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ON PRODUCTS OF BOUNDED
QUASI-CONTINUOUS FUNCTIONS

Abstract

The goal of this paper is to characterize the functions that can be
written as the product of bounded quasi-continuous functions.

1 Preliminaries

The letters R, Z, and N denote the real line, the set of integers and the set
of positive integers, respectively. For each A ⊂ R we use the symbols intA,
clA, bdA, λ(A), and χ

A to denote the interior, the closure, the boundary,
the outer Lebesgue measure and the characteristic function of A, respectively.
We say that a set A ⊂ R is simply open [1] if A \ intA is nowhere dense. The
symbol % denotes the (Euclidean) distance in R.

The word function denotes a mapping from R into R unless otherwise
explicitly stated. Let f be a function. For each y ∈ R the symbol [[[f < y]]]
stands for

{
x ∈ R : f(x) < y

}
; similarly we define the symbols [[[f ≤ y]]],

[[[f > y]]], etc. If a set A ⊂ R is nonempty, then let ω(f,A) be the oscillation
of f on A; i.e., ω(f,A) = sup

{
|f(x) − f(t)| : x, t ∈ A

}
. For each x ∈ R we

write ω(f, x) = limδ→0+ ω
(
f, (x− δ, x+ δ)

)
; i.e., ω(f, x) is the oscillation of f

at x. The symbols Cf and Df denote the set of points of continuity of f and
the set of points of discontinuity of f , respectively. For each C ⊂ R and each
x ∈ cl(Cf ∩C) we put LIM(f, C, x) = limδ→0+ inf f [Cf ∩C ∩ (x− δ, x+ δ)] and
LIM(f, C, x) = −LIM(−f, C, x). The symbols LIM(f, C, x−), LIM(f, C, x+),
etc., are defined analogously. Moreover let LIM(f, x+) = LIM(f,R, x+), etc.
Finally let ‖f‖ = sup|f |[R].

The following are classes of functions.

Bα denotes Baire class α (α < ω1).
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Cq consists of all cliquish functions [12]; i.e., f ∈ Cq if and only if for each
open interval I and each ε > 0 there is a nondegenerate interval J ⊂ I
with ω(f, J) < ε. Equivalently, f ∈ Cq if and only if f is pointwise
discontinuous; i.e., if cl Cf = R.

D consists of all Darboux functions; i.e., f ∈ D if and only if the set f [J ]
is connected for every interval J .

L consists of all Lebesgue measurable functions.

Q consists of all quasi-continuous functions in the sense of Kempisty [6];
i.e., f ∈ Q if and only if for each pair of open intervals I and J if
I ∩ f−1(J) 6= ∅, then int

(
I ∩ f−1(J)

)
6= ∅. Observe that Q ⊂ Cq.

RR consists of all functions.

Śs consists of all strong Świa̧tkowski functions [7]; i.e., f ∈ Śs if and only if
Cf ∩ [[[f = y]]]∩ (x1, x2) 6= ∅ whenever x1 < x2 and y is a number between
f(x1) and f(x2). Observe that Śs ( D ∩Q. (See also Lemma 2.2.)

We omit the intersection sign between classes of functions; e.g., DB2 is the
family of all Darboux Baire two functions.

Let f be a function and x ∈ R. Set c = limt→x+ f(x) and d = limt→x+ f(x).
We say that x ∈ R is a Darboux point of f from the right if c ≤ f(x) ≤ d
and f [(x, x + δ)] ⊃ (c, d) for each δ > 0. Similarly we define the notion of a
Darboux point from the left. We say that x is a Darboux point of f if x is a
Darboux point of f both from the left and from the right. Recall that f ∈ D
if and only if each x ∈ R is a Darboux point of f . (See, e.g., [3, Theorem 5.1].)

2 Introduction

It is quite evident that the problem of characterizing of the products of
bounded positive (Darboux) quasi-continuous functions can be reduced to the
problem of characterizing of the sums of (Darboux) quasi-continuous func-
tions bounded below. In 1995 I studied the class of the sums of nonnegative
quasi-continuous functions. Theorem 3.2 generalizes Theorem 7 of [8]. (See
also Remark 1.) Its proof is more complicated, however it has the advantage
that it can be easily adapted to prove an analogous result concerning sums of
nonnegative strong Świa̧tkowski functions (Theorem 3.5).

In Section 4 we deal with products of bounded (Darboux) quasi-continuous
functions. (See Theorems 4.3 and 4.6.) The assertion of Theorem 4.6 is
valid also for F = B1, however we have to use different methods to prove it.
Therefore this result will be proved elsewhere.
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In Section 5 we study the family of products of strong Świa̧tkowski func-
tions. By Proposition 5.1, this family is essentially smaller than that of prod-
ucts of Darboux quasi-continuous functions. (Recall that in contrast to Propo-
sition 5.1, each cliquish function is the sum of two strong Świa̧tkowski functions
[9, Theorem 4].) Propositions 5.2 and 5.3 yield that even if a function f can
be written as the product of three strong Świa̧tkowski functions, we cannot
conclude that f is the product of two strong Świa̧tkowski functions. Moreover
there is a bounded Darboux quasi-continuous function which is discontinuous
at a single point, which is the product of a continuous function and a strong
Świa̧tkowski one and which cannot be written as a finite product of bounded
strong Świa̧tkowski functions (Corollary 5.5). The problem of characterizing
of the family of products of (bounded) strong Świa̧tkowski functions is open.

In the proofs of the main results we will need a few lemmas. Lemma 2.1
is evident and Lemma 2.2 follows by [5, Lemma 2] and Lemma 2.1.

Lemma 2.1. Let f ∈ Cq. Then for each x ∈ R and each meager set A ⊂ R
we have LIM(f, x) = LIM(f,R \A, x) and LIM(f, x−) = LIM(f,R \A, x−).

Lemma 2.2. Let f ∈ Cq. The following are equivalent:

(i) f ∈ Q;

(ii) LIM(|f−f(x)|,R\A, x) = 0 for each x ∈ R and each meager set A ⊂ R;

(iii) LIM(|f − f(x)|, x) = 0 for each x ∈ R.

For Darboux quasi-continuous functions we can prove a similar result.
(Also see [11, Lemma 2].)

Lemma 2.3. Let f ∈ DQ. Then for each x ∈ R and each meager set A ⊂ R
we have LIM(|f − f(x)|,R \A, x−) = LIM(|f − f(x)|,R \A, x+) = 0.

Lemma 2.4. Let k ∈ N, J = [a1, a2] and let u : J → [0,∞) be continuous.
Moreover let y1j , . . . , ykj ≥ 0 be such that y1j + · · ·+ ykj = u(aj) (j ∈ {1, 2}).
Then there are nonnegative continuous functions g1, . . . , gk : J → R such that
g1 + · · ·+gk = u on J and for each i gi(aj) = yij for j ∈ {1, 2} and ω(gi, J) ≤
3ω(u, J) + |yi2 − yi1|.

