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QUOTIENTS OF DARBOUX FUNCTIONS

Abstract

We prove theorems concerning common divisor for the families of
the quotients of Darboux functions with respect to Darboux property.

1 Introduction

The letter R denotes the real line. The family of all functions from a set X into
Y is denoted by Y X . The word function denotes a mapping from R to R unless
otherwise explicitly stated. We consider cardinals as ordinals not in one-to-
one correspondence with the smaller ordinals. The symbol cardX stands for
the cardinality of a set X. We write c = card R. For a cardinal number κ we
write cf(κ) for the cofinality of κ, and we say that κ is regular, if κ = cf(κ).
The projection of a set U ⊂ R2 onto the x-axis is denoted by domU . We say
that a set A ⊂ R is bilaterally c-dense in itself if card(A ∩ I) = c for every
nondegenerate interval I with A ∩ I 6= ∅.

Let f : R→ R. For each y ∈ R let [f < y] =
{
x ∈ R : f(x) < y

}
. Similarly

we define the symbols [f > y], [f = y], etc.
The symbol D denotes the class of all Darboux functions; i.e., f ∈ D iff it

has the intermediate value property.
There are several papers concerning theorems on a common summand

[2], [1], or factor [6]. In this paper we are concerned with a common divisor
for the families of the quotients of Darboux functions with respect to the
Darboux property. (We were concerned with a similar problem in [3].) More
precisely, we examine the cardinal

q(D) df= min
{

cardF : F ⊂ D/D & ¬
(
∃g∀f∈F f/g ∈ D

)}
,

where
D/D

df=
{
f/g : f, g ∈ D & g(x) 6= 0 for each x ∈ R

}
.
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In the above definition it is quite natural to restrict ourselves to subfamilies
of D/D only. Indeed, if there is a function g such that both f/g and 1/g are
Darboux, then f ∈ D/D.

2 Main Results

Before we start our examination, recall the following theorem proved by Natkaniec
and Orwat [7, Theorem 7].

Theorem 2.1. Let f be a function. Then f ∈ D/D iff f satisfies the following
conditions:

D1. if a < b and f(a)f(b) < 0, then [f = 0] ∩ (a, b) 6= ∅;

D2. each of the sets [f > 0] and [f < 0] is bilaterally c-dense in itself.

Theorem 2.2. q(D) > c.

Proof. Let {fα : α < c} ⊂ D/D. For α < c and i < 2 define

Qαi = {[a, b] ∩ [(−1)ifα > 0] : a, b ∈ R} \ {∅},

and observe that by D2, cardA = c whenever A ∈ Qαi. By [4, Lemma 5], there
is a family, {TαiA : α < c, i < 2, A ∈ Qαi}, composed of pairwise disjoint sets
of cardinality c, such that each TαiA is a subset of A. For each α, i, and A,
let gαiA : TαiA → (0,∞) be an arbitrary surjection. Define the function g by

g(x) =

{
(−1)i(fα/gαiA)(x) if x ∈ TαiA, α < c, i < 2, A ∈ Qαi,
1 otherwise.

Evidently g is positive. We will show that each function fα/g is Darboux.
Let α < c, a < b, and assume that (fα/g)(a) < (fα/g)(b). (The other case

is analogous.) Fix a y ∈
(
(fα/g)(a), (fα/g(b))

)
. We consider three cases.

If y = 0, then fα(a) < 0 < fα(b). So by D1, (fα/g)(x) = fα(x) = 0 for
some x ∈ (a, b).

If y > 0, then fα(b) > 0, so A = [a, b] ∩ [fα > 0] 6= ∅. Thus A ∈ Qα0.
Consequently, there is an x ∈ Tα0A ⊂ [a, b] such that (fα/g)(x) = gα0A(x) = y.

We proceed similarly if y < 0.

To prove the next theorem we need the following definition.

a(D) df= min
{

cardF : F ⊂ RR & ¬
(
∃g∀f∈F f + g ∈ D

)}
.
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This cardinal was defined by Natkaniec [5] and was thoroughly examined by
Ciesielski and Miller [1]. It is well-known that c < a(D) ≤ 2c [2]. Ciesielski and
Miller generalized this result by showing that cf(a(D)) > c. They also proved
that it is pretty much all that can be said about a(D) in ZFC, by showing that
a(D) can be equal to any regular cardinal between c+ and 2c, and that it can
be equal to 2c independently of the cofinality of 2c [1]. (Actually, Ciesielski
and Miller showed these results for the family of functions almost continuous
in the sense of Stallings [8].)

Theorem 2.3. a(D) = min
{

cardF : F ⊂ (0,∞)R & ¬
(
∃g∀f∈F f/g ∈ D

)}
.

