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Abstract

We prove that the well-known Lagrange formula, the Darboux prop-
erty and a classical result concerning the connected graph of a differen-
tiable function are specific for R, and surprisingly, the rule of L’Ho6pital
is also true for the vector case.

Proposition 1. Let X be a topological vector space. Then the following as-
sertions are equivalent:

1. For each f : [0,1] — X, f continuous on [0,1] and differentiable on
(0,1), there exists ¢ € (0,1) such that: f(1) — f(0) = f'(c).

2. Foreach f :[0,1] — X, f continuous on [0, 1] and differentiable on (0,1)
with f(1) = f(0), there exists ¢ € (0,1) such that: f'(c) = O.

3. X is a real topological vector space and dimg X = 1.

PROOF. i) orii) = iii) Let x € X , x # O. Let us suppose that X is a complex
topological vector space. In this case, let

f:00,1] = X, f(t) = (cos2nmt + i sin 27t)x .

The hypotheses from i) or ii) are satisfied, thus there exists ¢ € (0,1) such
that: f'(c) = O (because f(1) = f(0) = x). But

f(c) = 2m(—sin 2wc + i cos 2mc) ),
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50 —sin 2weti cos 2me=0, which contradicts the fact that cos? 2me+-sin? 2re=1.
Hence X is a real topological vector space. In this case, let y € X and
g :[0,1] — X, g(t) = xcos2nt + ysin2nt. From i) or ii), there exists
¢ € (0,1) such that ¢’(¢) = O, hence zsin2mc = ycos2mc. If cos2mc = 0,
then sin 2rc = +1. It follows that O = y - cos 2m¢ = +x, so x = O, which is
impossible. Thus cos27¢ # 0 and y = (tan 27c)x, hence dimg X = 1.

iii) = i) or ii) Let X be a topological real vector space, dimg X = 1, and
let f:1]0,1] — X be as in i) or ii). Let z € X, x # O. Since f(t) € X, there
exists an unique p(¢) € R such that f(¢) = p(t)z, Vt € [0, 1]. It is easy to prove
that ¢ is continuous on [0,1] and differentiable on (0,1). Then the classical
Rolle or Lagrange theorems applied to ¢ : [0,1] — R imply i) or ii). O
Proposition 2. Let X be a normed space. Then the following assertions are
equivalent:

1. For each function f :[0,1) — X differentiable on [0,1), it follows that:

1/([0,1)) C X is a connected subset.

2. X is a real normed space and dimg X = 1.

PROOF. i) = ii) Let z € X, with ||z|]] = 1. Suppose that X is a complex
normed space. Let f:[0,1) — X,

0 if t =0
ft) =

(t*sin 1 +it?cos 1)z if t € (0,1)

Obviously, f is differentiable on (0,1). For ¢ > 0,

HMH = H(tsin% +itcos%):c” =t.

Thus
0 ift=20
f (t) = 1 1 . 1 1 . ’
[2tsin 1 — cos ¢ +i(2tcos ¢ +sin )]z if t € (0,1)

Since f/([0,1)) C X is a connected subset then :

. 1 1 . 1, .1
inf H (Qtsm — — cos 7) + z<2tcos — +sin f)xH =0,
0<t<1 t t t t
or |z]| =1, infocs<1 (4% + 1) = 0, a contradiction. Thus X is a real normed

space. Let y € X and let F': [0,1) — X be defined as follows:

0 ift=20
F(t) = .
(t*sin )z + (t*cos 1)y if t € (0,1)



ON THE VECTOR FORM OF THE LAGRANGE FORMULA 789

Clearly F is differentiable and

0 ift=0
F'(t) = .
z(2tsint —cos 1) +y(2tcost +sinl) ift € (0,1)

By 1), it follows that F’([0,1)) C X is connected, hence

o [lzh(t) +yg ()] =0, 1)

where

1 1 1 1
h(t) = 2tsin¥ —cos—, g¢(t) =2tcos— + sin —,

t 0,1].
- ; ; € (0,1]

By (1), there exists a sequence (t,)nen C (0,1) such that

|zh(tn) + yg(ta)|| — 0. (2)

