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Abstract

Given a set M ⊂ R of Lebesgue measure zero, let B1|M be the set
of all restrictions to M of bounded Baire one functions on R and A the
set of all bounded approximately continuous functions on R. We discuss
the existence of simultaneous extension operators for B1|M and A. We
show that there exists a positive linear operator L : B1|M → A such that
L(g)|M = g for all g ∈ B1|M , if and only if M is a scattered set and
this is the case if and only if there exists a continuous linear operator
L1 : B1|M → A with the same property. Also, we show that there exist
non-regular continuous linear operators T1 : `∞ → A and T2 : A → A.

Let λ denote Lebesgue measure on R. Recall that x ∈ R is a point of density
of a Lebesgue measurable set M ⊂ R if limh↘0 λ(M ∩ (x− h, x+ h))/2h = 1.
A point x is a dispersion point of M if limh↘0 λ(M ∩ (x−h, x+h))/2h = 0. A
measurable set M is said to be density open if every point x ∈M is a point of
density of M . The density open sets form a topology d on R, called the density
topology. It turns out that the so called approximately continuous functions
are exactly the continuous functions in the density topology.

By B1 we denote the set of all bounded Baire one functions on R and by
A the set of all bounded approximately continuous functions on R. Note that
A ⊂ B1 [LMZ, 6.8.b]. For M ⊂ R, B1|M is the space of restrictions to M of all
functions f ∈ B1. A, B1 and B1|M are Banach spaces equipped with the norm
‖f‖ = supx |f(x)|. By χM we denote the characteristic function of the set M ,
and χa = χ{a} for a ∈ R. If L is an operator defined on B1|M and f ∈ B1, we
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often write L(f) instead of L(f |M ). By an operator we always mean a linear
operator. If L is an operator and L(f) is an extension of f for every function
f in the domain of L, we say that L is a simultaneous extension operator.

Let M ⊂ R be a set of Lebesgue measure zero and f ∈ B1|M . By the
Theorem of Petruska and Laczkovich ([PL, 3.2(iii)], see also [LMZ, 8.3]), there
is a bounded approximately continuous function Ff on R which extends f . Can
Ff be assigned in a nice way; i.e., does there exist a simultaneous extension
operator L : f 7→ Ff which is positive or continuous? This question is inspired
by Borsuk’s simultaneous extension theorem which has been generalized in
many different ways. We present here the following variant which is due to
G. J. O. Jameson [J]. By Cb(Y ) we denote the set of all bounded continuous
functions on a set Y .

Theorem (Jameson). Let S be a topological space, A be a closed subset of
S such that every function f ∈ Cb(A) can be extended continuously to S. Let
X be a separable linear subspace of Cb(A). Then there is a positive, isometric
simultaneous extension operator L : X → Cb(S). In particular, if A is compact
and metrizable, then such an operator can be defined on the whole of Cb(A).

In this paper we show that, in the case of approximately continuous func-
tions, a positive and/or isometric simultaneous extension operator exists if
and only if the set M is scattered.

A set M ⊂ R is called scattered if it contains no dense in itself non-empty
subset [K, 1.9.VI].

Proposition 1. Let M ⊂ R and L : B1|M → A be a simultaneous extension
operator. If L is positive or continuous, then M is scattered.

Proof. The case of continuous operator L is more complicated to deal with.
It will be convenient to index symbols by points of the set M . The first part
of the proof is common for both cases.

Assume that M is not scattered. Let A 6= ∅ be a dense in itself subset
of M . Let a0 ∈ A and I0 = J0 be an open interval containing a0. If I0 ⊃
J0 ⊃ · · · ⊃ In−1 ⊃ Jn−1 and a0, . . . , an−1 ∈ A have already been defined, find
an ∈ A ∩ Jn−1 \ {a0, . . . , an−1}. If L is positive, put

Gan
= Gn :=

{
y ∈ R : L

(
χ
an

)
(y) >

1
2

}
.

