j ) 6= f(x−j ) and f(xj) is not
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defined. We shall prove that in this case f is linearly absolutely polynomial.
Let

αj = f(x+
j )− f(x−j ) 6= 0, and βj =

∣∣ f(x+
j )
∣∣− ∣∣ f(x−j )

∣∣ , (3.8)

denote the jumps in f and | f | at the point xj ∈ D(f), respectively. Define
the jump ratio at xj to be

ρj =
βj
αj

=

∣∣ f(x+
j )
∣∣− ∣∣ f(x−j )

∣∣
f(x+

j )− f(x−j )
. (3.9)

Note that if both f(x−j ) and f(x+
j ) are positive, then αj = βj , so ρj = 1,

while if f(x−j ) and f(x+
j ) are both negative, αj = −βj , so ρj = −1. Choose

g1 ∈ C(R) to be any continuous function that interpolates the jump ratios:

g1(xj) = ρj . (3.10)

Note that g1 exists because D(f) is discrete, so the xj have no accumulation
points. The claim is that the function

g̃0(x) = | f(x) | − g1(x)f(x), x ∈ dom f, (3.11)

is generalized continuous, and so has a continuous extension to all of R, which
we call g0 ∈ C(R). This implies that | f | = g0 + g1f is (linearly) absolutely
polynomial. Indeed, the only points where g̃0 is not continuously defined are
the xj ∈ D(f); at such points we have

g0(x+
j )−g0(x−j ) =

∣∣ f(x+
j )
∣∣−∣∣ f(x−j )

∣∣−g1(xj)
[
f(x+

j )−f(x−j )
]

= βj−ρjαj = 0,

so that g̃0 can be continuously extended to xj , which completes the proof in
this case. Adapting the construction of the functions g0, g1 for one-sided dis-
continuities, e.g., where f(x) 6= f(x+), while f(x−) is not defined, is straight-
forward. Therefore, we have proven that f is linearly absolutely polynomial
provided D(f) ∩ (dom f)0 = ∅.

Now suppose that there exist one or more points xj ∈ D(f)∩ (dom f)0, so
that f(x+

j ), f(x−j ), f(xj) are all defined, but not all equal. In order that | f | =
g0 + g1f be linearly absolutely polynomial, we must be able to simultaneously
satisfy all three conditions

| f(xj) | = g0(xj) + g1(xj)f(xj),∣∣ f(x+
j )
∣∣ = g0(xj) + g1(xj)f(x+

j ),∣∣ f(x−j )
∣∣ = g0(xj) + g1(xj)f(x−j ),

(3.12)

at the discontinuity point xj . The possibilities listed in case (b) are necessary
and sufficient for the solvability of the linear system (3.12) for g0(xj), g1(xj).
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If this holds at every xj ∈ D(f)∩ (dom f)0, then the preceding proof — where
we interpolate the values of g1 at the discontinuities and then use (3.11) to de-
termine g0 — works, thereby proving that f is linearly absolutely polynomial.
On the other hand, if there exists xj ∈ D(f) ∩ (dom f)0 where (3.12) can-
not be simultaneously satisfied, then f is not linearly absolutely polynomial.
However, we can represent | f | = g0 + g1f + g2f

2 as a quadratic polynomial
in f . Indeed, the corresponding quadratic conditions

| f(xj) | = g0(xj) + g1(xj)f(xj) + g2(xj)f(xj)2,∣∣ f(x+
j )
∣∣ = g0(xj) + g1(xj)f(x+

j ) + g2(xj)f(x+
j )2,∣∣ f(x−j )

∣∣ = g0(xj) + g1(xj)f(x−j ) + g2(xj)f(x−j )2,

(3.13)

do have a solution g0(xj), g1(xj), g2(xj), since the (Vandermonde) determinant
of the coefficient matrix is nonzero when f(x+

j ), f(x−j ), f(xj) are all different.
We then continuously interpolate the values of g1(xj) and g2(xj) to produce
g1, g2 ∈ C(R). The final function g0 is defined so as to continuously extend
g̃0 = | f | − g1f − g2f2, which is defined on dom f . The generalized continuity
of g̃0 relies on the fact that g̃0(xj) = g̃0(x+

j ) = g̃0(x−j ) as a consequence of
(3.13). This completes the proof of the Theorem.

Remark. Note that even though the discontinuities of tanx are discrete, it is
quadratically, and not linearly absolutely polynomial, because it has infinite
one-sided limits and so Theorem 3.17 does not apply.

An alternative approach to study the discontinuities of absolutely poly-
nomial functions is to work locally, in a neighborhood of each individual sin-
gularity. We first prove that a function with a single jump discontinuity is
absolutely polynomial and then appeal to the following local version of our
basic definition, which we generalize to arbitrary topological spaces in the
obvious manner.

Definition 3.18. A function is locally absolutely polynomial of degree n on a
topological space X if for each point x ∈ X there is a neighborhood x ∈ U ⊂ X
such that either f is not defined on U , U∩dom f = ∅, or the restriction f |U is
absolutely polynomial of degree n on U , meaning that we can find continuous
functions g0, . . . , gn ∈ C(U) such that (3.1) holds for all x ∈ U ∩ dom f .

The next result says that, for reasonable topological spaces, we only need
understand the local behavior of absolutely polynomial functions.

Theorem 3.19. If X is a paracompact topological space, then every locally
absolutely polynomial function of degree ≤ n is absolutely polynomial of degree
≤ n.
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Proof. The hypothesis means that the collection U = {Uα} of open subsets
where f is locally absolutely polynomial forms an open cover of X. Given
Uα ∈ U , let fα = f |Uα. We can then write

| fα(x) | =
n∑
k=0

gα,k(x) fα(x)k, x ∈ dom fα = Uα ∩ dom f,

where gα,k ∈ C(Uα). The one requirement is that the maximal degree n of
the sum does not depend on Uα. According to Dugundji, [3][p. 170], there
exists a locally finite partition of unity subordinate to this cover, so we can
find functions κα ∈ C(X) such that

∑
κα = 1 where suppκα ⊂ Uα contained

in one of the neighborhoods. We can then write

| f | =
∑
α

κα | f | =
∑
α

κα | fα | =
n∑
k=0

∑
α

κα gα,k (fα)k.

Since suppκα ⊂ Uα, the function gk =
∑
α κα gα,k is well defined and contin-

uous on all of X, and hence | f | =
∑n
k=0 gk f

k, proving the result.

Theorem 3.19 does not hold if one removes the bound on the local abso-
lutely polynomial degree — an example appears at the end of this section. One
can now reprove Theorem 3.17 utilizing Theorem 3.19 by first showing that
any function with a single jump discontinuity is absolutely polynomial, which
gives the local result since we are assuming that the discontinuities have no
accumulation point. Another application is that a function which has a fixed
sign in a neighborhood of any of its discontinuities is automatically absolutely
polynomial. This result explains why the jump ratio limit trivially exists when
the limiting value is nonzero.

Theorem 3.20. Suppose that a function f has the property that, for every
point of discontinuity x ∈ D(f), there exists a neighborhood x ∈ U ⊂ R such
that either f |U ≥ 0 or f |U ≤ 0. Then f is absolutely polynomial of degree
at most 1.

If we allow the discontinuities of a regulated function to have an accumu-
lation point, then things become more interesting, and we may actually step
outside the class of absolutely polynomial functions.

