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ADJOINT CLASSES OF
LEBESGUE-STIELTJES INTEGRABLE

FUNCTIONS

Abstract

This paper gives three pair of adjoint classes of the Lebesgue-Stieltjes
integrable functions.

1 Introduction

Let a and b be real numbers with a < b. Let B[a, b] be the class of all Borel
measurable functions defined on [a, b], and F [a, b] be the class of all real-
valued functions defined on [a, b]. Let g ∈ F [a, b] and g1(x), g2(x) be the
positive, negative variations of g over [a, x] with a ≤ x ≤ b, respectively. If
g1(x) + g2(x) < ∞ for any x ∈ [a, b) and either g1(b) or g2(b) is finite, then
we say g ∈ EBV [a, b], the class of functions of extended bounded variation on
[a, b] (cf. [8]). If g ∈ EBV [a, b], we have

g(x)− g(a) = g1(x)− g2(x) for any x ∈ [a, b) .

Since, for i = 1, 2, gi(x) is monotonically increasing on [a, b), then there is a
unique Baire measure µgi such that

µgi(a1, b1] = gi(b1+)− gi(a1+) for all [a1, b1] ⊂ [a, b]

(define gi(b+) = gi(b) ). Thus, in fact, a function g ∈ EBV [a, b] gives rise to
a σ-finite signed Baire measure µg = µg1 −µg2 on the class of all Borel sets in
[a, b] such that

µg(a1, b2] = g(b1+)− g(a1+) for all [a1, b1] ⊂ [a, b] .
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Now, for f ∈ B[a, b] and g ∈ EBV [a, b], we define the Lebesgue-Stieltjes
integral of f with respect to g by

(L−S)
∫ b

a

f dg =
∫ b

a

f dµg ,

where µg is the σ-finite signed Baire measure called the Lebesgue-Stieltjes
measure corresponding to g.

In the next section we shall use the definition in [1, 5] (only change the
(L−S) integral for the (R-S) integral) to discuss the adjoint classes of the
Lebesgue-Stieltjes integrable functions.

2 Main Results

In the present paper, besides the following classes of functions defined on [a, b]:

• the class of functions of bounded variation BV [a, b],

• the class of continuous functions of bounded variation CBV [a, b], and

• the class of absolutely continuous functions AC[a, b],

we shall also deal with the classes of functions as follows.

Definition 1. Let g ∈ BV [a, b]. Define g∗(x) = g(x+) for x ∈ [a, b) and
g∗(b) = g(b). If g∗ ∈ CBV [a, b] (AC[a, b]), then we say g ∈ CoBV [a, b]
(ACo[a, b]).

Definition 2. A function f ∈ B[a, b] is said to belong to the class B[a, b] if it
is bounded on [a, b].

Definition 3. A function f ∈ B[a, b] is said to belong to the class Bo[a, b] if
there is a number No > 0 such that any closed subset of the set E(x : |f(x)| >
No) is at most countable.

In the following definitions we use Lp[a, b] (1 ≤ p <∞) to denote the space
of all Lebesgue measurable functions f on [a, b] such that (L)

∫ b
a
|f |p <∞, and

use L∞[a, b] to denote the space of all Lebesgue measurable functions on [a, b]
which are bounded except possibly a subset of Lebesgue measure zero.

Definition 4. Let 1 ≤ q ≤ ∞. A function f ∈ B[a, b] is said to belong to the
class Bq[a, b] of f ∈ Lq[a, b].

Definition 5. Let 1 ≤ p ≤ ∞. A function g ∈ F [a, b] is said to belong to the
class ACpo [a, b] if g ∈ ACo[a, b] and g′ ∈ Lp[a, b].
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Let A and B be two classes of functions defined on [a, b]. If A and B are
adjoint with respect to the Lebesgue-Stieltjes integral, then it will be denoted
by A ∗B(L-S). We will prove the following theorems in the next section.

Theorem 1. B[a, b] ∗BV [a, b](L-S).

Theorem 2. Let 1/p+ 1/q = 1, 1 ≤ p ≤ ∞. Bq[a, b] ∗ACpo [a, b](L-S).

Theorem 3. Bo[a, b] ∗ CoBV [a, b](L-S).

3 Proof of the Theorems

Proof of Theorem 1.

(1) Suppose f ∈ B[a, b] and g ∈ BV [a, b]. Let µg be the Lebesgue-
Stieltjes measure corresponding to g. The condition g ∈ BV [a, b] implies
that |µg| is a finite measure on [a, b], and so f is µg-integrable on [a, b]. Thus,
(L−S)

∫ b
a
f dg =

∫ b
a
f dµg exists.

(2) Suppose g ∈ EBV [a, b] and (L−S)
∫ b
a
f dg exists for all f ∈ B[a, b]. By

the Hahn Decomposition Theorem ([7, p. 273]), there is a function f ∈ B[a, b]
with |f | ≤ 1 such that ∫ b

a

f dµg = |µg|[a, b] .