Proof. For each i and for j ∈ {1, 2} set

ȳij =

{
yij/u(aj) if u(aj) > 0
k−1 otherwise.
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Let ϕi : J → R be a linear function such that ϕi(aj) = ȳij for j ∈ {1, 2}.
Define gi = uϕi. Put c = minu[J ] and d = maxu[J ]. If d ≥ 2c, then

ω(gi, J) ≤ dmaxϕi[J ]− cminϕi[J ] ≤ d ≤ 2(d− c) = 2ω(u, J).

Otherwise observe that u ≥ c > d/2 ≥ 0 on J . Assume that ȳi1 ≤ ȳi2. (The
other case is analogous.) Then

max gi[J ] ≤ dmaxϕi[J ] = dȳi2 = dyi2/u(a2) ≤ dyi2/c,

and similarly min gi[J ] ≥ cyi1/d. Hence

ω(gi, J) ≤ dyi2/c− cyi1/d = (d/c+ 1)(1− c/d)yi2 + (yi2 − yi1)c/d
≤ 3(d− c)yi2/d+ |yi2 − yi1| ≤ 3ω(u, J) + |yi2 − yi1|.

The other requirements of the lemma are evident.

3 Sums of Nonnegative Functions

3.1 Quasi-Continuous Functions

For brevity, for each k > 1 the symbol Sk will denote the family of all non-
negative functions f ∈ Cq such that LIM(f, x) ≥ f(x)/k for each x ∈ R. The
next lemma follows from the proof of [8, Lemma 4].

Lemma 3.1. Let k > 1, g ∈ Sk and τ > 0. There exists a function ḡ ∈ Sk

such that Dḡ ⊂ A
df=
{
x ∈ R : ω(g, x) ≥ τ(1− k−1)

}
, g = ḡ on A, ‖g − ḡ‖ ≤ τ

and g − ḡ ∈ Sk.

Theorem 3.2. Let k > 1. For each function f the following are equivalent:

(i) f is the sum of k nonnegative quasi-continuous functions;

(ii) f ∈ Sk;

(iii) there exist functions ϕ1, . . . , ϕk ∈ B1 such that ϕ1 + · · · + ϕk = 0 on R
and for i ∈ {1, . . . , k} the function f/k + ϕi is nonnegative and quasi-
continuous and Dϕi

⊂ Df .

Proof. The implication (iii)⇒ (i) is obvious and the implication (i)⇒ (ii)
follows by [8, Theorem 7].

(ii)⇒ (iii). Let τ0 = ∞ and A0 = ∅. For each n ∈ N set τn = 2−n, define
An =

{
x ∈ R : ω(f, x) ≥ τn(1−k−1)

}
and observe that An is a nowhere dense
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closed set. (Recall that the function ω(f, ·) is upper semicontinuous.) We pro-
ceed by induction. Put f0 = g1,0 = · · · = gk,0 = 0 and F1,0 = · · · = Fk,0 = ∅.
Let n ∈ N. Assume that for each j < n we have already constructed functions
fj , g1,j , . . . , gk,j and pairwise disjoint nowhere dense sets F1,j , . . . , Fk,j ⊂ Cf
such that

(aj) fj , f − (f0 + · · ·+ fj) ∈ Sk,

(bj) Dfj
⊂ Aj ,

(cj) f = f0 + · · ·+ fj on Aj ,

(dj) ‖f − (f0 + · · ·+ fj)‖ ≤ τj ,

(ej) clFi,j = Fi,j ∪Aj for each i,

(fj)
⋃k
i=1 Dgi,j ⊂ Aj ,

(gj) g1,j + · · ·+ gk,j = f0 + · · ·+ fj on R,

(hj) if j > 0, then ϕi,j
df= gi,j − gi,j−1 − fj/k ∈ B1 for each i.

First find a function fn ∈ Sk such that conditions (an)–(dn) are fulfilled.
(We use condition (an−1); cf. Lemma 3.1.) Write R \ An as the union of a
family, {In,m : m ∈ N}, consisting of nonoverlapping closed intervals, such that
for each x ∈ R\An there are p, r ∈ N with x ∈ int(In,p∪In,r). Without loss of
generality we may assume that λ(In,m) < %(In,m, An) and ω(gi,n−1, In,m) < τn
for each m and i and that

⋃
m∈N bd In,m ⊂ Cf \

⋃k
i=1 Fi,n−1. Fix an m ∈ N.

For each i find a nonempty perfect null-set Fi,n,m ⊂ Cf ∩ int In,m \
⋃k
j=1 Fj,n−1

such that
gi,n−1 + fn > max(gi,n−1 + fn)[In,m]− τn/2m

on Fi,n,m. Clearly we may assume that the sets F1,n,m, . . . , Fk,n,m are pairwise
disjoint.

Fix an i ∈ {1, . . . , k}. Set Fi,n = Fi,n−1 ∪
⋃
m∈N Fi,n,m. To prove con-

dition (en) take an arbitrary convergent sequence (xs) ⊂ Fi,n. Suppose that
x0 = lims→∞ xs /∈ An. If xs ∈ Fi,n−1 for infinitely many s, then by (en−1)

x0 ∈ clFi,n−1 = Fi,n−1 ∪An−1 ⊂ Fi,n ∪An.

Otherwise there is an m0 ∈ N such that xs ∈ Fi,n,m0 for infinitely many s.
(Recall that each point in R \An belongs to int(In,p ∪ In,r) for some p, r ∈ N.)
Then x0 ∈ Fi,n,m0 ⊂ Fi,n.
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We have proved condition (en). Clearly, by the construction, Fi,n is a null-
set of the first category and the condition (en) implies that Fi,n is a nowhere
dense set.

Let Gn ⊃
⋃k
i=1 Fi,n be an open subset of

⋃
m∈N int In,m. (See Remark 1

for explanation why we do not set Gn =
⋃
m∈N int In,m.) Notice that the set

Un = Gn \
⋃k
i=1 Fi,n is open. For each i and m let ψi,n,m be a continuous

surjection from Fi,n,m onto[
max{min gi,n−1[In,m]− τn−1, 0},max{max(gi,n−1 + fn)[In,m]− τn/2m, 0}

]
.

For each i define the function gi,n on R \ Un by

gi,n(x) =



gi,n−1(x) if x ∈ Fi,n−1,(
gi,n−1 + fn/(k − 1)

)
(x) if x ∈ Fj,n−1, j 6= i,

ψi,n,m(x) if x ∈ Fi,n,m, m ∈ N,(
gi,n−1 +

gj,n−1 + fn − ψj,n,m
k − 1

)
(x) if x ∈ Fj,n,m, j 6= i, m ∈ N,

(gi,n−1 + fn/k)(x) if x ∈ R \Gn.