Example 3.21. Consider the function

f(x) =

{
x− 2

4i+1 ,
1

2i+1 < x < 1
2i ,

0, otherwise,
(3.14)
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where i = 1, 2, 3, . . . . Thus f has discontinuities at xj = 1
j , j = 1, 2, 3, . . .,

and

f(x−2i) =
1

2i(4i+ 1)
, f(x+

2i) = 0, f(x−2i+1) = 0, f(x+
2i+1) =

−1
(2i+ 1)(4i+ 1)

.

Therefore the jumps (3.8) and ratios (3.9) are

α2i = β2i =
−1

2i(4i+ 1)
, ρi = (−1)i, α2i+1 = −β2i+1 =

−1
(2i+ 1)(4i+ 1)

Note that the ratios ρj do not have a limit as xj → 0 and so one cannot
construct a continuous extension satisfying (3.10).

To actually prove that (3.14) is not absolutely polynomial, suppose on
the contrary that we can find continuous functions g0, . . . , gn satisfying (3.1).
Evaluating the right and left hand limits at the discontinuities xj leads to the
following. At x−2i and x+

2i, we find

1
2i(4i+ 1)

=
n∑
k=0

gk

(
1
2i

)
·
(

1
2i(4i+ 1)

)k
, 0 = g0

(
1
2i

)
. (3.15)

At x−2i+1 and x+
2i+1, we find

0 = g0

(
1

2i+ 1

)
,

1
(2i+ 1)(4i+ 1)

=
n∑
k=0

gk

(
1

2i+ 1

)
·
(

−1
(2i+ 1)(4i+ 1)

)k
.

(3.16)
Conditions (3.15) and (3.16) imply, respectively,

1 = g1

(
1
2i

)
+

n∑
k=2

gk

(
1
2i

)
·
(

1
2i(4i+ 1)

)k−1

,

1 = −g1
(

1
2i+ 1

)
−

n∑
k=2

gk

(
1

2i+ 1

)
·
(

−1
(2i+ 1)(4i+ 1)

)k−1

.

(3.17)

Now we let i→∞. In view of the continuity of gk, both summations in (3.17)
go to 0. This leads to the final contradiction: g1(0) = 1 = −g1(0).

The function (3.14) is continuous at the accumulation point x = 0, and
even has bounded variation, since

∫ 1

0
| f ′(x) | dx =

∑∞
i=0

1
2i(2i+1) < 1. We have

therefore shown that not every function of bounded variation is absolutely
polynomial. Interestingly, if we move the function (3.14) slightly, replacing f
by f + k where k is any nonzero constant, or more generally any continuous
function with k(0) 6= 0, then the resulting function is absolutely polynomial
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because it will have a fixed sign in some small neighborhood of 0, piecewise
continuous everywhere else, and so our local Theorem 3.19 applies. In other
words, unlike sin 1

x , any slight perturbation of this non-absolutely polynomial
function is absolutely polynomial.

Remark. The product of two piecewise continuous functions is also piecewise
continuous, and hence by Theorem 3.17 absolutely polynomial. On the other
hand, we already saw that the product of a continuous and an absolutely poly-
nomial function need not be absolutely polynomial. The function in Example
3.21 provides a counterexample to the conjecture that the product of a con-
tinuous and a regulated absolutely polynomial function must be absolutely
polynomial. Indeed, consider the function

h(x) =


(

1− 2
(4i+1)x

)
sec π

x ,
1

2i+1 < x < 1
2i , x 6= 2

4i+1 ,

4i+1
2π , x = 2

4i+1 ,

0, otherwise,

(3.18)

where i = 1, 2, 3, . . . . A straightforward application of l’Hôspital’s Rule proves
that h is a regulated function; in fact, h is continuous at the points 0 and

2
4i+1 , i = 1, 2, . . . . Moreover, h(x) ≥ 0 for all x, and hence h is trivially
absolutely polynomial (only a single point of accumulation prevents it from
being piecewise continuous). Let

g(x) =

{
x cos πx , x 6= 0,
0, x = 0.

(3.19)

Then g is continuous, but the product g · h = f is our non-absolutely polyno-
mial regulated function (3.14).

Let us now return to a more detailed discussion of general regulated func-
tions, which will eventually lead us to the complete characterization of those
that are absolutely polynomial (at least in the case D(f)∩dom f = ∅). While
(3.14) provides an example of how things can go wrong, the proof of Theorem
3.17 can be adapted to certain types of regulated functions.

Theorem 3.22. A regulated function is absolutely polynomial of degree ≤ 1
provided every accumulation point x∗ = limxj ∈ D(f)∗ of its discontinuity set
is a point of continuity of f , and the jump ratios ρj, as defined in (3.8), have
a limit as xj → x∗.

The fact that the jump ratios have a limit at each accumulation point
allows us to construct the continuous interpolating function g1 as before; the
rest of the proof is similar. If f(x∗) > 0, then, as remarked above, ρj = +1
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for j sufficiently large, while if f(x∗) < 0, then ρj = −1 for j sufficiently
large. Therefore, the jump ratios ρj will certainly have a limit except, possibly,
when f(x∗) = 0, as was the case in Example 3.21. This is a reflection of the
“misbehavior” of the absolute function at the origin.

Remark. One can easily construct a function whose (left and right) jump
ratios have any limit −1 ≤ ρ∗ ≤ 1. The cases ρ∗ = ±1 are trivial; otherwise,
set σ = (1 + ρ∗)/(1 − ρ∗), so ρ∗ = (σ − 1)/(σ + 1) and σ ≥ 0. Let the
right and left hand limits of f at a point of discontinuity xj be f(x−j ) = −cj
f(x+

j ) = σcj , where the cj > 0 are arbitrary. Then ρj = ρ∗ for all j. If
xj → x+

∗ , say, and f(x+
∗ ) exists, then, necessarily, f(x+

∗ ) = 0 unless ρ∗ = ±1,
so that we must let cj → 0 in order to keep f regulated. Furthermore, one
can use different sequences on the right and left of the limit point x∗ so as
to make the jump ratio itself have any prescribed right and left hand limits
ρ−∗ and ρ+

∗ at x∗, as long as they are both between −1 and 1. However, if
f is regulated, and both −1 < ρ−∗ , ρ

+
∗ < +1, then, by the preceding remark,

f(x+
∗ ) = 0 = f(x−∗ ), and so f can be continuously extended to x∗ by setting

f(x∗) = 0.