If L is continuous, put

Gan = Gn :=
{
y ∈ R : L

(
χ
an+

∑
i∈D

χ
ai

)
(y) >

1
2

for every D ⊂ {1, . . . , n−1}
}
.
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Since L(χai) are approximately continuous, L(χan)(an) = 1, and L(χai)(an) =
0 for i = 1, . . . , n− 1, the point an is a point of density of the set Gn. Hence
there is han

= hn ∈ (0, 1
n ) such that Ian

= In := (an − hn, an + hn) ⊂ Jn−1

and1 λ(Gn ∩ In) > (1− 2−n)2hn. Let Jn := (an − 2−nhn, an + 2−nhn).
Let {x} =

⋂∞
n=1 In =

⋂∞
n=1 Jn. Note that an → x and, for every n,

λ(Gn ∩ (x− hn, x+ hn)) ≥ λ(Gn ∩ In)− 2−nhn > (1− 2−n+1)2hn.

If L is positive, {nm} is an arbitrary increasing sequence, bm := anm
and

Hm := Gnm
, then L(

∑∞
m=1

χ
bm

) > 1
2 on the set

⋃
mHm. (It is easy to see

that
∑
χ
bm

is a Baire one function since bm → x.) Furthermore, for every m,
λ((
⋃
kHk) ∩ (x − hnm , x + hnm))/2hnm > 1 − 2−nm+1 and hnm → 0. Hence

x is not a point of density of R \
⋃
mHm. By our assumptions and because∑∞

m=1
χ
bm
∈ B1 we have that L(

∑∞
m=1

χ
bm

) is approximately continuous; so
L(
∑∞
m=1

χ
bm)(x) ≥ 1

2 . For i,m ∈ N put n(i)
m = 2i(2m − 1). Then {n(i)

m }∞m=1

(i = 1, 2 . . . ) are disjoint increasing sequences. By the linearity and positivity
of L,

L

( ∞∑
n=1

χ
an

)
(x) ≥

N∑
i=1

L

( ∞∑
m=1

χ
a

n
(i)
m

)
(x) ≥ 1

2
N →∞ (as N →∞),

which is a contradiction.
If L is continuous, let K ∈ N be such that f ∈ B1|M and ‖f‖ ≤ 1 implies

‖L(f)‖ ≤ K. Let a(1)
i := ai for i ∈ N. Proceed by induction. Assume n ∈ N

is fixed and {a(n−1)
i }∞i=1 is already defined. For k = 1, 2, . . . , 4K put

Akn−1 :=
⋂{

y ∈ I
a
(n−1)
n−1

: L
(∑
i

χ
bi

)
(y) ≥ −1

4

}
,

where the intersection is taken over all subsequences {bi}∞i=1 of
{
a
(n−1)
4Ki+k

}∞
i=1

.

Every set Akn−1 is measurable since it is an intersection of closed sets in the
density topology. Hence closed itself. Furthermore

⋃4K
k=1A

k
n−1 = I

a
(n−1)
n−1

.

Indeed, if y ∈ I
a
(n−1)
n−1

does not belong to Akn−1 for any k = 1, 2, . . . , 4K,

then there is a subsequence {bi}∞i=1 of {a(n−1)
i }∞i=1 such that L(

∑
i
χ
bi

)(y) <
4K · (− 1

4 ) which is contrary to the definition of K. Hence there exists k ∈
{1, 2, . . . , 4K} such that λ(Akn−1) ≥ λ(I

a
(n−1)
n−1

)/4K. For such k, let a(n)
i :=

a
(n−1)
4Ki+k and An−1 := Akn−1.