Hence |µg| is a finite measure on [a, b]. That is, g ∈ BV [a, b].
(3) Suppose f ∈ B[a, b] and (L−S)

∫ b
a
f dg exists for all g ∈ BV [a, b]. Claim

that f ∈ B[a, b]. Suppose f /∈ B[a, b]. Then, there exists a sequence {an} ⊂
[a, b] such that an monotonically converges to a point c ∈ [a, b], and |f(an)| ↑ ∞
as n → ∞. Without loss of generality, we may assume an ↑ c with a0 = a,
f(a) > 0, and f(an)+ ↑ ∞ as n→∞. Set

bn = f(an)+; dn = 1/bn − 1/bn+1 and D−1 = 0, Dn =
n∑
0

di .

Then, define g(x) = Dn−1 for each n ≥ 0 if x ∈ [an, an+1) and g(x) = limDn

if x ∈ [c, b]. Since
∑∞

0 di <∞, so g ∈ BV [a, b]. But, since

(L−S)
∫ b

a

(f+) dg =
∞∑
0

(
f(ai)+

)
µg
(
{ai}

)
=
∞∑
0

bi+1di =∞ ,

the integral (L−S)
∫ b
a
f dg does not exist, a contradiction. Consequently, f ∈

B[a, b].
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Proof of Theorem 2.

(1) Suppose f ∈ Bq[a, b], g ∈ ACpo [a, b] with 1/p+ 1/q = 1. Since

(L−S)
∫ b

a

f dg = (L−S)
∫ b

a

f dg∗ = (L)
∫ b

a

fg′ dx

and so the fact that f ∈ Bq[a, b] and g′ ∈ Lp[a, b] implies (L−S)
∫ b
a
f dg exists.

(2) Let 1 ≤ p <∞. Suppose f ∈ B[a, b] and (L−S)
∫ b
a
f dg exists for all g ∈

ACpo [a, b]. Whence, (L)
∫ b
a
fh dx exists for all h ∈ Lp[a, b]. Set fn(x) = f(x) if

|f(x)| ≤ n and fn(x) = 0 otherwise. Now, for each fn, n = 1, 2, . . . , define a
linear functional:

Fn(h) = (L)
∫ b

a

fnh dx , h ∈ Lp[a, b] .

From the Hölder Inequality, it follows that Fn is a bounded functional. Since
|fnh| ≤ |fh| and fh ∈ L[a, b], we have that

limFn(h) = (L)
∫ b

a

fh dx , h ∈ Lp[a, b]

by the Lebesgue Convergence Theorem. By the Banach-Steinhaus Theorem
([3, p. 100]), F (h) = limFn(h) is a linear functional on Lp[a, b]. On the other
hand, since

Lp[a, b]∗ = Lq[a, b] with 1/p+ 1/q = 1 and 1 ≤ p <∞ ,

where we denote the dual space of A by A∗, there exists a unique function
f1 ∈ Lq[a, b] such that

F (h) = (L)
∫ b

a

f1h dx , h ∈ Lp[a, b] .

So, we have

(L)
∫ b

a

(f − f1)h dx = 0 for all h ∈ Lp[a, b] .

Set h = χ[a, t] ∈ Lp[a, b]. Then

(L)
∫ t

a

(f − f1) dx = 0 for t ∈ [a, b] .
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Thus, f = f1 almost everywhere, and so f ∈ Lq[a, b]. Hence, f ∈ Bq[a, b].
Let p = ∞. If set g ≡ x ∈ AC∞o [a, b], then the fact that (L−S)

∫ b
a
f dg =

(L)
∫ b
a
f dx exists implies f ∈ L1[a, b]. Hence, f ∈ B1[a, b].

(3) Let g ∈ EBV [a, b]. Suppose (L−S)
∫ b
a
f dg exists for all f ∈ Bq[a, b],

1 ≤ q ≤ ∞. We shall prove g ∈ ACpo [a, b] with 1/p+ 1/q = 1. First of all, we
are going to show it in the case q =∞ (p = 1). In order to prove g ∈ ACo[a, b],
it suffices to prove that |µg|(E) = 0 for any Borel set E ⊂ [a, b] with m(E) = 0.
By the Hahn Decomposition Theorem, we can define a function f ∈ B∞[a, b]
such that

(L−S)
∫ b

a

f dg = (L−S)
∫
E

f dg = +∞ · |µg|(E) <∞ .

This means |µg|(E) = 0, and so g ∈ ACo[a, b]. Secondly, we are going to show
g ∈ ACpo [a, b] for 1 ≤ q < ∞ with 1/p + 1/q = 1. From the preceding proof
for the case q =∞ and B∞[a, b] ⊂ Bq[a, b], it follows that g ∈ ACo[a, b]. So,

(L)
∫ b

a

fg′ dx = (L−S)
∫ b

a

f dg∗ = (L−S)
∫ b

a

f dg

exists for all f ∈ Bq[a, b], 1 ≤ q <∞. Hence, we can define a linear functional

F (f) = (L)
∫ b

a

fg′ dx , f ∈ Bq[a, b] .