On the other hand, if f is not continuous at an accumulation point of its
discontinuity set D(f), then the argument in Theorem 3.17 does not work,
and we cannot in general write | f | as a linear polynomial in f . However, it
may be possible to write | f | as a quadratic or higher degree polynomial. For
example, suppose xj → x−∗ and the jump ratios (3.9) have a limit ρj → ρ−∗ at
x∗, while f(x+

∗ ) 6= f(x−∗ ). If the limiting jump ratio ρ−∗ equals the jump ratio
ρ∗ at x∗, so

lim
xj→x−∗

∣∣ f(x+
j )
∣∣− ∣∣ f(x−j )

∣∣
f(x+

j )− f(x−j )
= lim

j→∞
ρj = ρ−∗ = ρ∗ =

| f(x+
∗ ) | − | f(x−∗ ) |

f(x+
∗ )− f(x−∗ )

,

then the argument used in Theorem 3.17 demonstrates that f is still lin-
early absolutely polynomial. For instance, this will automatically hold if
f(x−∗ )f(x+

∗ ) > 0, so that the right and left hand limits have the same sign
at x∗, although this case is trivially covered by Theorem 3.20. However, if the
limiting jump ratio does not agree with the jump ratio at x∗, then it is not
possible to write | f | as a linear polynomial g0 + g1f with g0, g1 continuous at
x∗. In this case, let us try to represent | f | = g0 + g1f + g2f

2 as a quadratic
polynomial. Evaluating at x+

j and x−j and subtracting the resulting equations,
we find

ρj = g1(xj) + g2(xj)
[
f(x−j ) + f(x+

j )
]
. (3.20)



272 Peter J. Olver and Robert Raphael

On the other hand, at x∗ itself,∣∣ f(x−∗ )
∣∣ = g0(x∗) + g1(x∗)f(x−∗ ) + g2(x∗)f(x−∗ )2,∣∣ f(x+

∗ )
∣∣ = g0(x∗) + g1(x∗)f(x+

∗ ) + g2(x∗)f(x+
∗ )2.

(3.21)

Letting xj → x−∗ in (3.20) and subtracting the equations in (3.21), we find

ρ−∗ = g1(x∗) + 2g2(x∗)f(x−∗ ),

ρ∗ = g1(x∗) + g2(x∗)
[
f(x−∗ ) + f(x+

∗ )
]
.

(3.22)

If f(x−∗ ) 6= f(x+
∗ ), then we can uniquely solve (3.22) for g1(x∗), g2(x∗). We

can now specify g2(x) = g2(x∗) to be constant, and use (3.20) to define inter-
polation values for g1(xj); these will have the proper limit g1(xj) → g1(x∗)
because of (3.22), and hence allow us to define g1 as a continuous function.
The final step is to verify that g̃0 = | f |−g1f −g2f2 is generalized continuous
and hence can be extended to a continuous function g0 ∈ C(R).

If x∗ is also an accumulation point from the right, then one also needs to
follow through the limiting procedure in that direction. The result will be
another equation of the form

ρ+
∗ = g1(x∗) + 2g2(x∗)f(x+

∗ ), (3.23)

which must be satisfied along with (3.22). As long as f(x+
∗ ) 6= f(x−∗ ), the full

system (3.22) and (3.23) has a solution if and only if

ρ∗ = 1
2

[
ρ−∗ + ρ+

∗
]
. (3.24)

Note that, according to an earlier remark, we must have either ρ−∗ = ±1
or ρ+

∗ = ±1, since otherwise f(x+
∗ ) = 0 = f(x−∗ ). If (3.24) does not hold, then

f will not be quadratically absolutely polynomial, and one must then look at
representing | f | = g0 + g1f + g2f

2 + g3f
3 as a cubic in f , which requires∣∣ f(x−∗ )

∣∣ = g0(x∗) + g1(x∗)f(x−∗ ) + g2(x∗)f(x−∗ )2 + g3(x∗)f(x−∗ )3,∣∣ f(x+
∗ )
∣∣ = g0(x∗) + g1(x∗)f(x+

∗ ) + g2(x∗)f(x+
∗ )2 + g3(x∗)f(x+

∗ )3.
(3.25)

Performing the same limiting procedure in this case, we find the conditions

ρ−∗ =g1(x∗) + 2g2(x∗)f(x−∗ ) + 3g3(x∗)f(x−∗ )2,

ρ∗ =g1(x∗) + g2(x∗)
[
f(x−∗ ) + f(x+

∗ )
]

+ g3(x∗)
[
f(x−∗ )2 + f(x−∗ )f(x+

∗ ) + f(x+
∗ )2
]
,

ρ+
∗ =g1(x∗) + 2g2(x∗)f(x+

∗ ) + 3g3(x∗)f(x+
∗ )2.

(3.26)
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Treating (3.26) as a system of three linear equations for g1(x∗), g2(x∗), g3(x∗),
we note that its coefficient matrix has determinant

(
f(x+
∗ ) − f(x−∗ )

)
3, and

hence, when x∗ is a two-sided point of discontinuity, there is a unique solution.
A similar argument as above allows us to conclude that in such cases f is
cubically absolutely polynomial.

So far, we have not allowed f to be defined at its limiting discontinuity. If
f(x∗) exists, then there is another condition that must be satisfied, which, in
the cubic case under consideration, is

| f(x∗) | = g0(x∗) + g1(x∗)f(x∗) + g2(x∗)f(x∗)2 + g3(x∗)f(x∗)3. (3.27)

It may not be possible to simultaneously satisfy the complete system of con-
ditions (3.25), (3.26), (3.27), which would mean that f cannot be absolutely
polynomial of degree ≤ 3. Indeed, if we treat2 (3.25), (3.26), (3.27) as a linear
system for the 4 unknowns g0(x∗), g1(x∗), g2(x∗), g3(x∗), then, by basic linear
algebra, we can find a solution if and only if the vector formed by the left hand
sides lies in the column space of the resulting coefficient matrix. With the aid
of Mathematica, the following conclusion was reached: such a function f is
cubically absolutely polynomial if and only if either

(a) any two of the three values f(x∗), f(x+
∗ ), f(x−∗ ) are equal, or

(b) the limiting jump ratios satisfy the complicated condition

(f(x∗)− f(x−∗ )) ρ+
∗ + (f(x∗)− f(x+

∗ )) ρ−∗

=
(f(x−∗ )− f(x∗))(2f(x∗) + f(x−∗ )− 3f(x+

∗ ))
(f(x+

∗ )− f(x∗))(f(x+
∗ )− f(x−∗ ))

∣∣ f(x+
∗ )
∣∣

+
(f(x−∗ )− f(x+

∗ ))2

(f(x∗)− f(x+
∗ ))(f(x∗)− f(x−∗ ))

| f(x∗) |

+
(f(x+

∗ )− f(x∗))(2f(x∗) + f(x+
∗ )− 3f(x−∗ ))

(f(x−∗ )− f(x∗))(f(x−∗ )− f(x+
∗ ))

∣∣ f(x−∗ )
∣∣ .

(3.28)

If neither condition holds, then the function f is not cubically absolutely
polynomial. However, a further analysis proves that it will, in such cases,

2Actually, there are only 5 independent equations, since the middle equation for ρ∗ in
(3.26) is a consequence of (3.25).
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always be absolutely polynomial of degree 4. Indeed, the required conditions,∣∣ f(x−∗ )
∣∣ = g0(x∗) + g1(x∗)f(x−∗ ) + g2(x∗)f(x−∗ )2

+ g3(x∗)f(x−∗ )3 + g4(x∗)f(x−∗ )4,∣∣ f(x+
∗ )
∣∣ = g0(x∗) + g1(x∗)f(x+

∗ ) + g2(x∗)f(x+
∗ )2

+ g3(x∗)f(x+
∗ )3 + g4(x∗)f(x+

∗ )4,

| f(x∗) | = g0(x∗) + g1(x∗)f(x∗) + g2(x∗)f(x∗)2

+ g3(x∗)f(x∗)3 + g4(x∗)f(x∗)4,

ρ−∗ = g1(x∗) + 2g2(x∗)f(x−∗ ) + 3g3(x∗)f(x−∗ )2 + 4g4(x∗)f(x−∗ )3,

ρ+
∗ = g1(x∗) + 2g2(x∗)f(x+

∗ ) + 3g3(x∗)f(x+
∗ )2 + 4g4(x∗)f(x+

∗ )3,

(3.29)

form a linear system of 5 equations for the 5 unknowns g0(x∗), g1(x∗), g2(x∗),
g3(x∗), g4(x∗). The determinant of the coefficient matrix is

(f(x−∗ )− f(x+
∗ ))4 (f(x−∗ )− f(x∗))2 (f(x+

∗ )− f(x∗))2,

which does not vanish when all three values f(x∗), f(x+
∗ ), f(x−∗ ) are distinct.