1For our purposes it is enough to have λ(Gn∩In) > c ·2hn, where c ∈ (0, 1) is a constant
depending on the norm of L, or, say, c = 1

2
in the case L is positive.
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Let ãn := a
(n)
n be the diagonal sequence. Let {nm} be an increasing se-

quence, bm := ãnm . Fix m0 ∈ N. Then2

{bm}∞m=m0+1 ⊂ {a
(i)
i }
∞
i=n(m0+1)

⊂ {a(i)
i }
∞
i=nm0+1 ⊂ {a

(nm0+1)
i }∞i=nm0+1

and L(
∑
m>m0

χ
bm) ≥ − 1

4 on Anm0
⊂ Ibm0

. Recall that by definition of Gbm0

L(
∑
m≤m0

χ
bm

) > 1
2 onGbm0

. Thus L(
∑∞
m=1

χ
bm

) ≥ 1
4 onAnm0

∩Gbm0
⊂ Ibm0

which has measure at least λ(Anm0
)− λ(Ibm0

\Gbm0
) ≥ ( 1

4K − 2−nm0 )2hbm0
.

This implies

λ
(
Anm0

∩Gbm0
∩(x−hbm0

, x+hbm0
)
)
≥ (

1
4K
−2−nm0−2−nm0 )2hbm0

≥ 1
8K

2hbm0

ifm0 is large enough. Hence L
(∑∞

m=1
χ
bm(x)

)
≥ 1

4 by approximate continuity.
For i,m ∈ N put n(i)

m = 2i(2m− 1). Then {n(i)
m }∞m=1 (i = 1, 2 . . . ) are disjoint

increasing sequences. Let fi =
∑∞
m=1

χea
n
(i)
m

. Then L(fi)(x) ≥ 1
4 . As

∑
i

1
i fi

converges uniformly,
∑
i

1
i fi ∈ B1 and we obtain by the continuity of L that

L(
∑
i

1
i
fi)(x) = lim

N→∞
L(

N∑
i=1

1
i
fi)(x) ≥ lim

N→∞

1
4

N∑
i=1

1
i

=∞.

This is a contradiction for the case of continuous extension operator.

Recall that a family {Aι}ι∈I of subsets of a topological space (X, τ) is
discrete if for every x ∈ X there is a τ -neighborhood U of x such that U
intersects Aι for at most one ι ∈ I. Note that every discrete family is disjoint.

A subset M of (X, τ) is called strongly discrete if there exists a family
{Gx}x∈M of τ -open subsets of X, discrete in (X, τ), such that x ∈ Gx for every
x ∈ M . (However, some authors give a non-equivalent definition replacing
“discrete in (X, τ)” by “disjoint”.)

Lemma 2. Let M be a scattered subset of R. Then M is a strongly discrete
subset of (R, d).

Proof. (This simpler proof was suggested by L. Zaj́ıček.) We know that M
is countable ([K, 2.23.V]) and Gδ ([K, 2.24.III.1a]). Let xn, n ∈ I ⊂ N, be
the points of M . Let f : M → R be defined by f(xn) = n for n ∈ I and
f(x) = 0 for x ∈ R \M . Then f is obviously Fσ-measurable; i.e., f ∈ B1.
By the unbounded version of the Theorem of Petruska and Laczkovich ([PL,
3.2(iii)]), f |M can be extended to an approximately continuous function g on

2We write {cm} ⊂ {dm} if sequence {cm} is a subsequence of {dm}.
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R. For n ∈ I and x = xn let Gx = g−1((n − 1/3, n + 1/3)). Then x ∈ Gx
and {Gx}x∈M is a family of density open subsets, discrete in the density
topology.

Lemma 3. Let M ⊂ R. Let {Gx}x∈M be a family of density open subsets of
R, discrete in (R, d), such that x ∈ Gx for every x ∈ M . Then there exists
a family {fx}x∈M of approximately continuous functions fx : R→ [0, 1], such
that fx|M = χ{x}|M for every x ∈ M , {y : fx1(y) 6= 0} ∩ {y : fx2(y) 6= 0} = ∅
whenever x1 6= x2, x1, x2 ∈ M , and for arbitrary function g : M → R, the
function Fg(y) =

∑
x∈M g(x)fx(y) is approximately continuous and Fg|M = g.

Proof. By complete regularity of the density topology (cf. [LMZ, 6.9]), for
each x ∈ M there is an approximately continuous function fx : R → [0, 1],
such that fx(x) = 1 and fx(y) = 0 for y ∈ R \ Gx. Thus fx|M = χ{x}|M .
Since the family {Gx}x∈M is discrete in the density topology, the function Fg
is approximately continuous for an arbitrary function g on M .