One can easily show that g1,n+ · · ·+gk,n = g1,n−1 + · · ·+gk,n−1 +fn on R\Un
and for each i: gi,n is continuous on R \ (Un ∪An), gi,n ≥ 0 on R \ Un and

|gi,n − gi,n−1 − fn/k| < 3τn−1 on R \ Un. (1)

(Notice that ‖fn‖ ≤ ‖f − (f0 + · · ·+ fn−1)‖ ≤ τn−1.)
Let (a1, a2) be a component of Un and J = [a1, a2]. There is an m ∈ N

such that J ⊂ In,m. By (bn) and (fn−1), we have J ⊂ Cfn ∩
⋂k
i=1 Cgi,n−1 . Use

Lemma 2.4 to extend functions g1,n, . . . , gk,n on J so that g1,n + · · ·+ gk,n =
g1,n−1 + · · · + gk,n−1 + fn on J and for each i: gi,n�J is nonnegative and
continuous and

ω(gi,n, J) ≤ 3ω
(
g1,n−1 + · · ·+ gk,n−1 + fn, J

)
+ |gi,n(a2)− gi,n(a1)|. (2)

Observe that by (1) and (2), for each i ∈ {1, . . . , k} and each x ∈ J we have

|(gi,n − gi,n−1 − fn/k)(x)| < ω(gi,n, J) + ω(gi,n−1 + fn/k, J) + 3τn−1

≤3
( k∑
j=1

ω(gj,n−1, In,m) + ‖fn‖
)

+
(
2 · 3τn−1 + ω(gi,n−1 + fn/k, J)

)
+ ω(gi,n−1 + fn/k, J) + 3τn−1

≤3(kτn + τn−1) + 6τn−1 + 2(τn + τn−1/k) + 3τn−1 ≤ (3k/2 + 14)τn−1.
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In this way we extended functions g1,n, . . . , gk,n to entire real line. Con-
ditions (gn) and (hn) are evident and condition (fn) follows by (2). This
completes the induction step.

Fix an i ∈ {1, . . . , k}. Define ϕi =
∑
n∈N ϕi,n and gi = f/k+ϕi. The series

is uniformly convergent; so ϕi ∈ B1 and Dϕi ⊂
⋃
n∈N An = Df . Moreover

gi =
∑
n∈N(fn/k + ϕi,n) = lim

s→∞

∑s
n=1(gi,n − gi,n−1) = lim

s→∞
gi,s. (3)

Hence gi ≥ 0 and g1 + · · · + gk = f on R. Consequently, ϕ1 + · · · + ϕk = 0
on R.

To complete the proof we will show that gi ∈ Q. Let l ∈ N and x ∈ Dgi .
Then x ∈ An \An−1 for some n ∈ N and gi(x) = gi,n(x) = (gi,n−1 + fn/k)(x).
Since x ∈ Cgi,n−1 , there is a δ ∈ (0, l−1) such that |gi,n−1 − gi,n−1(x)| < 2−l

on (x − δ, x + δ). We may assume that %(x, In,m) > δ for each m < l. There
exists a t ∈ Cf ∩ [[[fn ≥ fn(x)/k − 2−l]]] ∩ (x− δ, x+ δ). (We use the definition
of the class Sk and Lemma 2.1.) Then t ∈ In,m for some m ≥ l. So we
can find an xl ∈ Fi,n,m such that |ψi,n,m(xl) − (gi,n−1 + fn/k)(x)| ≤ 3 · 2−l.
Consequently, xl ∈ Cgi

∩ [[[|gi − gi(x)| ≤ 3 · 2−l]]] ∩ (x − 2l−1, x + 2l−1). By
Lemma 2.2, we conclude that gi ∈ Q.

Remark 1. In the above proof, one can easily show that |ϕi,n| ≤
∑n
s=1 fs for

each i and n. Thus if we require
∥∥∑n

s=1 fs ·χIn,m

∥∥·λ(Gn∩In,m) < 2−mλ(In,m)
for each n and m, then we will obtain that each ϕi,n is a Lebesgue function.(
Recall that ψ is a Lebesgue function if limδ→0

∫ x+δ

x
δ−1|ψ − ψ(x)| = 0 for

each x ∈ R.
)

Hence each ϕi is Lebesgue as well. Since Lebesgue functions are
both approximately continuous and derivatives, the answer to both questions
asked in [8, p. 157] is affirmative.

Remark 2. Let τ > 0 and let I be a nondegenerate interval. In the above
proof, if for n ≥ 1 we put τn = τ/2n and An =

{
x ∈ R : ω(f, x) ≥ τn(1 −

k−1)
}
∪bd I, then for each i we will have gi[Cgi ∩ I] ⊃

[
0,max

{
sup f [Cf ∩ I]−

3τ/2, 0
}]

, gi = f/k on bd I and Dgi
⊂ Df ∪ bd I.

Corollary 3.3. Let k > 1. For each function f the following are equivalent:

(i) f is the sum of k quasi-continuous functions bounded below;

(ii) f ∈ Cq, f is bounded below and inf
{

LIM(f, x)−f(x)/k : x ∈ R
}
> −∞;

(iii) there exist functions ϕ1, . . . , ϕk ∈ B1 such that ϕ1 + · · · + ϕk = 0 on R
and for i ∈ {1, . . . , k} the function f/k+ϕi is bounded below and quasi-
continuous and Dϕi ⊂ Df .
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Proof. The implication (iii)⇒ (i) is obvious and the implication (i)⇒ (ii)
follows by [8, Corollary 8].

(ii)⇒ (iii). Let s ≤ inf
{

LIM(f, x) − f(x)/k : x ∈ Df

}/
(1 − 1/k) be such

that f ≥ s on R. Then the function f̂ = f − s is nonnegative and

LIM
(
f̂ , x

)
= LIM(f, x)− s ≥ f(x)/k − s/k = f̂(x)/k

for each x ∈ Df . So by Theorem 3.2, there exist functions ϕ1, . . . , ϕk ∈
B1 such that ϕ1 + · · · + ϕk = 0 on R and for i ∈ {1, . . . , k}: the function
f/k − s/k + ϕi is nonnegative and quasi-continuous and Dϕi

⊂ Df . Clearly
these functions fulfill our requirements.

3.2 Strong Świa̧tkowski Functions

For brevity, for each k > 1 the symbol S∗k will denote the family of all non-
negative functions f ∈ Cq such that min

{
LIM(f, x−),LIM(f, x+)

}
≥ f(x)/k

for each x ∈ R. The proof of Lemma 3.4 is analogous to that of Lemma 3.1.