The complete generalization of the method indicated by this discussion
will be presented shortly, but it is worth stating a particularly important case
here. If f is monotone, then the right and left hand jump ratio limits always
exist, since they are just ±1, and hence the preceding argument proves the
following:

Proposition 3.23. Any monotone function is absolutely polynomial of degree
at most 4.

Most monotone functions are absolutely polynomial of degree ≤ 2. The
only discontinuity that can cause the degree to be higher is a point x∗ ∈ D(f)∗
where the right and left hand limits have opposite signs, f(x−∗ )f(x+

∗ ) ≤ 0.
Note that by monotonicity, there can be at most one such point that is both
a right and left hand accumulation point for the discontinuity set D(f). Let
us assume for definiteness that f is increasing. Since f(x) < 0 for x < x∗, and
f(x) > 0 for x > x∗, we have ρ+

∗ = 1, ρ−∗ = −1. Therefore, condition (3.24)
implies that a monotone function that has such a discontinuity is quadratically
absolutely polynomial if and only if ρ∗ = 0, which requires f(x+

∗ ) = −f(x−∗ ) 6=
0. Otherwise, the function f is cubically absolutely polynomial if and only if
one of the following holds.

(a) f(x∗) is not defined,
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(b) (f(x∗) = f(x−∗ ),

(c) (f(x∗) = f(x+
∗ ),

(d) (f(x∗) > 0 and f(x−∗ )2 = 1
2f(x∗)[f(x−∗ ) + f(x+

∗ )], or

(e) (f(x∗) < 0 and f(x+
∗ )2 = 1

2f(x∗)[f(x−∗ ) + f(x+
∗ )].

The latter two conditions follow from (3.28). If none of these conditions is
satisfied, then f is absolutely polynomial of degree 4.

Remark. A function of bounded variation is always the sum of two absolutely
polynomial functions of bounded variation obtained either by writing it as the
sum of its positive and negative parts, or as the difference of two monotone
functions and invoking Proposition 3.23. Multiplying each of the functions g
and h in (3.18) and (3.19) by an appropriate function, e.g., k(x) = e−1/| x |,
results in an example of two absolutely polynomial functions of bounded vari-
ation whose product is not absolutely polynomial — this is because the first
jump ratios of f , cf. (3.14) and f · k2 are the same. It is also interesting to
note just how quickly things can go askew: the function (3.14), while not abso-
lutely polynomial, can be written as f = (f + a)− a, where f + a is monotone
increasing, and a is monotone increasing and continuous — simply let a be
any such function that interpolates the values [1/(2i+ 2)]+ [1/(2i+ 1)(4i+ 1)]
at the points x2i+1.

Example 3.24. We construct examples of monotone functions that are cubi-
cally and quartically absolutely polynomial. The points

xm,n = − 1
n

+
1

(m+ 1)n(n+ 1)
, ym,n = − 1

n+ 1
− 1

(m+ 2)n(n+ 1)
, zn = − 1

n
,

defined for all positive integers m,n, satisfy

xm,n < ym′,n, for all m,m′, xm,n → z+
n , ym,n → z−n+1, as m→∞.

Define

g(x) =


−1− 1

n + 1
3n(n+1) + 1

12mn(n+1) , xm,n < x < xm+1,n,

−1− 1
n+1 −

1
12mn(n+1) , ym,n < x < ym+1,n,

0, x > 0.

The jump ratios at xm,n, ym,n, zn are all equal to −1, and have a limit at 0−

equal to the jump ratio of g at 0, so that g is linearly absolutely polynomial.
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Now set f(x) = g(x)−g(−x) where defined, so that f is monotone increas-
ing, and the discontinuities of f lie on both sides of the origin. The jump ratios
are still −1 at the negative discontinuities and +1 at positive discontinuities.
If f(0) is not defined, or f(0) = ±1, then f is cubically, but not quadratically,
absolutely polynomial. On the other hand, if we define the value of f at 0
so that | f(0) | < 1, then (3.28) does not hold, and the resulting function is
quartically absolutely polynomial.

Remark. One can build more complicated absolutely polynomial functions
of degree 3 and 4 by putting monotone increasing ones on certain intervals
and monotone decreasing ones on others.

Let us now formalize the preceding discussions to cover yet more general
situations. Given the discontinuity set D0(f) = D(f) of a regulated func-
tion, we define the set of “kth order discontinuities” Dk(f), inductively, so
that Dk+1(f) equals the intersection of the accumulation points of Dk(f) with
D(f). One can construct functions (of bounded variation) which have discon-
tinuities up to some finite order k, but with Dk+1(f) = ∅, as well as examples
with infinite order discontinuities.

Example 3.25. Take the rationals Q1 = Q ∩ [0, 1] between 0 and 1, and
put them in bijective correspondence with the natural numbers. For the nth

rational xn define the step function

sn(x) =

{
0, x < xn,

2−n, x ≥ xn.

Let f =
∑
sn. The function f is well-defined and monotone increasing be-

cause, at each point x, the series
∑
sn(x) is a sub-series of the convergent

geometric series
∑

2−k = 1. Since f is discontinuous at each rational, its
higher derived sets are all the same, Dn(f) = Q1. Note that this particular
function is linearly absolutely polynomial since it is always positive. Subtract-
ing a small constant, e.g., 1

2 , from it will change it to a higher degree absolutely
polynomial function.

Definition 3.26. Let f be a regulated function. The average nth power of f
is the function

fn(x) =
1

n+ 1

(
f(x+)n+1 − f(x−)n+1

f(x+)− f(x−)

)
=

1
n+ 1

n∑
i=0

f(x+)if(x−)n−i, x ∈ (dom f)±.
(3.30)
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Note that if f is defined and continuous at x, then fn(x) = f(x)n. Note
also that

fn(x+) = f(x+)n, fn(x−) = f(x−)n, (3.31)

for every point x ∈ (dom f)±. Consequently, fn is regulated.

Definition 3.27. The f–jump ratio function of a regulated function h is

ρh(x) =
h(x+)− h(x−)
f(x+)− f(x−)

, x ∈ dom ρh = D(f)∗ ∩ (domh)±. (3.32)

If h = | f |, then (3.32) recovers our original jump ratio function (3.9).