The sequence (t,)nen being bounded, we can choose a subsequence (which
for simplicity will also be denoted by (¢,)nen) convergent to ¢, € [0,1]. If
0 < tg < 1, using the continuity of the functions h and g on (0, 1), by (2), it
follows that ||zh(to) + yg(to)|| = 0, hence zh(to) + yg(to) = O. If g(to) = O,
as h%(to) + g*(to) = 4t3 + 1 > 1, we obtain: zh(tg) = —yg(to) = 0. Then,
h(to) # 0, implies x = 0, which contradicts the fact that ||z|| = 1. Thus

g(to) # O and y = Az, with A = hgtog € R. If tg = 0, then t,, — 0, and by

(2) we have:

o1 1
Hysm— —xcos—|| <

2 tn

1 1
< Hxh )+ yg(t )H + [|2t,, sin —IH + H2tn cos —yH <

< 2tn| ([l + lyll) + ||#R(tn) + yg(ta)]| — 0.

Thus:
o1 1
Hysm— —xcos—|| — 0.
tn tn
From here we obtain:
. 1 1 1
inf Hysmf—xcos H<Hysm——wcos— — 0,
o<t<1 t tn tn

i.e.

1 1
inf Hysinf f:ccosfH =0,
0<t<1 t t
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or using the periodicity of sine and cose,

inf |lysinf —xcosd| =0.
0<0<2r
Let 0 < 6,, < 27 be such that:|| ysin6,, — z cosb,, |— 0. Extract a convergent
subsequence which will be denoted also by 6,, — 6, where 6 € [0, 27]. Hence:
|lysind —x cos || =0, i.e. ysind = xzcosh. If sinf = 0, then cos§ = £1, from
where 0 = ysinf = xcosf = +x, i.e. x = 0, contradiction! Thus, sinf # 0
and hence: y = Az, with A = cot 0, i.e. ii) is proved.

ii) = i) Let X be a normed space with dimg X = 1, z € X with |z|| = 1,
and let f:[0,1) — X be a differentiable function. Then there exists a unique
element ¢(t) € R such that f(t) = @(t) - x, Vt € [0,1), i.e. there exists
¢ : [0,1) — R such that f(t) = @(t)z. Because f is differentiable on [0, 1)
and ||z|| = 1 we obtain easily that ¢ is derivable on [0, 1). Using the Darboux
theorem for ¢ : [0,1) — R, we obtain that I = ¢/([0,1)) C R is an interval, i.e.
a connected set. Since f'(t) = ¢'(t)z, Vt € [0,1), it follows that f/(][0,1)) = x-I
is a connected subset in X. O

Recall that if X is a topological space a subset A C X is called path
connected if for each xg, ©1 € A, there exists v : [0,1] — X, a continuous
functions such that: ~v(0) = zg, v(1) = x1, Imy C A. In the sequel we
need the following, probably well-known result. We give the proof for the
completeness.

Proposition 3. Let X be a metric space, [ : (0,00) — X, be a continuous
function, a € X and A= {(0,a)} U{(x, f(x)) |z >0} C (0,00) x X. Then:

1. A is connected if and only if there exists a sequence (Xn)nen C (0,00)
such that: x, — 0, and f(x,) — a.

2. A is path connected if and only if: lgm>0f(x) =a.
z—0, x

PROOF. a) If A is connected then: d((0,a),G) = ir;f(’) d((0,a), (z, f(x))) = 0,
ir;f(’)(x—i—d(f(x), a)) = 0. ( Here G is the graph of f). Conversely, this condition

implies: (0,a) € G, {(0,a)} NG = {(0,a)} # 0, hence: A = {(0,a)} UG is
connected. But iI;%(:L‘ +d(f(z),a)) =0, if and only if there exists a sequence

(Tn)nen C (0,00) such that: z,, — 0, and f(z,) — a.

b) Let us suppose that A is path connected. Then for the points (0,a) and
(1, f(1)) € A there exists a continuous path contained in A i.e. v:[0,1] — R,
v = (g, h), continuous such that: v(0) = (0,a), v(1) = (1, f(1)), Imvy C A.
So: g(0) =0, g(1) = 1. Let