Lemma 3.4. Let k > 1, g ∈ S∗k and τ > 0. There exists a function ḡ ∈ S∗k
such that Dḡ ⊂ A

df=
{
x ∈ R : ω(g, x) ≥ τ(1− k−1)

}
, g = ḡ on A, ‖g − ḡ‖ ≤ τ

and g − ḡ ∈ S∗k.

Theorem 3.5. Let k > 1. For each function f the following are equivalent:

(i) f is the sum of k nonnegative Darboux quasi-continuous functions;

(ii) f ∈ S∗k;

(iii) there exist functions ϕ1, . . . , ϕk ∈ B1 such that ϕ1 + · · · + ϕk = 0 on R
and for i ∈ {1, . . . , k} the function f/k + ϕi is nonnegative and strong
Świa̧tkowskiand Dϕi

⊂ Df .

Proof. The implication (iii)⇒ (i) is obvious and the implication (i)⇒ (ii)
can be proved as in [8, Theorem 7].

(ii)⇒ (iii). First we proceed as in the proof of the implication (ii)⇒ (iii)
of Theorem 3.2 to construct functions ϕ1, . . . , ϕk ∈ B1. The only difference
is to require f1, f2, . . . ∈ S∗k. (We use Lemma 3.4 instead of Lemma 3.1.) To
complete the proof suppose that gi = f/k + ϕi /∈ Śs for some i ∈ {1, . . . , k}.
Let x1, x2 ∈ R and y ∈

(
gi(x1), gi(x2)

)
be such that gi(t) = y for no t ∈ Cf ∩J ,

where J is the open interval with end points x1 and x2. Assume x1 < x2. (The
opposite case is similar.) Set

x0 = sup
{
x ∈ [x1, x2] : gi(t) < y for each t ∈ Cf ∩ (x1, x]

}
.
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It is evident that x0 /∈ Cf . Let n ∈ N be such that x0 ∈ An \ An−1. Then
gi(x0) = (gi,n−1 + fn/k)(x0). We consider two cases.

If ε = gi(x0) − y > 0, then x0 > x1. Choose an l ∈ N with τn/2l <
ε/3. Since x0 ∈ Cgi,n−1 , gi,n−1 > gi,n−1(x0) − ε/3 on (x0 − δ, x0) for some
δ ∈

(
0, (x0 − x1)/2

)
. We may assume that %(x, In,m) > δ for m < l. By the

definition of the class S∗k, there is a t ∈ Cf ∩[[[fn ≥ fn(x0)/k−ε/3]]]∩(x0−δ, x0).
Then t ∈ In,m for some m ≥ l. Thus

max(gi,n−1 + fn)[In,m]− τn/2m > (gi,n−1 + fn)(t)− ε/3 > gi(x0)− ε = y.

Hence there is a t0 ∈ Fi,n,m ⊂ Cf ∩ (x1, x0) with gi(t0) = ψi,n,m(t0) > y,
contradicting the definition of x0. (Recall that λ(In,m) < %(In,m, An) < δ.)

If gi(x0) ≤ y, then x0 < x2 and gi,n−1(x0) ≤ gi(x0) ≤ y. Since x0 ∈ Cgi,n−1 ,
so gi,n−1 < y + τn−1 on (x0, x0 + δ) for some δ ∈

(
0, (x2 − x0)/2

)
. We will

prove by induction that for each s ≥ n

gi,s−1 < y + τs−1 on Cf ∩ (x0, x0 + δ). (4)

This relation clearly holds for s = n. Assume it is fulfilled for some s ≥ n
but not for s+ 1. There is a t ∈ Cf ∩ (x0, x0 + δ) with gi,s(t) ≥ y + τs. Then
t ∈ Is,m for some m ∈ N. Let a = inf Is,m. If gi,s(a) ≥ y + τs/2. Then by
inductive assumption, we obtain

max(gi,s−1 + fs)[Is,m]− τs/2m ≥ (gi,s−1 + fs/k)(a)− τs/2 = gi,s(a)− τs/2
≥ y ≥ gi,s−1(a)− τs−1 ≥ min gi,s−1[Is,m]− τs−1.

Hence there is a t0 ∈ Fi,s,m ⊂ Cf ∩ (x0, x2) with gi(t0) = ψi,s,m(t0) = y, an
impossibility.

Consequently there is an â ∈ Cf ∩ (a, t) with y + τs/2 < gi,s(â) < y + τs.
(Recall that t ∈ Is,m ⊂ Cgi,s

.) Then â ∈ Is+1,p for some p ∈ N. Thus

max(gi,s + fs+1)[Is+1,p]− τs+1/2p ≥ gi,s(â)− τs+1/2
> y > gi,s(â)− τs ≥ min gi,s[Is+1,p]− τs.

Hence there is a t0 ∈ Fi,s+1,p ⊂ Cf∩(x0, x2) such that gi(t0) = ψi,s+1,p(t0) = y,
an impossibility. Thus (4) is proved.

By (3) and (4), we conclude that gi = lims→∞ gi,s ≤ y on Cf ∩ (x0, x0 + δ).
But by our assumption, gi 6= y on Cf∩[x1, x2]. Thus gi < y on Cf∩(x1, x0+δ),
contradicting the definition of x0.

The proof of the next corollary mimics that of Corollary 3.3. (We use
Theorem 3.5 instead of Theorem 3.2.)
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Corollary 3.6. Let k > 1. For each function f the following are equivalent:

(i) f is the sum of k Darboux quasi-continuous functions bounded below;

(ii) f ∈ Cq, f is bounded below and

inf
{

min
{

LIM(f, x−),LIM(f, x+)
}
− f(x)/k : x ∈ R

}
> −∞;

(iii) there exist functions ϕ1, . . . , ϕk ∈ B1 such that ϕ1 + · · · + ϕk = 0 on R
and for i ∈ {1, . . . , k} the function f/k+ϕi is bounded below and strong
Świa̧tkowski and Dϕi ⊂ Df .

4 Products of Bounded Functions

In this section for brevity we define F = {RR,L} ∪ {Bα : α ≥ 1}.

4.1 Quasi-Continuous Functions

Lemma 4.1. Suppose F ∈ F, f ∈ CqF is bounded, f > 0 on an interval
I = [a, b), a ∈ Cf , k > 1 and T ≥ k

√
‖f‖+ 1. Assume moreover that

LIM(|f |, x) ≤ T k−1 k
√
|f(x)| (5)

for each x ∈ (a, b). Then for each ε ∈
(
inf f [Cf ∩ I], T

]
there are positive

functions g1, . . . , gk ∈ F such that f = g1 . . . gk on I and for each i, gi�I is
quasi-continuous, ‖gi‖ ≤ T and gi[Cgi

∩ I] ⊃ [ε/T k−1, T ].