Definition 3.28. Let f be a regulated function. We define P(n)(f) to be
the set of regulated functions h such that domh ⊂ (dom f)± and there exist
continuous functions g0, . . . , gn ∈ C(R) such that

h(x) =
n∑
k=0

gk(x) fk(x), for all x ∈ domh. (3.33)

Each P(n)(f) is a real vector space, and their union P∗(f) =
⋃
P(n)(f)

is an algebra. Now, h ∈ P(0)(f) if and only if h is generalized continuous, as
in Proposition 3.14. More generally, if h ∈ P(n)(f), then D(h) ⊂ D(f). If
domh ∩ D(f) = ∅, then (3.33) reduces to our usual polynomial condition

h(x) =
n∑
k=0

gk(x) f(x)k, for all x ∈ domh. (3.34)

In particular, suppose f is a regulated function which is not defined at its
points of discontinuity: D(f) ∩ dom f = ∅. Then f is absolutely polynomial
of degree n if and only if | f | ∈ P(n)(f) \ P(n−1)(f).

Lemma 3.29. Let f be a regulated function with D(f) ∩ dom f = ∅. A
regulated function h ∈ P(n)(f), n ≥ 1, if and only if its f–jump ratio function
ρh is regulated and ρh ∈ P(n−1)(f).

Proof. Suppose h ∈ P(n)(f). Consider a point x ∈ D(h) ⊂ D(f) = D(f)∗.
We are able to compute the right and left hand limits of (3.33) at x using
(3.31). Subtracting the resulting formulae, we find that

h(x+)− h(x−) =
n∑
k=1

gk(x)
[
f(x+)k − f(x−)k

]
.
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Dividing by f(x+)− f(x−) produces the formula for the jump ratio function:

ρh(x) =
n∑
k=1

k gk(x) fk−1(x), x ∈ D(f). (3.35)

Clearly ρh is regulated, and therefore ρh ∈ Pn−1(f).
To prove the converse, suppose that (3.35) holds, so that g1, . . . , gn are

known. We can then use (3.33) to define g0(x) for x ∈ domh. Comparing its
right and left hand limits, it is not hard to see that g0 can be continuously
extended to define g0 ∈ C(R).

Since the case n = 0 is trivial, Lemma 3.29 provides an inductive mecha-
nism for determining when a given regulated function belongs to P(n)(f). One
merely checks whether the successive f–jump ratio functions are regulated, up
until the nth order one, which must be generalized continuous. In particular,
this solves the problem of determining which regulated functions, that are not
defined on their domain of discontinuity, are absolutely polynomial.

Theorem 3.30. Let f be regulated with D(f) ∩ dom f = ∅. Set h0 = | f |.
Then f is absolutely polynomial of degree n if and only if for each k =
1, . . . , n−1, the kth order f–jump ratio function hk = ρhk−1 , defined on D(f)∗,
is regulated, and D(hk) 6= ∅, while hn = ρhn−1 is generalized continuous.

Remark. The kth order jump function hk has the property that D(hk) ⊂
Dk(f) for each k. In particular, if Dn(f) = ∅ and the jump ratios are all regu-
lated, then f is absolutely polynomial of degree ≤ n. Example 3.21 illustrates
the fact that the jump ratios for a regulated function need not be regulated.
Indeed, for (3.14), D1(f) is empty, and f is not absolutely polynomial.

Example 3.31. For the function f in Example 3.24, the discontinuity set is
D(f) = {0,±xm,n,±ym,n,±zn}. Leaving f not defined on D(f), the points
±xm,n and ±ym,n are isolated discontinuities, while the points ±zn are in the
first order discontinuity set D1(f). The first jump ratio function has values

h1(xm,n) = h1(ym,n) = h1(zn) = −1, h1(−xm,n) = h1(−ym,n) = h1(−zn) = 1,

and is discontinuous at 0, which is the only point in D2(f). The second
order jump ratio then has h2(±zn) = 0, and thus h2(0+) = 0 = h2(0−),
while h2(0) = 1, and so h2 is not continuous at 0. The third jump ratio has
h3(0) = 0, reconfirming our earlier conclusion that f is cubically absolutely
polynomial. On the other hand, Theorem 3.30 does not apply to the cases
(both cubic and quartic) when f(0) is defined. A general theorem covering
regulated functions that are defined at their points of discontinuity is more
technical, and we shall not attempt to state it here.
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Example 3.32. In this example, we construct regulated functions which are
absolutely polynomial of arbitrarily high degree. We begin with a variant of
the function considered in Example 3.21. Let 0 < ε < 1, 0 < r < 1, and define

g(1)
ε,r (x) =

{
(4−εr+4j)x−4ε

4−εr , ε
j+1 < x < ε

j ,

0, x ≤ 0, or x > ε,
(3.36)

where j = 1, 2, 3, . . . . Note that

supp g(1)
ε,r (x) ⊂ (0, ε),

∣∣∣ g(1)
ε,r (x)

∣∣∣ < ε. (3.37)

The function (3.36) has discontinuities at xj = ε/j, j = 1, 2, 3, . . ., and

g(1)
ε,r (x−j ) =

ε

j
, j ≥ 1, g(1)

ε,r (x+
j ) =

−ε2r
j(4− εr)

, j ≥ 2.

Therefore, ignoring x1, the jump ratios for (3.36) are all the same:

h1(xj) = ρj = 1− 1
2εr, j ≥ 2. (3.38)

Since the ratios ρj have a limit as xj → 0+, and g
(1)
ε,r is continuous at 0, we

conclude that (3.36) is linearly absolutely polynomial.

Now define f (2)
ε,r (x) = g

(1)
ε,r (−x) + 1

2

[
g
(1)
ε,r (x) + kε(x)

]
, where

kε(x) =

{
ε− x, 0 < x < ε,

0, x < 0, or x ≥ ε.
(3.39)

In view of (3.37), supp f (2)
ε,r ⊂ (−ε, ε),

∣∣∣ f (2)
ε,r

∣∣∣ < ε. Note that the disconti-

nuity set of f (2)
ε,r equals

{
0,±ε,± 1

2ε,±
1
3ε, . . .

}
; in particular f (2)

ε,r (0+) = 1
2ε,

f
(2)
ε,r (0−) = 0. Since f (2)

ε,r (x) agrees with g
(1)
ε,r (−x) when x < 0, its jump ratios

at the points −ε/j are the same as those of g(1)
ε,r at xj = ε/j, as given in (3.38).

Therefore, the first jump ratio function for f (2)
ε,r satisfies

h1

(
−ε
j

)
= 1− εr

2
, j ≥ 2 and hence h1(0−) = 1− εr

2
. (3.40)

On the other hand, since f (2)
ε,r (x) > 0 for all 0 < x < ε, the first jump ratios at

the positive discontinuity points ε/j are all equal to +1, and hence h1

(
ε
j

)
= 1,

j ≥ 1; so h1(0+) = 1. Since h1 is not continuous at 0, the function f
(2)
ε,r is
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not linearly absolutely polynomial. But h1 is regulated, and the first order
discontinuity set D1(f (2)

ε,r ) = {0} has no accumulation points, so by Theorem
3.30 f (2)

ε,r is quadratically absolutely polynomial. The second order jump ratio
at 0 is

h2(0) =
h1(0+)− h1(0−)

f
(2)
ε,r (0+)− f (2)

ε,r (0−)
= r. (3.41)

Using the functions f (2)
ε,r as our building blocks, we now proceed to induc-

tively construct a sequence of regulated functions f (n)
ε,r which are absolutely

polynomial of degrees n = 3, 4, . . . , and satisfy

supp f (n)
ε,r ⊂ (−ε, ε),

∣∣∣ f (n)
ε,r

∣∣∣ < ε. (3.42)