Remark 3.1. By the Lusin-Menchoff property of the density topology (cf.
[LMZ, 6.9.g]), there exist density open sets Hx, (x ∈M), x ∈ Hx ⊂ Hx ⊂ Gx.
Using complete regularity for each pair (x,Hx) we obtain fx such that the
family of closed supports of functions fx is discrete in the density topology.

Theorem 4. For a set M ⊂ R, the following conditions are equivalent:

(i) M is scattered,

(ii) M is a strongly discrete subset of (R, d),

(iii) there exists a positive simultaneous extension operator L : B1|M → A,

(iv) there exists a continuous simultaneous extension operator L : B1|M → A,

(v) there exists a positive isometric simultaneous extension operator L : B1|M
→ A.

Proof. By Lemma 2, (i) implies (ii) and Lemma 3 shows that (ii) implies
(iii), (iv), (v). The implications (iii) =⇒ (i), (iv) =⇒ (i) and (v) =⇒ (i) follow
from Proposition 1.

Remarks 4.1. 1. Notice that we did not need to restrict ourselves to bounded
functions. A could be the space of all approximately continuous functions
on R and B1|M the space of all restrictions (to M) of Baire one functions. All
results of this paper hold in this setting as well. (The continuity of L is to be
understood as continuity in the topology of uniform convergence).
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2. The proof of Proposition 1 cannot be based on the assertion that A ⊂ B1

only but must use other properties of approximately continuous functions. In-
deed, if M ⊂ R is an ambivalent set (both Fσ and Gδ), then there exists
a positive isometric simultaneous extension operator L : B1|M → B1 (for ex-
ample given by the formula L(f |M ) := f ·χM for f ∈ B1; note that χM ∈ B1).

Since the proof of Proposition 1 is much more complicated in the case of
continuous simultaneous extension operator L, the following idea arose which
was inspired by a well developed theory of operators on Banach lattices: Could
we prove first that L is regular, thus reducing to the case of positive simulta-
neous extension operator? We will see that this idea fails.

Recall that, for E,F Banach lattices, we say that a continuous operator
T : E → F is regular if it can be decomposed as T = P1 − P2 where P1, P2

are positive and continuous. In [X], the question is discussed, whether every
continuous operator E → F is regular, for cases in which each E and F is one
of Banach lattices `p (1 ≤ p <∞), `∞, c0, c, C[0, 1] and C(K).

Example 5. There exists a continuous operator T1 : `∞ → A which is not
regular.

Proof. Let rn(x) = sgn sin(2πnx) be the Rademacher’s functions on [0, 1].
They form an orthonormal set in L2[0, 1] and consequently ‖

∑m
n=1 anrn‖L2 =

‖{an}mn=1‖`2 . In particular, for t > 0

λ
({
x ∈ [0, 1] : | 1m

∑m
n=1 anrn(x)| > t

})
≤ ‖ 1

tm

∑m
n=1 anrn‖2L2

= 1
t2m2 ‖{an}mn=1‖2`2 ≤

1
t2m‖{an}‖

2
`∞

Furthermore, for almost every x ∈ [0, 1],

max
{

1
m

m∑
n=1

anrn(x) : |an| ≤ 1
}

= 1

For m ∈ N let pm = 1 + 2 + · · ·+m, p0 = 0. If n,m ∈ N and pm−1 < n ≤
pm, let sn(x) = 1

mrn−pm−1(2m(x − 2−m)) for x ∈ [ 1
2m ,

1
2m−1 ] and sn(x) = 0

otherwise. Fix {an} ∈ `∞ and let f =
∑∞
n=1 ansn. Note that f(0) = 0. The

function f is approximately continuous at 0 since for every t > 0 and every
m ∈ N,

λ
({
x ∈

[ 1
2m

,
1

2m−1

]
: |f(x)| > t

})
≤ 1

2m
1
t2m
‖{an}‖2`∞ .