Proof. Define f̂(x) = k lnT − ln f(x) if x ∈ I and f̂(x) = 0 otherwise. Then
f̂ is nonnegative and cliquish, f̂ is at least unilaterally continuous on (−∞, a]
and [b,∞) and by (5), for each x ∈ (a, b)

LIM
(
f̂ , x

)
= k lnT − ln LIM(f, x) ≥ lnT − k−1 ln f(x) = f̂(x)/k.

Thus f̂ ∈ Sk. By Remark 2, there are nonnegative functions ĝ1, . . . , ĝk ∈ QF
such that f̂ = ĝ1 + · · · + ĝk on R and for each i: ĝi[Cbgi

∩ I] ⊃ [0, ln(T k/ε)]
and ĝi(a) = f̂(a)/k. For each i define gi = T · χI/exp ◦ ĝi. Then clearly
f = g1 . . . gk on I. Let i ∈ {1, . . . , k}. Since ĝi = 0 on (−∞, a) and ĝi(a) > 0,
so ĝi is not quasi-continuous from the left at a. Hence gi�I is quasi-continuous.
Moreover 0 < gi ≤ T on I and gi[Cgi ∩ I] ⊃ [ε/T k−1, T ].
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Lemma 4.2. Suppose F ∈ F, f ∈ CqF is bounded, f is either positive
or negative on an interval I = [a, b), a ∈ Cf , k > 1 and T ≥ k

√
‖f‖ + 1.

Assume moreover that condition (5) holds for each x ∈ (a, b). Then for each
ε ∈

(
inf|f |[Cf ∩I], T

]
there are functions g1, . . . , gk ∈ F such that f = g1 . . . gk

on I and for each i, gi�I is quasi-continuous, ‖gi‖ ≤ T and

gi[Cgi ∩ I] ⊃ [−T,−ε/T k−1] ∪ [ε/T k−1, T ].

Proof. Choose x1, x2 ∈ Cf ∩ [[[|f | < ε]]] ∩ (a, b) with x1 < x2. Set I1 = [a, x1),
I2 = [x1, x2) and I3 = [x2, b). For j ∈ {1, 2, 3} use Lemma 4.1 to construct
positive functions g1j , . . . , gkj ∈ F such that |f | = g1j . . . gkj on Ij and for
each i gij�Ij is quasi-continuous, ‖gij‖ ≤ T and gij [Cgij

∩ Ij ] ⊃ [ε/T k−1, T ].
Define

{
tij : i ∈ {1, . . . , k}, j ∈ {1, 2, 3}

}
so that t1j . . . tkj = sgn f [I] for each j

and
{
tij : j ∈ {1, 2, 3}

}
= {−1, 1} for each i. For each i ∈ {1, . . . , k} put

gi =
∑3
j=1 tij · gij · χIj . One can easily see that then the requirements of the

lemma are fulfilled.

Theorem 4.3. Suppose that F ∈ F and k > 1. For each function f ∈ F the
following are equivalent:

(i) f is the product of k bounded quasi-continuous functions;

(ii) f ∈ Cq, f is bounded, the set [[[f = 0]]] is simply open and there exists a
T ≥ k

√
‖f‖+ 1 such that condition (5) holds for each x ∈ R;

(iii) there exist bounded functions g1, . . . , gk ∈ QF such that f = g1 . . . gk
on R.

Proof. The implication (iii)⇒ (i) is obvious.
(i)⇒ (ii). Let f = g1 . . . gk, where g1, . . . , gk ∈ Q are bounded. The

boundedness and cliquishness of f are obvious and the set [[[f = 0]]] is simply
open by [10]. Put T = max

{
‖gi‖ : i ∈ {1, . . . , k}

}
+ 1 and fix an x ∈ R. Then

|gi(x)| ≤ k
√
|f(x)| for some i ∈ {1, . . . , k}. By Lemma 2.2, there is a sequence

(xn) ⊂ Cf such that xn → x and gi(xn)→ gi(x). Hence

LIM(|f |, x) ≤ limn→∞|f(xn)| ≤
∏
j 6=i‖gj‖ · limn→∞|gi(xn)| ≤ T k−1 k

√
|f(x)|.

(ii)⇒ (iii). Let G0 = int[[[f = 0]]] and G1 = int[[[f < 0]]] ∪ int[[[f > 0]]]. For
p ∈ {0, 1} write Gp as the union of a family,

{
[apn, bpn) : n ∈ N

}
, consisting

of pairwise disjoint intervals, such that {apn : n ∈ N} ⊂ Cf . For each n ∈ N
construct continuous functions g10n, . . . , gk0n such that g10n . . . gk0n = 0 on R
and g10n

[
[a0n, b0n)

]
= · · · = gk0n

[
[a0n, b0n)

]
= [−T, T ] and find functions
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g11n, . . . , gk1n ∈ F such that f = g11n . . . gk1n on [a1n, b1n) and for each i:
gi1n�[a1n, b1n) is quasi-continuous, ‖gi1n‖ ≤ T and

gi1n
[
Cgi1n

∩ [a1n, b1n)
]
⊃ [−T,−εn/T k−1] ∪ [εn/T k−1, T ],

where εn = min
{

inf|f |
[
Cf ∩ [a1n, b1n)

]
+ n−1, T

}
. (Cf. Lemma 4.2.)

Fix an i ∈ {1, . . . , k} and define

gi(x) =


gipn(x) if x ∈ [apn, bpn) for some p ∈ {0, 1}

and n ∈ N
k
√
|f(x)| ·

(
sgn f(x)

)1+sgn(k−i) otherwise.

It is clear that gi is quasi-continuous on G = G0∪G1 and ‖gi‖ ≤ T . Since the
set [[[f = 0]]] is simply open, so G is dense in R [2, Remark 2]. It is easy to prove
that for each x /∈ G and y ∈

[
−T,−LIM(|f |, x)/T k−1

]
∪
[
LIM(|f |, x)/T k−1, T

]
there is a sequence (xn) ⊂ Cgi such that xn → x and gi(xn) → y. So by
condition (5) and Lemma 2.2, we obtain gi ∈ Q. The other requirements are
evident.

4.2 Darboux Quasi-Continuous Functions

Lemma 4.4. Let A ⊂ R be a nowhere dense closed set, let I be the family of
all components of R \A and let f be a nonnegative cliquish function such that
for each x ∈ A, if x is not isolated in A from the left (from the right), then
LIM(f, x−) = 0 (respectively LIM(f, x+) = 0). There exist pairwise disjoint
families I1, . . . , I4 ⊂ I such that for each j ∈ {1, . . . , 4} and each x ∈ A, if x
is not isolated in A from the left (from the right), then LIM

(
f,
⋃

Ij , x
−) = 0(

respectively LIM
(
f,
⋃

Ij , x
+
)

= 0
)
.