The key idea is to build up f
(n)
ε,r by adjoining suitably “compressed” copies

of the preceding function f
(n−1)
ε,r on intervals that converge to the origin. We

therefore first define

g(n−1)
ε,r =

∞∑
j=2

f
(n−1)
ε/4j2,εr/2

(
x− ε

j

)
. (3.43)

Note that, according to (3.42), the supports of the summands are all mutually
disjoint, and so there are no convergence issues to discuss. The inductive
hypothesis (3.42) (with n replaced by n− 1) implies that

supp g(n−1)
ε,r ⊂

(
0,

9
16
ε

)
,
∣∣∣ g(n−1)
ε,r

∣∣∣ < ε

16
. (3.44)

Moreover, g(n−1)
ε,r is continuous at 0 with g

(n−1)
ε,r (0) = 0. We then define

f (n)
ε,r (x) = g(n−1)

ε,r (−x) + 1
2

[
g(n−1)
ε,r (x) + kε(x)

]
. (3.45)

The inductive verification of (3.42) is immediate from (3.44). Moreover, (3.44)
and (3.39) imply that f (n)

ε,r (x) > 0 for all 0 < x < ε where defined, and

f (n)
ε,r (0−) = 0, f (n)

ε,r (0+) =
ε

2
. (3.46)

We claim that for n ≥ 2, all the relevant jump ratio functions hk for f (n)
ε,r

are regulated, and, moreover, the nth order one satisfies

hn(0) = (−1)nr. (3.47)

Because the supports of the summands in (3.43) are disjoint, the only new
limit point of concern is at 0. It can be approached in a variety of ways; i.e.,
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through discontinuities of varying orders. Positivity of f (n)
ε,r for 0 < x < ε

implies that the jump ratios at the positive discontinuity points are trivial:

hk(x) =

{
1, k = 1,
0, k > 1,

for any 0 < x ∈ Dk(f (n)
ε,r ). (3.48)

Therefore, h1(0+) = 1, while hk(0+) = 0 for k ≥ 2.
To understand the proof of the claims, the case of f (3)

ε,r is instructive. Its
first jump ratio function h1 is defined at all discontinuities and h1(0−) = 1,
either because by (3.48) its value is actually 1, or because by (3.40) its value has
the form 1− ε2r/4j2 which tends to 1 as the points converge to 0. Therefore,
the jump ratio function h1 for f (3)

ε,r is continuous at 0. At the next order,
f

(4)
ε,r is (essentially) built from repeated compressed copies of f (3)

ε,r on intervals
that approach 0 from the left. From the definition of limit, the fact that h1

approaches 1 in f (3)
ε,r means that for f (4)

ε,r the function h1 can be made arbitrarily
close to 1 on all but a finite number of intervals, and hence for all but finitely
many discontinuities in any sequence approaching 0 from the left. In short,
the first jump ratio function h1 for f (4)

ε,r , and indeed, inductively for all higher
f

(n)
ε,r , is continuous at 0 and takes the value h1(0) = 1 there.

Now consider the second order jump ratio function h2. For the function
f

(3)
ε,r , we can only approach 0 through points in D1(f (3)

ε,r ) = {0,±ε,± 1
2ε, . . .}.

From the right we get h2(0+) = 0 and from the left, using (3.41), h2(0−) =
1
2εr. Thus h2 is regulated, though not continuous at 0, and h3(0) = −r, in
accordance with (3.47). Proceeding to the second order jump ratio h2 for
f

(4)
ε,r , the preceding discussion implies that the limit from the right at −ε/j is
ε2r/4j2, while from the left it is 0. As the points converge to 0− both values
tend to 0, and hence h2(0−) = 0, while h2(0+) = 0 by (3.48). Again the same
will hold for h2 for all higher f (n)

ε,r . For f (4)
ε,r , the jump function h3 will be

discontinuous at 0, with h3(0−) = −εr/2, h3(0+) = 0, and thus, using (3.48),
h4(0) = r.

By a similar procedure, we prove that all jump ratio functions h1, . . . , hn
for f (n)

ε,r are regulated. Moreover, h1, . . . , hn−2 are all continuous at zero. But,
using our inductive hypothesis (3.47),

hn−1(0−) = lim
j→∞

hn−1

(
−ε
j

)
= (−1)n−1εr, hn−1(0+) = 0.

The second equality (which holds for all j) is because the value of the order
n− 1 jump ratio function for f (n)

ε,r at the point x = −ε/j is, according to the
definitions (3.43) and (3.45), the same as the value of the (n− 1)st jump ratio
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function for f (n−1)
ε/4j2,εr/2 at x = 0, which, by the inductive hypothesis (3.47)

equals (−1)n−1εr/2. Therefore, by (3.46),

hn(0) =
hn−1(0+)− hn−1(0−)

f
(n)
ε,r (0+)− f (n)

ε,r (0−)
= (−1)nr,

which completes the inductive proof of (3.47).
Theorem 3.30 implies that f (n)

ε,r is absolutely polynomial of degree n, and
not absolutely polynomial of any degree less than n. In this way, we have ex-
plicitly constructed a regulated function of any desired absolutely polynomial
degree. Its higher order discontinuity sets have the form

Dn−2(f (n)
ε,r ) =

{
0,±ε,± 1

2ε,±
1
3ε, . . .

}
, Dn−1(f (n)

ε,r ) = {0}, Dn(f (n)
ε,r ) = ∅.

Finally, an adaptation of the Cantor diagonal argument produces a regu-
lated function which is not absolutely polynomial even though all of its jump
ratio functions are also regulated. We set g(∞)

ε,r (x) =
∑∞
n=2 f

(n)
ε/4n2,εr/2

(
x− ε

n

)
,

and f∞ε,r(x) = g
(∞)
ε,r (−x) + 1

2

[
g
(∞)
ε,r (x) + kε(x)

]
. Since ε/n ∈ Dn−2(g(∞)

ε,r ), and

the jump ratio hn−1 is discontinuous there, the functions g(∞)
ε,r and f (∞)

ε,r cannot
satisfy the final condition of Theorem 3.30 and are not absolutely polynomial
of any degree. Note that 0 is a point of continuity of g(∞)

ε,r , but is an “in-
finite order discontinuity point” of f (∞)

ε,r . A related example is the function
g̃∞ε,r(x) =

∑∞
n=2 f

(n)
ε/2,r(x − n). Note that g̃∞ε,r is locally absolutely polynomial

at each point of R, of degree n at x = n, but is not globally absolutely poly-
nomial.

Remark. One can straightforwardly modify these examples (without altering
their validity) so that the functions are of bounded variation. For instance,
this can be accomplished by multiplying the original function (3.36) by any
sufficiently rapidly decreasing function, e.g., e−1/x for x > 0.

4 Topological Spaces

In this section, we investigate how far the theory of absolutely polynomial
functions defined on the reals can be generalized to other types of topological
spaces. We let C(X) denote the ring of all continuous real-valued functions
defined on all of X, so g ∈ C(X) requires dom g = X. Replacing the domain
space R by X in Definition 3.1 leads to the general concept of an absolutely
polynomial function on a topological space.