E={te[0,1]]g(t) =0} =g ({0}),
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a = sup E. The set E is nonvoid, since g(0) = 0. As g(1)
i,e. 0 < a < 1. But g is continuous and F is closed, so o €
a = max E. Hence if t > «, t € [0,1], g(t) # 0, 507():
ie. g(t) >0, h(t) = f(g(t)). Thus: Vt € (o, 1], h(t) = f(g(t
continuity of h:

(o) h <>>éi4'
)

and using the

lim b = k@), | lm f(o(0) = ha), Q)
‘We prove that:
i @) = (). 4)

If this is not so, then: there exists g > 0, a sequence 0 < x,, < %, such that:
d(f(zn), h(a)) > €9, Yn € N. (5)

From g(a) = 0 < z, < 1 = ¢g(1), and the Darboux property of g, there
is a < t, < 1, such that: ¢(t,) = x,. Extract a convergent subsequence:
tr, — t € [o,1]. The continuity of g implies: zy, = g(tx,) — g(t), g(t) = 0,
te E,;t<a Butt> a, sot =« Hence: t, — «,ty, > « and (3)
gives: f(g(tx,)) — h(a), f(zg,)) — h(a), which contradicts (5). Thus (4) is
proved. But if A is path connected, then it is connected, so by a) there exists
a sequence (Tp)nen C (0,00) such that: x,, — 0, and f(z,) — a. Using (4):
f(zn) — h(a), h(a)=a, ie. lim f(z)=
z—0, >0

The converse is clear. O

Using the same functions as in the Proposition 2, with the help of Propo-
sition 3, we must show that a classical result, see [3], is also specified to R.

Proposition 4. Let X be a normed space. Then the following assertions are
equivalent:

1. For each function f :1[0,1) — X differentiable on [0,1), it follows that
the graph of f' is a connected subset.

2. X 1s a real normed space and dimg X = 1.

Also, minor changes in the above proofs, show that, they are also true if
instead of a normed space X, we suppose that X is a vector space endowed
with a F-norm, or a p-norm (0 < p < 1), see [2] for definitions.

Now a positive result for the classical L’Hopital rule.

Theorem 1. (The L'Hopital rule, cases [3], resp. [—])
Let X be a normed space, (a,b) C R be an open interval and f : (a,b) — X
g: (a,b) — R two functions with the properties:
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1. lim f(t) = 0 and lim g(t) = 0; (respectively lim |g(t)| = 00 );
t—a t—a t—a

t>a t>a t>a
2. f is differentiable on (a,b) and g is differentiable on (a,b);
3. g/(t) £0, ¥t € (a,b);

4. The limit lim J;:Eg € X exists.

t>a

Then there exists

1) O

lim —= € X and in addition: lim —= = .
iza g(t) izag(t)  izag'(2)

PROOF. Since ¢’ has the Darboux property, by 3) and 2), it follows that ¢
has a constant sign on (a, b), hence ¢ is strictly monotone on (a,b). Let

& = lim L)

cX.
e 9'(®)

Then for € > 0, there is a § > 0 such that:
f'(@)
g'(t)

on each compact subinterval [u,v] C (a,a + 6). By the Denjoy-Bourbaki
Theorem, it follows that:

—a| <e, hence: || f'(t) —xg'(t) [<elg' ()],

[ f(v) —xg(v) — f(u) + 2g(u)|| <e|g(v) —g(u) | . (%)
We prove the case [%]. By 1) and (x), for u \, a it follows that:
1) ~ 2l < elg(o)l, hences |12~ <.
Therefore Fo)
lim LAC/
e o) "

We prove the case [-]. We may suppose that g(t) # 0 on [u,v]. By 1) and
(%), we have:

R

) — X
- lg(u)] g(u)

fl‘,
g(u)



ON THE VECTOR FORM OF THE LAGRANGE FORMULA 793

hence :
lim sup HM — o:” <e.
u—a,u>0 g(u)
Since ¢ is arbitrary, we obtain that:
x = lim @
asa 9(u)
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