Proof. I. First suppose A is nonempty, compact and perfect. Then for each
locally finite family Ī ⊂ I and each open interval J , if J ∩A 6= ∅, then

inf
{

inf f [Cf ∩ I] : I ∈ I \ Ī, I ⊂ J
}

= 0. (6)

Set I1,0 = · · · = I4,0 = ∅. Let n ∈ N. Suppose families I1,n−1, . . . , I4,n−1 ⊂ I

are pairwise disjoint and if n > 1, then

(an−1)
for each j ∈ {1, . . . , 4} and each x ∈ A there is an interval I ∈ Ij,n−1

such that I ⊂
(
x−(n−1)−1, x+(n−1)−1

)
and inf f [Cf∩I] < (n−1)−1.

Let Jn be a locally finite cover of A consisting of pairwise disjoint open intervals
of diameter less than n−1, such that A∩J 6= ∅ for each J ∈ Jn. For each J ∈ Jn
use condition (6) to choose intervals I1,J , . . . , I4,J ∈ I \ (I1,n−1 ∪ · · · ∪ I4,n−1)
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such that inf f [Cf∩Ij,J ] < n−1 for each j. Define Ij,n = Ij,n−1∪{Ij,J : J ∈ Jn}
(j ∈ {1, . . . , 4}). Clearly the families I1,n, . . . , I4,n are pairwise disjoint and
fulfill condition (an).

For j ∈ {1, . . . , 4} put Ij =
⋃
n∈N Ij,n. Clearly these families are pairwise

disjoint. To complete the proof of this case fix a j ∈ {1, . . . , 4} and an x ∈ A
and suppose x is not isolated in A from the left. (The other case is similar.)
Fix a δ > 0. Let t ∈ A ∩ (x − δ/2, x) and let n > (x − t)−1. By (an),
there is an interval I ∈ Ij such that I ⊂ (t − n−1, t + n−1) ⊂ (x − δ, x) and
inf f [Cf ∩ I] < n−1 < δ. Consequently, LIM

(
f,
⋃

Ij , x
−) = 0.

II. Now let A be an arbitrary nowhere dense closed set. Denote by J the
family of all compact intervals, J , for which there are pairwise disjoint families
I1, . . . , I4 ⊂ I such that for each j ∈ {1, . . . , 4} and each x ∈ A ∩ J , if x is
not isolated in A∩J from the left (from the right), then LIM

(
f,
⋃

Ij , x
−) = 0(

respectively LIM
(
f,
⋃

Ij , x
+
)

= 0
)
. Moreover let G be the set of all x ∈ R

for which there exists an interval Φx ∈ J with x ∈ intΦx.

Claim 1. If [a1, a2] ∈ J and [a2, a3] ∈ J, then [a1, a3] ∈ J.

For i ∈ {1, 2} let I1,i, . . . , I4,i be the families corresponding to [ai, ai+1] ∈ J.
For j ∈ {1, . . . , 4} define Ij =

⋃2
i=1

{
I ∈ Ij,i : I ⊂ (ai, ai+1)

}
. Clearly these

families yield [a1, a3] ∈ J.

Claim 2. Every compact interval J ⊂ G belongs to J.

Indeed, the compactness of J and the relation J ⊂
⋃
x∈J intΦx imply

that there are x1, . . . , xm ∈ J such that J ⊂
⋃m
i=1 intΦxi

. It is clear that if
J ∈ J and J ′ is a closed subinterval of J , then J ′ ∈ J. Thus we can find
nonoverlapping intervals J1, . . . , Jl ∈ J with J =

⋃l
s=1 Js. By Claim 1, we

obtain J ∈ J.

Claim 3. If a < b and (a, b) ⊂ G, then [a, b] ∈ J.

Let c ∈ (a, b). It suffices to show that [a, c] ∈ J and [c, b] ∈ J. (See
Claim 1.) We will verify only that [a, c] ∈ J, the proof of the other relation
being analogous.

If A ∩ (a, a + η) = ∅ for some η ∈ (0, c − a), then let I1, . . . , I4 show that
[a+ η, c] ∈ J. (See Claim 2.) Evidently these families also show that [a, c] ∈ J

as well.
Otherwise inf f [Cf ∩ (a, a+ η)] = 0 for each η > 0. Set an = a+ (c− a)/n

for each n ∈ N. For each n choose intervals I1,n, . . . , I4,n ∈ I such that
Ij,n ⊂ (a, an) and inf f [Cf ∩ Ij,n] < n−1 for each j. By Claim 2, there are
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families I1,n, . . . , I4,n corresponding to [an+1, an] ∈ J. Notice that we may
assume

⋃4
j=1

⋃
Ij,n ⊂ (an+1, an). For j ∈ {1, . . . , 4} put

Ij =
(
{Ij,n : n ∈ N} ∪

⋃
n∈N Ij,n

)
\ {Ii,n : i 6= j, n ∈ N}.

Clearly these families show that [a, c] ∈ J.

Claim 4. We have G = R.

By way of contradiction suppose that the set P = R \ G is nonempty.
Observe that P is closed. If there are an x ∈ P and a δ > 0 such that
P ∩ (x − δ, x + δ) = {x}, then by Claim 3, we obtain [x − δ, x] ∈ J and
[x, x + δ] ∈ J. Hence by Claim 1, [x − δ, x + δ] ∈ J. Thus x ∈ G, an
impossibility.

Consequently P is perfect. Let J be a compact interval such that the set
A′ = P ∩J is nonempty and perfect. Since R\A ⊂ G, so A′ is nowhere dense.
Let I′ = {I ′n : n ∈ N} be the family of all components of R\A′. By the first part
of the proof, there are pairwise disjoint families I′1, . . . , I

′
4 ⊂ I′ such that for

each j ∈ {1, . . . , 4} and each x ∈ A′ if x is not isolated in A′ from the left (from
the right), then LIM

(
f,
⋃

I′j , x
−) = 0

(
respectively LIM

(
f,
⋃

I′j , x
+
)

= 0
)
. Fix

an n ∈ N. If I ′n is bounded, then let I1,n, . . . , I4,n show that cl I ′n ∈ J (see
Claim 3), otherwise put I1,n = · · · = I4,n = ∅. Let ϕ(I ′n) ∈ I be such that
ϕ(I ′n) ⊂ I ′n and inf f [Cf ∩ ϕ(I ′n)] ≤ inf

{
inf f [Cf ∩ I] : I ∈ I, I ⊂ I ′n

}
+ n−1.

