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ON A TYPICAL SERIES WITH
ALTERNATING SIGNS

Abstract

This paper presents a study of typical series with alternating signs.
Namely, given a sequence of real nonnegative numbers whose sum is
infinity we consider all possible ways of placing plus or minus signs
in front of each of these numbers. Choosing a convenient metric we
ask what is the ‘size’ (in terms of Baire category and porosity) of the
set of those choices of + or − for which the resulting series converges.
The author of this paper has studied this problem in his paper [D1]
for the Euclidean metric. The main goal of this paper is to extend the
results from [D1] for other standard metrics, such as the Frèchet or Baire
metrics.

1 Introduction

The problem of relatively convergent series is studied in many monographs and
articles. As is mentioned in the abstract we study the problem of convergence
of the series

∞∑
n=1

(−1)anbn , (1)

where (an)n∈N is a sequence of zeros and ones and (bn)n∈N is a sequence of
nonnegative real numbers.

For fixed sequence (bn)n∈N we want to consider these two sets

C = {(an)n∈N ∈ {0, 1}N; the series (1) converges}

B = {(an)n∈N ∈ {0, 1}N;∃M > 0 ∀k |
k∑

n=1

(−1)anbn| ≤M}.
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metric

Mathematical Reviews subject classification: Primary 28A21, secondary 28A05, 40A05,
54E52

Received by the editors March 30, 1999

617



618 Martin Dindoš

The set C contains all sequences (an)n∈N for which series (1) converges and the
set B contains sequences (an)n∈N for which the series (1) has bounded partial
sums. Clearly C ⊂ B. These two sets are not equal to the full space {0, 1}N if
and only if the series

∞∑
n=1

bn diverges, (2)

i.e., the sum (2) is infinity. Therefore (2) will be our standard assumption in
the whole paper.

On our space {0, 1}N there are several choices of metrics that can be con-
sidered. In the paper [D1] a function ϕ : {0, 1}N → [0, 1] was defined by

ϕ((an)n∈N) =
∞∑
n=1

an
2n

for (an)n∈N ∈ {0, 1}N. (3)

Let dE(a, b) = |ϕ(a)− ϕ(b)|. The function dE is a pseudometric on the space
{0, 1}N. If we drop all sequences of the form (a1, a2, .., an, 0, 1, 1, 1, . . . ) we get

M = {0, 1}N \ {(a1, a2, .., an, 0, 1, 1, 1, . . . ); ai ∈ {0, 1} i = 1, 2, . . . , n} ,

on which dE is a metric and (M, dE) is a complete metric space. We refer to
dE as the Euclidean metric. From the results in [D1], which have been proved
in more general setting for bn ∈ H where H is a Hilbert space, it follows that
both sets C and B are of first Baire category in (M, dE) provided (2) holds.
Moreover we also have a result on the Lebesgue measure of the sets ϕ(C) and
ϕ(B). The measure of these sets is either 0 or 1 (depending on the given
sequence (bn)n∈N).

In this paper we study the same problem for the Frèchet (dF ) and Baire
(dB) metric which are defined as follows.

dF (a, b) =
∞∑
n=1

1
2n

|an − bn|
1 + |an − bn|

Frèchet metric,

dB(a, b) =

{
1

min{n∈N;an 6=bn} for a 6= b

0 for a = b
Baire metric.

In the last part of this paper we will assume some additional conditions
on the sequence (bn)n∈N. Under such additional assumptions we will obtain
interesting results about the porosity of the sets B and C in all three metrics.

It is interesting to investigate relations between our three metrics. On the
space {0, 1}N we have the following inequalities dB ≥ dF ≥ 1

2dE .
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Recall that two metrics d, d′ are called equivalent if there are positive real
numbers c1 and c2 such that c1d′ ≤ d ≤ c2d′ . Two equivalent metrics always
generate the same topology. Notice that our three metrics are not equivalent
in the sense defined above. Nevertheless, the topologies generated by Baire
and Frèchet metric are the same.

This observation has one important consequence. Any set of first Baire
category A ⊂ {0, 1}N in one metric must be of first Baire category also in
the other one. Of course for porosity a similar statement is not true because
porosity depends on concrete metric not just topology.

This and my previous work [D1] have been motivated by very interesting
results that have appeared in works of V. László and T. Šalát. They studied
the series

∞∑
n=1

anbn, (4)

where
∞∑
n=1

bn is a divergent series and (an)n∈N is series of zeros and ones.