Definition 4.1. A topological space X will be called absolutely closed if every
continuous function defined on a subset of X is absolutely polynomial.
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Theorem 4.2. A real topological manifold is not absolutely closed.

Proof. Locally we can identify X with an open subset of Rn for some n.
The basic argument given in Proposition 2.1 can be used to prove that the
function sin(1/ρ(x)), where ρ(x) = |x| is the usual Euclidean metric on Rn, is
not absolutely polynomial.

The question now is to determine which topological spaces are absolutely
closed. A discrete space is immediately seen to be absolutely closed. However,
as the next result shows, spaces containing accumulation points of sequences
are not absolutely closed.

Lemma 4.3. The space X =
{

1, 1
2 ,

1
3 , . . . , 0

}
⊂ R, which is the one point

compactification of the dense subspace N =
{

1, 1
2 ,

1
3 , . . .

}
= X \ {0}, is not

absolutely closed.

Proof. The set N is discrete and countable, hence any function f : N → R
will be continuous. Let Q1 = Q ∩ [−1, 1] denote the set of rational numbers
that lie between −1 and +1. We can construct a function f : N → Q1 so that
every w ∈ Q1 has an infinite preimage. This can be done (in many ways)
because N and Q1 have the same cardinality.

Now follow the idea of the proof of Proposition 2.1. Again assume that
the gk exist, defined on X and let ck = gk(0). The function r(z), which was
independent of the function sin 1

x , is defined as in (2.2). Note also that z0
can be chosen to be in Q1; i.e., it is rational. This is possible because r(z) is
continuous — were it zero on the rationals it would be zero everywhere. We
then find δ > 0 to satisfy (2.4). Since | f(x) | ≤ 1, we conclude that∣∣∣∣∣ | f(x) | −

n∑
k=0

ckf(x)k
∣∣∣∣∣ < ε, | x | < δ. (4.1)

Finally, note that there are only finitely many elements of the set N that lie
outside any delta neighborhood of 0, but there are infinitely many elements
in x ∈ N such that f(x) = z0. Therefore one of them lies inside the δ
neighborhood of 0 giving the same conclusion.

Theorem 4.4. Any first countable topological space with an accumulation
point is not absolutely closed. Consequently, every absolutely closed first count-
able topological space is necessarily discrete.

Proof. This follows immediately from Lemma 4.3 and the fact, [3][ Theorem
X.6.2], that any accumulation point of a first countable space has a sequence
that converges to it.

An interesting open question is whether every absolutely closed topological
space is necessarily discrete.
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Definition 4.5. A point a ∈ X in a topological space X will be called ab-
solutely isolated if every continuous function defined on X \ {a} is absolutely
polynomial.

Clearly, an isolated point is absolutely isolated. On the other hand, no
point of a topological manifold (of dimension 1 or more) is absolutely isolated.
Another important example is provided by the Cantor space.

Proposition 4.6. No point in the Cantor space C ⊂ [0, 1] is absolutely iso-
lated.

Proof. We only need to show that 0 ∈ C is not absolutely isolated. We use
the fact that each open set in the Cantor set is the disjoint union of clopen
(closed and open) sets, and that the number of sets used in the union must
be countable. In particular, the set U = C \ {0} is the disjoint union of
clopen sets Dn, indexed by n ∈ N. The sets Dn are closed in the reals. Let
an = inf Dn be the smallest number that belongs to Dn, in other words, the
“left-hand beginning point” of Dn. Suppose that δ > 0 is a positive number,
and consider a δ neighborhood N ⊂ C of 0. Since C \N is closed in C, it is
compact. Since the subsets Dn cover C \N , we can choose a finite subcover.
This implies that only a finite number of the endpoints an lie in C \ N . In
other words any δ neighborhood of 0 ∈ C contains all but finitely many an.

This idea can be used to define a continuous function f : U → Q1 = Q ∩
[−1, 1] just as was done in the case of the discrete set N in the proof of Lemma
4.3. Let f be defined by making it constant on each of the Dn, and picking
the values from Q1 as before — making sure that every element of Q1 occurs
as the image of infinitely many different Dn. That ensures that an arbitrary
δ neighborhood of 0 will contain a point of C assuming the value z0. Thus
f is defined on C \ {0}, and its absolute value is not a polynomial in f with
coefficients gi defined on the Cantor space C.

Theorem 4.7. Let k be an infinite cardinal. Suppose that X is a topological
space that has a point a with the properties:

(i) X \ {a} is the disjoint union of k clopen subsets Dn,

(ii) for every neighborhood N of a, the number of Dn from which N is dis-
joint has cardinality less than k.

Then a is not absolutely isolated.

Proof. Define the function f : Dn → Q1 as before, keeping its value con-
stant on each Dn, so that f is continuous. Use a to replace 0 when defining
the constants ck as in (4.1). Given the ε of the proof, replace the δ with a
neighborhood N of a.
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The argument for the Cantor space will hold for any space X that contains,
as a subspace, a copy of C that is also a retract of X. That is to say, a space X
for which there is a continuous function g : X → C such that g restricts to the
identity on C. The argument is similar — write C \ {0} =

⋃
Dn as a disjoint

union of clopen sets. The union of their preimages U =
⋃
Vn =

⋃
g−1(Dn), is

an open set. If U is not dense we replace it by the dense set V = U ∪ (X \U).
We obtain a continuous function f : V → Q1 as follows: make f = 0 on X \U .
On the countably many Vn assign constant values in Q1 as before; i.e., make
sure that every non-zero number in Q1 is assigned to infinitely many Vn. Now
use as the “kicking off point” for the definition of the ck, the copy of 0 inside
the copy of C in X. Each neighborhood of 0 meets all but finitely many Vn
because it meets all but finitely many Dn in the Cantor set.

According to [12][p. 42], every compact totally disconnected metrizable
space has the property that its closed subsets are retracts of itself. A space
which is totally disconnected, compact, and Hausdorff is called Boolean. The
moment that a Boolean space X contains a copy of the Cantor space C, then
C is a retract of X. The reason for this is that the Cantor space is injective
in the category of Boolean spaces, [8].

Theorem 4.8. If X is a Boolean space that contains a copy of the Cantor
space, then there is a dense open set U ⊂ X, excluding 0, and a continuous
function f : U → R which is not absolutely polynomial.

The same result holds for any space X containing C with the property
that its Stone–Čech compactification is totally disconnected and metrizable,
or for that matter, any space X containing C that lies inside a compact totally
disconnected metrizable space.

We further note that our discussion of real rational functions in Theorem
3.5 admits the following generalization.

Proposition 4.9. Let p, q ∈ C(X), and suppose that there exist e, u, v, with
e2 = e, such that | pq | = | pq | e, e = up+ vq. Then the ratio p/q is absolutely
polynomial.

Proof. We adapt the proof of Theorem 3.5 as follows:∣∣∣∣ pq
∣∣∣∣ =
| pq |
q2

=
| pq | e
q2

=
| pq | e2

q2
= | pq |

(
u

(
p

q

)
+ v

)2

,

which is a quadratic polynomial in p/q.