For j ∈ {1, . . . , 4} define

Ij =
(⋃

n∈N
{
I ∈ Ij,n : I ⊂ I ′n

}
\ ϕ[I′]

)
∪ ϕ[I′j ].

It is quite evident that these families are pairwise disjoint. Fix a j ∈ {1, . . . , 4}
and an x ∈ A ∩ J and suppose x is not isolated in A ∩ J from the left. (The
other case is similar.) If x ∈ cl I ′n for some n ∈ N and x is not the left end
point of I ′n, then

LIM
(
f,
⋃

Ij , x
−) ≤ LIM

(
f,
⋃

Ij,n, x
−) = 0,

and in the opposite case we have

LIM
(
f,
⋃

Ij , x
−) ≤ LIM

(
f,
⋃
ϕ[I′j ], x

−) = LIM
(
f,
⋃

I′j , x
−) = 0.

Thus A′ ∩ int J ⊂ P ∩G = ∅. But A′ ⊂ J and A′ is perfect, an impossibility.
Finally for each z ∈ Z let I1,z, . . . , I4,z witness [z, z+ 1] ∈ J. (See Claims 4

and 2.) For j ∈ {1, . . . , 4} define Ij =
⋃
z∈Z
{
I ∈ Ij,z : I ⊂ (z, z + 1)

}
. Clearly

these families fulfill the requirements of the lemma.
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Lemma 4.5. Suppose F ∈ F, f ∈ CqF is bounded, f > 0 on an open
interval I, k > 1 and T ≥ k

√
‖f‖+ 1. Assume moreover that f is nonnegative

on bd I and that

max
{

LIM(|f |, x−),LIM(|f |, x+)
}
≤ T k−1 k

√
|f(x)| (7)

for each x ∈ cl I. Then for each ε ∈
(
inf f [Cf ∩ I], T

]
there are functions

g1, . . . , gk ∈ DQF such that f = g1 . . . gk on I and for each i, ‖gi‖ ≤ T ,
gi[Cgi

∩ I] ⊃ [ε/T k−1, T ] and gi = k
√
f on bd I.

Proof. Define f̂(x) = k lnT − ln f(x) if x ∈ I and f̂(x) = 0 otherwise. Then
f̂ is nonnegative. By (7), for each x ∈ I

LIM
(
f̂ , x−

)
= k lnT − LIM(ln f, x−) ≥ lnT − k−1 ln f(x) = f̂(x)/k,

and similarly LIM
(
f̂ , x+

)
≥ f̂(x)/k. But f̂ = 0 on R \ I; so f̂ ∈ S∗k.

Observe that η = (ε− inf f [Cf ∩I])/2 > 0. Put a = inf I and b = sup I and
let {az : z ∈ Z} be a strictly increasing sequence with limit points a and b. For
each z ∈ Z set Iz = [az, az+1] and ηz = inf f [Cf ∩ Iz] + η/2|z| and construct
nonnegative functions ĝ1z, . . . , ĝkz ∈ DQF such that f̂ = ĝ1z + · · ·+ ĝkz on R
and for each i: ĝiz[Cbgiz

∩ Iz] ⊃ [0, ln(T k/ηz)], ĝiz = f̂/k on {az, az+1} and
Dbgiz

⊂ Df ∪ {az, az+1}. (See Remark 2.)
Let i ∈ {1, . . . , k}. Define gi(x) = T/exp

(
ĝiz(x)

)
if x ∈ Iz for some z ∈ Z,

gi(x) = k
√
f(x) if x ∈ bd I and let gi be constant on (−∞, a] and [b,∞).

It is clear that gi ∈ QF and that each x /∈ bd I is a Darboux point of gi.
Suppose a ∈ R. (The case b ∈ R is similar.) By construction, for each c ∈ I
we have gi[(a, c)] ⊃

(
LIM(f, a+)/T k−1, T

]
. Hence by (7), a is a Darboux point

of gi from the right. Thus gi ∈ D.
Since inf f [Cf ∩ I] < ε, so inf f [Cf ∩ Iz] < inf f [Cf ∩ I] + η = ε − η for

some z ∈ Z. Then ηz < ε, whence gi[Cgi ∩ Iz] ⊃ [ε/T k−1, T ]. The other
requirements are easy to prove.

Theorem 4.6. Suppose that F ∈ F \ {B1} and k > 1. For each function
f ∈ F the following are equivalent:

(i) f is the product of k bounded Darboux quasi-continuous functions;

(ii) f ∈ Cq, f is bounded, the set [[[f = 0]]] is simply open, there exists a
T ≥ k

√
‖f‖+ 1 such that condition (7) holds for each x ∈ R and

for all x < t, if f(x)f(t) < 0, then [[[f = 0]]] ∩ (x, t) 6= ∅; (8)
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(iii) there exist bounded functions g1, . . . , gk ∈ DQF such that f = g1 . . . gk
on R.

Proof. The implication (iii)⇒ (i) is obvious and the implication (i)⇒ (ii)
can be proved as in Theorem 4.3. (Recall that condition (8) follows by [4].)

(ii)⇒ (iii). Put A = bd(cl[[[f = 0]]]) and let I = {In : n < p} be the fam-
ily of all components of R \ A. (Here p is either a positive integer or the
infinity.) Observe that by (7), if x ∈ A and x is not isolated in A from the
left (from the right), then LIM(|f |, x−) = 0 (respectively LIM(|f |, x+) = 0).
By Lemma 4.4, there are pairwise disjoint families I1, . . . , I4 ⊂ I such that for
each j ∈ {1, . . . , 4} and each x ∈ A, if x is not isolated in A from the left (from
the right), then LIM

(
|f |,

⋃
Ij , x

−) = 0
(
respectively LIM

(
|f |,

⋃
Ij , x

+
)

= 0
)
.

Clearly we may assume I =
⋃4
j=1 Ij .