According to their work in [L-Š] and [Š] the set of sequences (an)n∈N for which
the series (4) converges (i.e., C) is of the first Baire category in {0, 1}N with
the Euclidean metric.

2 Categorical Size of the Set of Convergent Sequences

In this section we present the discussion of the sets B and C defined above in
terms of their Baire category in the complete metric space ({0, 1}N, d). We
closely follow the paper [D1]. First we are going to establish the following
auxiliary statement.

Lemma 2.1. Consider the complete metric space ({0, 1}N, d) where d is either
the Frèchet metric dF or the Baire metric dB. Let k be a positive integer, c a
real number and (α1, α2, . . . αk) a finite sequence of real numbers. Let S+ and
S− be the sets

S+ = {(an)n∈N ∈ {0, 1}N;α1(−1)a1 + α2(−1)a2 + · · ·+ αk(−1)ak > c},
S− = {(an)n∈N ∈ {0, 1}N;α1(−1)a1 + α2(−1)a2 + · · ·+ αk(−1)ak < c}.

Then both sets S+ and S− are open subsets of the metric space ({0, 1}N, d).

Proof. We will prove this lemma only for the set S+ since the proof for the
other set is similar. Take any (an)n∈N ∈ S+. We need to show that there is
an ε > 0 such that each sequence (bn)n∈N whose distance from (an)n∈N is less
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than ε is also in S+. This can be achieved quite easily. For the Baire metric
just take ε = 1

k+1 and for the Frèchet ε = 1
2k+1 . If d(a, b) < ε, then ai = bi for

i = 1, 2, . . . , k which means that b also belongs to S+.

Now we are ready to prove that both B and C are sets of first Baire category
in the complete metric space ({0, 1}N, d). Here d is the Frèchet (Baire) metric,
respectively.

Theorem 2.2. Consider the series
∑∞
n=1(−1)anbn, where (bn)n∈N is a given

sequence of non-negative real numbers. Assume that the condition (2) holds,
namely

∑∞
n=1 bn =∞. Then

C = {(an)n∈N ∈ {0, 1}N; series (1) converges},

as well as

B = {(an)n∈N ∈ {0, 1}N;∃M > 0 ∀k |
k∑

n=1

(−1)anbn| ≤M},

are first Baire category sets in the complete metric space ({0, 1}N, d) where d
is the Frèchet metric dF or the Baire metric dB. Moreover the set B is of type
Fσ.

Proof. Since it is clear that C ⊂ B, proving the theorem for the set B will
suffice. This set can be written as

B =
∞⋃
M=1

∞⋂
k=1

{
(an)n∈N;

∣∣∣ k∑
n=1

(−1)anbn

∣∣∣ ≤M}.

Let

Fi =
∞⋂
k=1

{
(an)n∈N;

∣∣∣ k∑
n=1

(−1)anbn

∣∣∣ ≤ i}.

It is clear that B = ∪Fi and the sets Fi are closed since they are defined as an
intersection of closed sets. The fact that any set of the form

{
(an)n∈N;

∣∣∣ k∑
n=1

(−1)anbn

∣∣∣ ≤M}
is closed can be seen from the Lemma 2.1, namely the complement of this set
can be written as a finite intersection of S+ and S− which are open. From
this we also have that B is an Fσ set.
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Now we want to show that each set Fi is nowhere dense in ({0, 1}N, d).
Take any (an)n∈N ∈ Fi. We want to show that in any ε neighborhood of this
sequence there is a sequence (cn)n∈N not in Fi. Define (cn)n∈N by

cn =

{
an, for n = 1, 2, . . . , k,
0, otherwise.

Here k is chosen such that the distance between (an)n∈N and (cn)n∈N is less
than that given ε. Namely, take k a positive integer such that

1
2k+1

< ε for the Frèchet metric,

1
k
< ε for the Baire metric.

Now it is clear that the sequence
∞∑
n=1

(−1)cnbn does not belong to Fi since

according to (2)
∑∞
n=k+1(−1)cnbn =

∑∞
n=k+1 bn = ∞ Hence the theorem is

proved.

It is also quite interesting to ask what is the Borel type of the set C. Here
we cannot show that this set is Fσ, however it is definitely Borel measurable
since it can be written as

C =
∞⋂
m=1

∞⋃
K=1

∞⋂
k=K

∞⋂
l=1

{
(an)n∈N;

∣∣∣k+l∑
n=k

(−1)anbn

∣∣∣ ≤ 1
m

}
,

which means C is a Fσδ set.