We have also

max
{ ∑

pm−1<n≤pm

ansn(x) : |an| ≤ 1
}

= 1
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for almost all x ∈ [ 1
2m ,

1
2m−1 ]. Now, for n,m ∈ N, pm−1 < n ≤ pm, let s̃n be

a continuous function on R, supported in the same interval as sn, ‖s̃n‖ ≤ 1
m ,

such that λ({x ∈ R : s̃n(x) 6= sn(x)}) ≤ 1
m22m . Let T1 : `∞ → A be defined

by T1((α1, β1, α2, β2, . . . )) =
∑

(αn − βn)s̃n. Then obviously ‖T1‖ ≤ 2.
In order to prove non-regularity of T1, assume that there exists a positive

operator P : `∞ → A, P ≥ T1. Let Mk, k ∈ N, be disjoint and infinite subsets
of N, Nk = {n : pm−1 < n ≤ pm for some m ∈ Mk}. Set b(k)2n−1 = b

(k)
2n = 1 if

n ∈ Nk, zero otherwise. Fix k ∈ N and let fk = P ({b(k)n }∞n=1) ∈ A. Then, for
every m ∈Mk,

fk(x) ≥ max
{ ∑

pm−1<n≤pm

(αn − βn)s̃n(x) : 0 ≤ αn ≤ 1, 0 ≤ βn ≤ 1
}

= 1

for all x ∈ [ 1
2m ,

1
2m−1 ] \Am where Am is a set of measure at most 1

m2m . Thus
fk(0) ≥ 1 since fk is approximately continuous. Let cn = 1 for all n ∈ N. By
positivity and linearity of P , P ({cn})(0) ≥ P ({

∑K
k=1 b

(k)
n })(0) ≥ K for every

K ∈ N, which is a contradiction.

Corollary 6. There exists a continuous operator T2 : A → A which is not
regular.

Proof. Note that if M = {xn : n ∈ N} ⊂ R is infinite and scattered (and
xn 6= xm for n 6= m) then the map ι : B1|M → `∞ : f 7→ {f(xn)}∞n=1 is an
order preserving isometry B1|M onto `∞ (since every function on M extended
by zero on R\M is a Baire one function by the same argument as in the proof
of Lemma 2). Therefore we will not distinguish between these two spaces.

For f ∈ A, let T2(f) = T1(r(f)) where T1 : `∞ → A is the continuous
non-regular operator from the previous example and r is the restriction map
to an infinite scattered set M ⊂ R (e.g. M = N). Let L : B1|M → A be a
positive simultaneous extension operator (Theorem 4). Then T2 is not regular
since otherwise T1 = T1rL = T2L were regular, too.

Now let M ⊂ R be an infinite set of Lebesgue measure zero. Let M1 ⊂M
be an infinite scattered set (e.g. a sequence converging to x ∈ R∪ {±∞}) and
M2 = M \M1. Then, since f = f · χM1 + f · (1 − χM1) for every f ∈ B1

and χM1 ∈ B1, B1|M is isometrically and order isomorphic to B1|M1 ⊕∞B1|M2

and hence to `∞ ⊕∞ B1|M2 . If T1 is as in Example 5, then T3((x, f)) = T1(x)
(x ∈ `∞, f ∈ B1|M2) provides a continuous non-regular operator B1|M → A.
Furthermore, assume we have a continuous simultaneous extension operator
L : B1|M → A. Then it can be easily modified (using the above ideas) to
a non-regular one. Thus the idea of simplification of the proof of Theorem 4
using the notion of regular operator fails.
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Finally, we would like to note that it is not difficult to show directly that
any of conditions (iii), (iv), (v) of Theorem 4 implies that M is countable.

References

[J] G. J. O. Jameson, An elementary proof of the Arens and Borsuk ex-
tension theorems, J. London Math. Soc. II. Ser. 14 (1976), 364–368.

[K] K. Kuratowski, Topology I, Academic Press 1966.
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