Let n < p. If In = (an, bn) ⊂ cl[[[f = 0]]], then In ⊂ [[[f = 0]]]. (Recall that
the set [[[f = 0]]] is simply open.) Construct functions g1n, . . . , gkn ∈ ŚsB1 such
that f = g1n . . . gkn on In and gin[(an, c)] = gin[(c, bn)] = [−T, T ] for each
i ∈ {1, . . . , k} and each c ∈ In. Otherwise by (8), either f > 0 on In and
f ≥ 0 on bd In, or f < 0 on In and f ≤ 0 on bd In. Set εn = min

{
inf|f |[Cf ∩

In] + n−1, T
}

and use Lemma 4.5 to construct functions g1n, . . . , gkn ∈ DQF
such that |f | = g1n . . . gkn on In and for each i: ‖gin‖ ≤ T , gin[Cgin

∩ In] ⊃
[εn/T k−1, T ] and gin = k

√
|f | on bd In. Put

tin =


(−1)j if i < k, In ∈ Ij , j ∈ {1, 2},
(−1)(k−1)j · sgn f [In] if i = k, In ∈ Ij , j ∈ {1, 2},
(−1)(k−1)j · sgn f [In] if i = 1, In ∈ Ij , j ∈ {3, 4},
(−1)j if i > 1, In ∈ Ij , j ∈ {3, 4}

and notice that t1n . . . tkn = sgn f [In].
Fix an i ∈ {1, . . . , k}. Put

gi(x) =


gin(x) if x ∈ In, In ⊂ [[[f = 0]]], In ∈ I,
tingin(x) if x ∈ cl In, In ⊂ [[[f 6= 0]]], In ∈ I,
k
√
|f(x)| ·

(
sgn f(x)

)1+sgn(k−i) otherwise.

One can easily verify that ‖gi‖ ≤ T and gi ∈ F . To prove that gi ∈ DQ fix an
x ∈ R. If A ∩ (x, x+ δ) = ∅ for some δ > 0, then clearly x is a Darboux point
of gi from the right and gi is quasi-continuous at x. Otherwise let δ > 0. For
j ∈ {1, . . . , 4} there exists a sequence (Ij,m) ⊂ Ij such that sup Ij,m ↘ x and
inf|f |[Cf ∩ Ij,m]→ 0. Thus

gi[Cgi
∩ (x, x+ δ)] ⊃

⋃4
j=1

⋃
Ij,m⊂(x,x+δ) gi[Cgi

∩ Ij,m] ⊃ [−T, T ] \ {0};
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so gi is quasi-continuous at x. But gi = 0 on [[[f = 0]]]∩A and [[[gi = 0]]]∩(a, b) 6= ∅
whenever (a, b) ⊂ [[[f = 0]]]. Using the fact that x ∈ cl

(
[[[f = 0]]] ∩ (x,∞)

)
, we

obtain gi[(x, x + δ)] = [−T, T ]. Hence x is a Darboux point of gi from the
right. Similarly we can show that x is a Darboux point of gi from the left.

5 Products of Strong Świa̧tkowski Functions

Proposition 5.1. There is a bounded function f ∈ DQB2 which cannot be
written as the finite product of strong Świa̧tkowski functions.

Proof. Let C be the Cantor ternary set. Let I1 and I2 be families of compo-
nents of R \C such that C ∪

⋃
I1 ∪

⋃
I2 = [0, 1] and C =

(
cl
⋃

I1

)
∩
(
cl
⋃

I2

)
.

Define f(x) = (−1)j %(x,C)/λ(I) if x ∈ cl I for some I ∈ Ij and j ∈ {1, 2} and
f(x) = 1/2 otherwise. It can be readily verified that f ∈ DQB2. Suppose
that there exist functions g1, . . . , gk ∈ Śs such that f = g1 . . . gk on R. First
we will verify the following assertion.

For each i ∈ {1, . . . , k}, if I is an open interval with C∩I 6= ∅,
then there is an open interval J ⊂ I with C ∩J 6= ∅ such that
either gi ≥ 0 on J or gi ≤ 0 on J .

(9)

Indeed, consider the set A = Cgi
∩ C ∩ I. If A is uncountable, then there

is an x0 ∈ A with gi(x0) 6= 0. Consequently, there is an open interval J ⊂ I
such that x0 ∈ C ∩ J and either gi > 0 on J or gi < 0 on J .

Otherwise A is an at most countable Gδ set, so A is nowhere dense in C.
Hence there is an open interval J ⊂ I such that A ∩ J = ∅ 6= C ∩ J . Then
Cgi
∩ J ⊂ R \ C and 0 /∈ gi[Cgi

∩ J ]. Since gi ∈ Śs, so either gi ≥ 0 on J or
gi ≤ 0 on J .

By (9), there is an open interval J such that C ∩ J 6= ∅ and each gi is
either nonnegative or nonpositive on J . Consequently, the function f is either
nonnegative or nonpositive on J , too. But J ∩

⋃
I1 6= ∅ 6= J ∩

⋃
I2, an

impossibility.

Proposition 5.2. If a function f can be written as the product of two strong
Świa̧tkowski functions, then for all x < t, if f(x)f(t) < 0, then LIM(|f |, x−0 ) =
LIM(|f |, x+

0 ) = 0 for some x0 ∈ [[[f = 0]]] ∩ (x, t).

Proof. Suppose f = gh, where g, h ∈ Śs. If x < t and f(x)f(t) < 0, then
g(x)g(t) < 0 or h(x)h(t) < 0. Without loss we may assume that the first case
holds. Since g ∈ Śs, there is an x0 ∈ Cg ∩ [[[g = 0]]] ∩ (x, t). By Lemma 2.3,
there is a sequence (xn) ⊂ Cf such that xn ↗ x0 and limn→∞ h(xn) = h(x0),
whence LIM(|f |, x−0 ) ≤ limn→∞|f(xn)| = 0. Similarly LIM(|f |, x+

0 ) = 0.



202 Aleksander Maliszewski

Proposition 5.3. There is a continuous function g1 and functions g2, g3 ∈ Śs
such that g1g2g3 = sgn on R and Dg2 = Dg3 = {0}.

Proof. Define g1(x) = arctanx,

h(x) =

{
arctanx+ sgnx+ sinx−1 if x 6= 0,
0 otherwise.

g2(x) =

{
h(x)/g1(x) if x 6= 0,
1 otherwise,

g3(x) =

{
sgnx/h(x) if x 6= 0,
1 otherwise.

Proposition 5.4. If a function f can be written as the finite product of
bounded strong Świa̧tkowski functions, then

for all x < t, if f(x)f(t) < 0, then Cf ∩ [[[f = 0]]] ∩ (x, t) 6= ∅.

Proof. Suppose that f = g1 . . . gk, where g1, . . . , gk ∈ Śs are bounded. If
x < t and f(x)f(t) < 0, then gi(x)gi(t) < 0 for some i ∈ {1, . . . , k}. Since
gi ∈ Śs, Cgi

∩ [[[gi = 0]]]∩ (x, t) 6= ∅. Using the fact that g1, . . . , gk are bounded,
we obtain Cf ∩ [[[f = 0]]] ∩ (x, t) 6= ∅.

Corollary 5.5. There is a bounded function h ∈ DQ with Dh = {0} which is
the product of a continuous function and a strong Świa̧tkowski one and which
cannot be written as the finite product of bounded strong Świa̧tkowski functions.

Proof. Consider the function h defined in the proof of Proposition 5.3.

Problem. Characterize products of (bounded) strong Świa̧tkowski functions.
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