3 Porosity

In this section we briefly discuss the question whether in Theorem 2.2 we
could replace first Baire category by porosity (or σ-porosity). Hence we want
to know whether the sets C and B are porous (σ−porous) in the complete
metric space ({0, 1}N, d). (See also [D1] for a partial discussion about the
Euclidean metric.)

For completeness we briefly outline the definition of a porous set.

Definition 3.1. Let E be a given set in a metric space. Given the number
c ∈ (0, 1] we say that a point x0 ∈ E is a c-porosity point of the set E if there
exists a sequence of open balls Bk with radius rk → 0 centered at x0 such
that for each k there is a ball Gk of radius ρk such that Gk ⊂ Bk \ E and
limk→∞

ρk
rk
≥ c.
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We say that x0 is a porosity point of the set E0 provided it is a c-porosity
point of the set E0 for some c > 0.

The set E is said to be porous (c-porous) if all its points are porosity (c-
porosity) points of E. The set E is called σ-porous if it can be covered by a
countable union of porous sets.

Remark 3.2. If in the definition of a point of c-porosity we require that for
any ball Br of radius r > 0 centered at x0 there is a ball Gr of radius ρ(r) > 0
such that Gr ⊂ Br \E and limr→0+

ρ(r)
r ≥ c, then such point is said to be very

porous. Following the previous definition we can define very porous, c-very
porous and σ-very porous set, respectively.

Naturally, any σ-porous set E is a set of first Baire category. A result
from [D1] implies that the attempt to replace first Baire category by porosity
in Theorem 2.2 without any additional requirement on (bn)n∈N must fail (at
least for the Euclidean metric). It follows from the fact that the Lebesgue
measure of a porous set (in R) must be zero which contradicts the observation
that the measure of the set ϕ(C) could be one. Naturally, this argument does
not work in case of Frèchet or Baire metric.

So to get some results about porosity we have to require more about the
sequence (bn)n∈N. This leads to the following definition.

Definition 3.3. Let (bn)n∈N be a sequence of nonnegative real numbers. We
say that such sequence satisfies the condition of sufficiently large partial sums
(SLPS) if there exists an integer k > 0 such that for any n ∈ N

kn∑
i=n

bi > 1 (SLPS condition).

Example 3.4. Consider a sequence (bn)n∈N that satisfies the following con-
dition:

lim
n→∞

bnn > 0. (5)

Such a sequence satisfies (SLPS).

Proof. To see that (SLPS) is true is not difficult. Condition (5) implies that
for sufficiently large n there is a c > 0 such that bn ≥ c

n . Therefore

kn∑
i=n

bi ≥
kn∑
i=n

c

i
≥ c

∫ kn

n

1
x
dx = c ln

(
kn

n

)
= c ln k

So for n large, we pick k such that k > e
1
c . By possibly enlarging k a little bit,

one can make (SLPS) work for all n.
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Corollary 3.5. The sequence bn =
1
n

satisfies (SLPS).

Proposition 3.6. If the sequence (bn)n∈N is nonincreasing, then condition
(SLPS) is equivalent to limn→∞ bnn > 0.

Proof. It remains to establish that the under the assumption of monotonicity
of (bn)n∈N (SLPS) implies (5). But this is easy. We have knbn ≥

∑kn
j=n bj > 1;

i.e., nbn > 1
k . From this (5) follows.

Remark 3.7. Condition (SLPS) can be equivalently stated as
∑kn−1
i=n bi > 1

for all n ∈ N, (by enlarging k in Definition 3.3 by one).

The next theorem shows that the condition (SLPS) is closely related to
the σ-porosity of sets B, C in the Baire metric.

Theorem 3.8. Let (bn)n∈N be a sequence of nonnegative numbers satisfying
(SLPS). The set

C = {(an)n∈N ∈ {0, 1}N; series (1) converges},

as well as the set

B = {(an)n∈N ∈ {0, 1}N;∃M > 0 ∀k |
k∑

n=1

(−1)anbn| ≤M},

are σ-very porous in the complete metric space ({0, 1}N, dB), where dB is the
Baire metric.

Proof. Since C ⊂ B we will prove the theorem just for the set B. Write again
B = ∪Fi where

Fi =
∞⋂
k=1

{
(an)n∈N;

∣∣∣ k∑
n=1

(−1)anbn

∣∣∣ ≤ i}.