Remark. The function e = e2 forms an idempotent in C(X), which means
that it only assumes the values 0 or 1. Its support satisfies

(supp p) ∩ (supp q) ⊂ supp e ⊂ (supp p) ∪ (supp q).
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Example 4.10. Let C be the Cantor space. Consider the following disjoint
clopen subsets:

C1 = C ∩
(

0,
1
27

)
, C2 = C ∩

(
2
27
,

1
9

)
, C3 = C ∩

(
2
9
,

7
27

)
,

C4 = C ∩
(

8
27
,

1
3

)
, C5 = C ∩

(
2
3
,

19
27

)
Define p, q, u, v ∈ C(C) by

p(x) = x+ 1, x ∈ supp p = C1 ∪ C2 ∪ C3,

q(x) = x2, x ∈ supp q = C3 ∪ C4 ∪ C5,

u(x) =
1

x+ 1
,x ∈ suppu = C2 ∪ C3,

v(x) =
1
x2
, x ∈ supp v = C4,

where we have only indicated the nonzero values. Thus e = up + vq is an
idempotent with supp e = C2 ∪ C3 ∪ C4, and hence p/q = x + (1/x) for
x ∈ supp q = C3∪C4∪C5 is absolutely polynomial with respect to the Cantor
space.

Recall that a topological space is called a P–space, [5], if every finitely
generated ideal in C(X) is principal and generated by an idempotent. If e is
the idempotent generating the ideal p C(X) + q C(X), then the hypotheses of
Proposition 4.9 are easily seen to hold.

Corollary 4.11. Let X be a P–space. If p, q ∈ C(X), then p/q is absolutely
polynomial.

This result can be further generalized to the class of F–spaces, [5]. For
example, any basically disconnected space is an F–space, [5][14N4].

Theorem 4.12. Let X be a F–space. If p, q ∈ C(X), then p/q is absolutely
polynomial.

Proof. According to Gillman and Jerison, [5][Theorem 14.25 (6), p. 208], in
an F–space, any cozero set is C∗ embedded. We write

∣∣∣pq ∣∣∣ = h(p2+q2)
q2 , where

h = |p||q|
p2+q2 , which holds over the set (supp p) ∪ (supp q) = supp( | p | + | q | ).

Furthermore, 0 ≤ h ≤ 1
2 is a bounded function. Since X is an F–space, h

lifts to a continuous function g ∈ C(X). Clearly, the identity
∣∣∣pq ∣∣∣ = g

(
p
q

)2

+ g

holds on all of X because both sides are zero on the set Z( |p| + |q| ) =
X \ supp( |p|+ |q| ).
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5 Applications to the Theory of Φ–Algebras

Finally, we discuss some interesting implications of our theory of absolutely
polynomial functions for the general theory of rings of continuous functions
and Φ–algebras. Suppose that R is a commutative ring with identity that has
no non-zero nilpotent elements. An over ring S of R is called a ring of quotients
of R if for every s ∈ S, s 6= 0, there exist a, b ∈ R, b 6= 0, so that sa = b.
There exists a largest ring of quotients that is unique up to isomorphism over
R, called the complete ring of quotients of R, [9]. For example, the complete
ring of quotients of Z, the ring of integers, is the field of rational numbers Q.

Now consider the case when R = C(X), the ring of all continuous real-
valued functions on a completely regular space. This ring was the subject of
the classic work by Gillman and Jerison, [5]. The later book by Fine, Gillman
and Lambek, [4], was devoted to the study of its rings of quotients. The
complete ring of quotients of C(X), denoted Q(X), [4], is the limit of rings of
continuous functions C(V ), where V ranges over all dense open subspaces of
X, and two functions defined on dense open subspaces are identified if they
agree on the intersection of their domains.

An important generalization of C(X) exists in the literature, and this is
the notion of a Φ–algebra, [6]. These structures abstract the key properties of
C(X) as an algebra, and as a partially ordered set.

Definition 5.1. A Φ–algebra is an Archimedean lattice-ordered algebra over
the field of real numbers which has an identity element that is a weak order
unit.

Although any C(X) is a Φ–algebra, many Φ–algebras are not isomorphic
to any ring of the form C(X), [6]. For example, the complete ring of quotients
of C(X) is easily seen to always be a Φ–algebra, but is almost never of the
form C(X), [7]. A similar result holds for the epimorphic hull of C(X), [10],
which is a particular ring of quotients of C(X).

In this context, the significance of our examples is as follows. Let f be any
non-absolutely polynomial function whose domain is a dense open subset of
R, e.g., f(x) = sin 1

x . Then the polynomial ring C(R)[f ] is not a Φ–algebra
because it is not closed under the formation of absolute values. (A Φ–algebra is
easily seen to be closed under this operation, [6].) But it is a ring of quotients
of C(R) because f is defined on a dense open subset dom f , [4]. Thus the result
shows that a ring of quotients of a ring of functions need not be a Φ–algebra.
On the other hand, this condition does hold trivially for discrete spaces. By
the same argument, one has:

Theorem 5.2. Suppose that X is a topological space with a non-absolutely
isolated point a, and a function f defined on X \ {a} that is not absolutely
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polynomial. Then the polynomial ring C(X)[f ] is not a Φ–algebra.

Remark. The condition that a real function f is absolutely polynomial is
necessary, but not sufficient, to make the ring C(R)[f ] a Φ–algebra. The
function f = 2 + sin 1

x is absolutely polynomial, but the ring C(R)[f ] is not a
Φ–algebra — it contains sin 1

x , but not its absolute value, since the latter is
not a polynomial in f with continuous coefficients. However, oddly, it is easy
to check that if p and q satisfy condition (3.5) of Theorem 3.5, then C(R)[p/q]
is indeed a Φ–algebra. Thus there are many such functions.

6 Open Questions

In this paper, we have established the basic theory of absolutely polynomial
functions and their topological ramifications. As our examples make clear,
this theory is nontrivial, and leads to a number of interesting developments.

We shall conclude this paper with a list of open questions that arose during
our investigations. Let X be a topological space.

(1) If a point a ∈ X is absolutely isolated, is a isolated in X?

(2) If X is absolutely closed is it discrete?

(3) If X is not absolutely closed, does it have a continuous function on a
dense open subset U ⊂ X that is not absolutely polynomial? If not,
then an elementary argument shows that X admits a function f that is
not absolutely polynomial, whose domain is not contained in the closure
of its interior.

(4) Which subsets S of a topological space X have the property that a con-
tinuous function f : S → R with dom f = S is algebraically expressible as
a sum of products of functions on S that are absolutely polynomial with
respect to X? For example, this holds for compact subspaces because
any continuous function whose domain is a compact subset is bounded,
and hence the sum of two absolutely polynomial functions.

(5) A related question is whether the absolutely polynomial functions on
S could be dense (in the usual metric) in the algebra of continuous
functions on S.

(6) Does Proposition 3.3 have a generalization to absolutely polynomial
functions of degree greater than 1? (See also the Remark following The-
orem 3.6.) Must fn even be absolutely polynomial when f is absolutely
polynomial and n is odd? Note that by Proposition 3.23 a monotone
function that is quadratically absolutely polynomial has all of its odd
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powers also quadratically absolutely polynomial. But a monotone func-
tion can be cubically absolutely polynomial and have a cube that is only
quartically so. For example, this will occur if, in condition (d) of Propo-
sition 3.23, we let f(x∗) = 2, f(x−∗ ) = [1−

√
13)]/2, and f(x+

∗ ) = 3. In
fact, all higher odd powers of such a function are also only quartically
absolutely polynomial.
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