Since Bq[a, b] is dense in Lq[a, b], and so it follows from the proof in (2) that
g′ ∈ Lp[a, b] with 1/p+ 1/q = 1, thus g ∈ ACpo [a, b].

Proof of Theorem 3.

(1) Let f ∈ Bo[a, b] and g ∈ CoBV [a, b]. Suppose any closed subset of the
set E(x : |f | > No) is countable. Since the Lebesgue-Stieltjes measure µg
is regular, there exists a sequence {Pn} of closed sets such that Pn ⊆ E(x :
|f | > No) for all n ≥ 1 and

|µg|(Pn)→ |µg|E
(
x : |f | > No

)
as n→∞ .

Since g ∈ CoBV [a, b] and Pn is countable, and so |µg|(Pn) = 0 for all n ≥ 1.
Hence, it follows that |µg|E(x : |f | > No) = 0. Consequently, the integral
(L−S)

∫ b
a
f dg exists.

(2) Suppose g ∈ EBV [a, b] and (L−S)
∫ b
a
f dg exists for all f ∈ Bo[a, b].

Since B[a, b] ⊂ Bo[a, b], and so g ∈ BV [a, b] by Theorem A. Let c ∈ [a, b].
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Define a function f as follows: f(x) =∞ if x = c, and 0 if x ∈ [a, b] ∼ {c}. It
is obvious that f ∈ Bo[a, b]. By hypothesis, the integral

(L−S)
∫ b

a

f dg = (L−S)
∫
{c}

f dg = f(c)µg{c}

is finite. But, sincef(c) =∞, this implies g∗(c)− g∗(c−) = µg{c} = 0. Hence,
g∗(x) is continuous at x = c. Therefore, g ∈ CoBV [a, b].

(3) Suppose f ∈ B[a, b] and (L−S)
∫ b
a
f dg exists for all g ∈ CoBV [a, b]. We

claim f ∈ Bo[a, b]. If f /∈ Bo[a, b], then for any N > 0 the set E(x : |f | > N)
contains a closed subset, which is uncountable and so must contain a perfect
subset ([6, p. 130]). Hence, we construct a function g ∈ CoBV [a, b] such
that the integral (L−S)

∫ b
a
f dg does not exist. First of all, since ACo[a, b] ⊂

CoBV [a, b], so f ∈ B∞[a, b] by Theorem B. Thus, there exists a number
No > 0 such that for each n > No the set E(x : |f | > n) contains a Cantor
set Sn with m(Sn) = 0. Set xn = max(Sn) for each n > No. If necessary, we
can modify those Cantor sets so that xn 6= xm if n 6= m. Let η be a cluster
point of the sequence {xn}. Without loss of generality we may assume there
exists a subsequence {xnk} of {xn} such that xnk ↑ η (k → ∞). Now, we
construct a function g as follows. For k = 1, let yn1 = min(Sn1). In the same
way as in the proof of Theorem 2.2 in [2] we define g(x) as a Cantor function
on [yn1 , xn1 ], which is locally constant on [yn1 , xn1 ] ∼ Sn1 with the range
[0, 1− 1/n1], and g(x) = 0, if x ∈ [a, yn1). In general, for each k > 1 we define
g(x) as follows. Noting that Snk∩[xnk−1 , xnk ] is also a Cantor set with measure
zero, let ynk = min(Snk ∩ [xnk−1 , xnk ]) and define g(x) as a Cantor function
on [ynk , xnk ], which is locally constant on [ynk , xnk ] ∼ Snk with the range
[1− 1/nk−1, 1− 1/nk], and g(x) = 1− 1/nk−1, if x ∈ [xnk−1 , ynk). Obviously,
through this way we can define g(x) for any x ∈ [a, η). If we define g(x) = 1
on [η, b], we have g ∈ CoBV [a, b]. Since |f(x)| > nk for x ∈ Snk ∩ [xnk−1 , xnk ]
and

µg
(
Snk ∩ [xnk−1 , xnk ]

)
= 1/nk−1 − 1/nk ,

we have

(L−S)
∫ b

a

|f(x)| dg ≥ (L−S)
∫ η

xn1

|f(x)| dg ≥
∞∑
k=2

(L−S)
∫ xnk

xnk−1

|f(x)| dg

≥
∞∑
k=2

(L−S)
∫
Snk∩[xnk−1 ,xnk ]

|f(x)| dg ≥
∞∑
k=2

nk
(
1/nk−1 − 1/nk

)
=
∞∑
k=2

(
nk − nk−1

)
/nk−1 =∞ .
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Consequently, the integral (L−S)
∫ b
a
|f | dg does not exist, and neither does the

integral (L−S)
∫ b
a
f dg. But, this contradicts the hypothesis, hence we must

have f ∈ Bo[a, b].
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