First we want to prove that each set Fi is 1
ki -porous where k is an integer from

Remark 3.7. Consequently the set B must be σ-porous. Then we will show
that sets Fi are actually 1

2ki -very porous; hence the set B is in fact σ-very
porous.

Fix the integer i and take any sequence (an)n∈N ∈ Fi. Take εm = 1
m−1 > 0

for any m ≥ 2 and consider the ball

Bm = {(cn)n∈N; dB(a, c) < εm =
1

m− 1
}.
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Define a sequence (dn)n∈N by

dn =


an, for n < m,
0, for n ≥ m if

∑m−1
j=1 (−1)dj bj ≥ 0,

1, for n ≥ m if
∑m−1
j=1 (−1)dj bj < 0.

It is obvious that the sequence (dn)n∈N does not belong to Fi since its tail is
either 0, 0, 0, . . . or 1, 1, 1, . . . . Also dB(a, d) < εm =⇒ d ∈ Bm. Using the
assumption (SLPS) we can see that for any n we have

∑kin
j=n bj > i. Indeed,

the sum above can be estimated by

kin∑
j=n

bj ≥
kin−1∑
j=n

bj =
i−1∑
j=0

kj+1n−1∑
l=kjn

bl

 ,

and for each j the sum
kj+1n−1∑
l=kjn

bl is bigger than 1 by Remark 3.7. Hence we

have either
∑kim
j=1 (−1)dj bj > i or

∑kim
j=1 (−1)dj bj < −i. Take now

Gm = {(cn)n∈N; dB(d, c) <
1
kim
} .

We want to see that Gm ⊂ Bm \ Fi. Clearly Gm ⊂ Bm since this set has
smaller radius. Pick any (cn)n∈N ∈ Gm. We want to show that it does not
belong to Fi. Without loss of generality assume now that the tail of the
sequence (dn)n∈N is 0, 0, 0, . . . and therefore

∑kim
j=1 (−1)dj bj > i. The distance

between (dn)n∈N and (cn)n∈N is less than
1
kim

and this implies that cn = dn

for n = 1, 2, 3, . . . , kim; i.e.,
∑kim
j=1 (−1)cj bj =

∑kim
j=1 (−1)dj bj > i, which gives

us that (cn)n∈N /∈ Fi. Finally we compute the limit of the radii of Gm and
Bm:

lim
m→∞

r(Gm)
r(Bm)

= lim
m→∞

1
kim
1

m−1

=
1
ki

. (6)

This proves that the set Fi is 1
ki -porous. The 1

2ki -very porosity follows from
this simple observation.

For any r > 0 small there is m ∈ N such that r ≥ εm =
1

m− 1
>
r

2
.
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Hence if we take Gr = Gm in the definition of very porosity we get the estimate

lim
r→0+

ρ(r)
r
≥ lim
m→∞

ρm
2εm

≥ lim
m→∞

1
kim

2
m−1

=
1

2ki
.

From this we have that each set Fi is
1

2ki
-very porous and therefore B (and

C) are σ-very porous.

Corollary 3.9. For the series
∑∞
n=1(−1)an 1

n the sets C and B are σ-very
porous in the metric space ({0, 1}N, dB).

If we try to prove a similar theorem for the Frèchet or Euclidean metric
using the assumption (SLPS), we will run into trouble when estimating the
quotient of radii (6). This quotient tends to zero and therefore we do not have
porosity of the set Fi. A natural solution is to replace (SLPS) by a stronger
condition (VLPS), which will be defined later.

Unfortunately it turns out this new condition (VLPS) implies that the
sequence (bn)n∈N does not have limit equal to zero. Thus the series (1) is never
convergent; hence C = ∅. However, since the set B might still be nonempty, a
result on porosity of this set has certain value.

Definition 3.10. Let (bn)n∈N be a sequence of nonnegative real numbers. We
say that such a sequence satisfies condition of very large partial sums (VLPS)
if there exists an integer k > 0 such that for any n ∈ N

n+k∑
i=n

bi > 1 (VLPS condition).

Clearly (VLPS) =⇒ (SLPS). Moreover (VLPS) =⇒ C = ∅. For the set B
we get the following.

