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ON SINGULARITY OF HENSTOCK
INTEGRABLE FUNCTIONS

Abstract

We define a singular point of a Henstock integrable function to be
one which is not contained in any open interval on which the function
is Lebesgue integrable. Then we give examples to illustrate the possible
measure of the set of such singular points.

1 Introduction

It is well known that for any Henstock integrable function defined on a nonde-
generate closed bounded interval I on the real line, there exists a nondegen-
erate subinterval on which it is Lebesgue integrable [1]. Then we can obtain
a set which is the union of all subintervals on each of which the function is
Lebesgue integrable. A question arises naturally: can we give an estimate
of the measure of the union? To see this question clearly, we introduce a
new concept. Let f be a Henstock integrable function on a nondegenerate
closed bounded interval I on the real line. A point z € [ is called regular if
there exists an open interval I(z) containing x, such that f is Lebesgue inte-
grable on I N I(x). We denote the set of all regular points in I by W(f) and
U(f) = I\W(f). We call the points in U(f) singular points. It is obvious that
U(f) = 0 if and only if f is Lebesgue integrable on I. Thus the singular points
are the essential difference of a Henstock integrable function from a Lebesgue
integrable function and the existence of singular points determines that a Hen-
stock function is non-absolutely integrable. Moreover, W (f) is the union of
all the open subintervals on each of which f is Lebesgue integrable. Thus the
above question is equivalent to estimating the possible measure of U(f). In
this short paper, we shall give some examples to illustrate the possible U(f)
for a Henstock integrable function.
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2 The Singularity of Henstock Integrable Functions

Let f be a Henstock integrable function on a nondegenerate closed bounded
interval I on the real line. Since W(f) is an non-empty open set [1], U(f) is a
closed set which measure is less than the measure of I. Consider the function
flz) = % Sin% when 0 < & < 1 and 0 when = = 0. In this well-known example,
f is Henstock integrable on [0,1] and is Lebesgue integrable on [a, 1] for any

€ (0,1]. Thus U(f) is a single point set {0}. Based on this example, it is
easy to construct examples with U(f) being a finite or countable set. On the
other hand, after checking many well-known Henstock functions, we find that
U(f) is always a very “small” set. So we conjecture that the U(f) is always a
measure zero set. But it is not true. In fact U(f) can be a positive measure
set. In the following, we shall give a further example.

Let [a, b] be a nondegenerate closed bounded interval. We define a function
©la,p) O [a, D] as follows. Let W, 4)(x) = (z—a)*(z —b)?sin m when
r € (a,b) and Y, 4(r) = 0 when 2 = a or b. It is obvious that Wi, ;) is
differentiable on [a, b]. Denote its derivative by ¢4 4 (2). It is easy to check that
©[a,p) s Henstock integrable but not Lebesgue integrable on [a, b]. Moreover,
U(¢[ap) = {a,b}. Next we construct a Henstock integrable function f on the
interval [0, 1] from the above function ¢, . First, on [0, 1], we construct a
generalized Cantor set X of measure % [2, p.41] with the complementary open
intervals given by JP;, i = 1,2,...,5 = 1,...,2°"!, in which the measure of
Jijis ﬁ, where J7; denotes the interior of the interval J; ;. Now we define
two functions on [0, 1] as follows:

Fz) = 0 when z € X,
DT oo, @) whenwe o, i=12,...j=1,..,2""
and
Flz) = 0 when z € X,
DT @) whenze o, i=1,2,...,j=1,..,2""

We shall prove that F' is differentiable and F’(z) = f(x) for every z € [0, 1] and
then f is Henstock integrable on [0, 1]. The case whenz € J?;, i =1,2,...,j =
1,...2""1 is obvious. Next, let = be an endpoint of certain Ji j. Suppose that
it is the right endpoint, we can easily see that the left derivative of F' at x
exists and equals to zero. On the other hand, for any € with 1 > ¢ > 0, let
x1 € (z,z + €) be the right end point of certain J,,. If y € X N [z, x1], then
F(y) =0.Ify € Jg, C [z, z1] for some Ji; = [%0, yol, then

‘F(y) - F(x) \Iljk,l(y) 3
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Thus, the right derivative of F' at x exists and equals to zero. The proof for the
left endpoint of J; ; is similar. Finally, for z € [0,1]\U; ;J; ;, following the same
argument above, we can prove that both of the right and the left derivatives
of F at x exist and equal to zero. Now we shall prove that U(f) = X for
the Henstock integrable function f. Let x € U(f). Then = ¢ U, ;.J7;, that is
x € X. On the other hand, let = be any point in X. If « is one of the end points
of certain J; j, it is obvious that z € U(f). If z € [0,1]\ U; ; J; ; and suppose
x ¢ U(f), then there exists an open interval I containing x on which f is
Lebesgue integrable. But we know that there exists some interval J; ; C I and
f is not Lebesgue integrable on it. This is a contradiction. Therefore x € U(f)
and then U(f) = X. We have constructed above a Henstock integrable function
f on [0,1] with the measure of the set of singular points being % In fact, nin
a similar manner, we can construct a Henstock integrable function with the
measure of the set of singular points being A on interval [0, 1] for any 0 < A < 1.
This means that there are Henstock integrable functions on an interval that
admit a set of singular points with its measure as close as possible but not

equal to that of the whole interval.
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