Theorem 3.11. Let (bn)n∈N be a sequence of nonnegative numbers satisfying
(VLPS). Then the set C is empty and

B = {(an)n∈N ∈ {0, 1}N;∃M > 0 ∀k
∣∣∣ k∑
n=1

(−1)anbn

∣∣∣ ≤M}
is a σ-very porous set in the complete metric space ({0, 1}N, d), for the Frèchet
(Euclidean) metric d, respectively.
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Proof. This proof follows the proof of Theorem 3.8. Write again B = ∪Fi
where

Fi =
∞⋂
k=1

{
(an)n∈N;

∣∣∣ k∑
n=1

(−1)anbn

∣∣∣ ≤ i}.

We want to prove that each set Fi is
1

22ki+2
-porous where k is the integer

from Definition 3.10 increased by one.
Fix an integer i and take any sequence (an)n∈N ∈ Fi. Take εm = 1

2m−2 > 0
for any integer m ≥ 2 and consider the ball

Bm = {(cn)n∈N; d(a, c) < εm =
1

2m−2
}.

Define a sequence (dn)n∈N by

dn =

{
an, for n < m ,
0, for n ≥ m .

It is obvious that the sequence (dn)n∈N does not belong to Fi since its tail is
0, 0, 0, . . . . Also

d(a, d) ≤
∑
n≥m

1
2n

=
1

2m−1
< εm =⇒ d ∈ Bm .

Using the assumption (VLPS) we can see that for any n we have
∑n+2ki
j=n bj > i.

Hence we have
m+2ki∑
j=1

(−1)dj bj =
m−1∑
j=1

(−1)dj bj +
m+2ki∑
j=m

(−1)dj bj > −i+ 2i = i .

Take now
Gm = {(cn)n∈N; d(d, c) <

1
2m+2ki+1

} .

We want to see that Gm ⊂ Bm \ Fi. Clearly Gm ⊂ Bm using the triangle
inequality. Pick now any (cn)n∈N ∈ Gm. We want to show that such (cn)n∈N
is not in Fi.

The distance between (dn)n∈N and (cn)n∈N is less than
1

2m+2ki+1
. In case

of the Frèchet metric this implies that cn = dn for n = 1, 2, 3, . . . ,m + 2ki.
Therefore

m+2ki∑
j=1

(−1)cj bj =
m+2ki∑
j=1

(−1)dj bj > i , (7)
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which gives us that (cn)n∈N /∈ Fi.
In the case of the Euclidean metric the situation could be a little more

complicated.
If cn = dn for n = 1, 2, 3, . . . ,m + 2ki, we again have (7). If this is not

true, then there is t < m+ 2ki such that

cj = dj ,for j = 1, 2, . . . t ,
ct 6= dt .

Clearly t < m since otherwise we would have

dE(c, d) =
∞∑
j=t

cj − dj
2j

=
∞∑
j=t

cj
2j
≥ 1

2t
>

1
2m+2ki

.

So t < m and therefore we have an estimate
∣∣∣∣∑m−1

j=t
cj−dj

2j

∣∣∣∣ ≥ 1
2m−1 . This gives

∞∑
j=m

cj
2j

=
∣∣∣ ∞∑
j=m

cj − dj
2j

∣∣∣ =
∣∣∣m−1∑
j=t

cj − dj
2j

− dE(c, d)
∣∣∣ (8)

≥
∣∣∣m−1∑
j=t

cj − dj
2j

∣∣∣− dE(c, d) >
1

2m−1
− 1

2m+2ki
. (9)

Now if for any j ∈ {m,m+ 1, . . . ,m+ 2ki} cj = 0 we also have

∞∑
j=m

cj
2j
≤ 1

2m−1
− 1

2j
≤ 1

2m−1
− 1

2m+2ki
. (10)

Since (8) and (10) cannot hold simultaneously we have that cj = 1 for j =
m,m + 1, . . . ,m + 2ki, and therefore

∑m+2ki
j=m (−1)cj bj < −2i. From this im-

mediately c = (cn)n∈N /∈ Fi.
Finally, we compute the limit of the radii of Gm and Bm.

lim
m→∞

r(Gm)
r(Bm)

= lim
m→∞

1
2m+2ki+1

1
2m−1

=
1

22ki+2
> 0 .

This proves that the set Fi is
1

22ki+2
-porous. Using a similar argument as in

Theorem 3.8 we get that this set is also
1

22ki+3
-very porous which finishes our

proof.
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Example 3.12. A typical series for which Theorem 3.11 works is
∑∞
n=1(−1)an .

The previous theorems give us that the set of sequences (an)n∈N for which the
partial sums of this series are bounded (B) is σ-very porous in all three metrics
(Baire, Frèchet and Euclidean).
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