Proof. First we will prove that a(D) is not smaller than the right-hand side
of the above equality. Pick a family F ⊂ RR such that cardF = a(D) and

∀g∈RR ∃f∈F f + g /∈ D. (1)

Let F∗ = {exp ◦f : f ∈ F}. Then F∗ ⊂ (0,∞)R and cardF∗ = cardF . We
will show that for each g : R→ R\{0} there is an f∗ ∈ F∗ such that f∗/g /∈ D.
Let g : R→ R \ {0}. By (1), f − ln ◦|g| /∈ D for some f ∈ F . Hence

exp ◦(f − ln ◦|g|) = (exp ◦f)/|g| /∈ D,

and consequently, (exp ◦f)/g /∈ D.

The proof of the opposite inequality is analogous.

By Theorem 2.1, we have (0,∞)R ⊂ D/D. So, we obtain the following
corollary.

Corollary 2.4. q(D) ≤ a(D).

For a partially ordered set (P,≤), we say that G ⊂ P is a P-filter, if

• for all p, q ∈ G, there exists r ∈ G with r ≤ p and r ≤ q, and

• for all p, q ∈ P, if p ∈ G and p ≤ q, then q ∈ G.

Define D ⊂ P to be dense, if for every p ∈ P there exists q ∈ D with q ≤ p.
For a cardinal κ and a poset P, define the following statements (Martin’s

Axiom for P and Lusin’s Axiom for P):

MAκ(P): for any family D of dense subsets of P with card D < κ, there exists
a P-filter G such that D ∩G 6= ∅ for every D ∈ D.
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Lusκ(P): there exists a sequence 〈Gα : α < κ〉 of P-filters, called a κ-Lusin
sequence, such that for every dense set D ⊂ P

card
{
α < κ : Gα ∩D = ∅

}
< κ.

From now on, let

P =
{
p ∈ (0,∞)X : X ⊂ R & cardX < c

}
.

Define p ≤ q if q ⊂ p, i.e., if p extends q as a partial function.
The proof of the next theorem is actually a repetition of argument used by

Ciesielski and Miller [1, Lemma 3.1].

Theorem 2.5. MAκ(P) implies q(D) ≥ κ.

Proof. Assume MAκ(P). By Theorem 2.2, we may assume that κ > c.
First observe that for every x ∈ R, the set Dx = {p ∈ P : x ∈ dom p}

is dense in P. Indeed, let x ∈ R and p ∈ P. If x ∈ dom p, then put q = p;
otherwise let q = p ∪ {(x, 1)}. Clearly q ∈ Dx and q ≤ p.

Now we will show that for any f ∈ D/D, y 6= 0, and a < b, if the set
[a, b] ∩ [f/y > 0] is nonempty, then the set

Dfyab =
{
p ∈ P : ∃x∈[a,b]∩dom p p(x) = f(x)/y

}
is dense in P. Let p ∈ P, f ∈ D/D, y > 0, a < b, and assume that [a, b] ∩
[f/y > 0] 6= ∅. Since f satisfies D2, card

(
[a, b] ∩ [f/y > 0]

)
= c. We have

card dom p < c; so there is an x ∈ (a, b)∩ [f/y > 0]\dom p. Then the function
q = p ∪ {(x, f(x)/y)} satisfies q ∈ Dfyab and q ≤ p.

To show that q(D) ≥ κ pick a family of functions F ⊂ D/D with cardF < κ.
Define

D =
{
Dx : x ∈ R

}
∪
{
Dfyab : f ∈ F , y 6= 0, a < b, [a, b] ∩ [f/y > 0] 6= ∅

}
.

Then D is a family of dense subsets of P and card D < κ. Applying MAκ(P)
we can find a P-filter G which meets every D ∈ D.

Let g =
⋃
G. Evidently g is a function and g is positive. For every x ∈ R,

we have Dx ∩G 6= ∅; so dom g = R. We will show that each f/g is Darboux.
Let f ∈ F , a < b, and assume that (f/g)(a) < (f/g)(b). (The other case is
analogous.) Fix a y ∈

(
(f/g)(a), (f/g)(b)

)
. We consider three cases. If y = 0,

then f(a) < 0 < f(b). So by D1, (f/g)(x) = f(x) = 0 for some x ∈ (a, b).
If y > 0, then f(b) > 0, so [a, b] ∩ [f/y > 0] 6= ∅. Since Dfyab ∩ G 6= ∅,
there are a p ∈ G and an x ∈ [a, b] ∩ dom p such that p(x) = f(x)/y. Then
(f/g)(x) = (f/p)(x) = y.

We proceed similarly if y < 0.
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To prove the next theorem we will use two other posets. Let

P′ = {p ∈ RX : X ⊂ R & cardX < c},

and p ≤ q iff q ⊂ p. Moreover let

P∗ = {(p, E) : p ∈ P′, E ⊂ RR & card E < c},

and define (p, E) ≤ (q,F) iff

q ⊂ p, E ⊃ F , and p(x) 6= f(x) for all x ∈ dom p \ dom q and f ∈ F .

Theorem 2.6. Suppose that κ > c, κ is regular, and Lusκ(P∗) holds. Then
q(D) = a(D) = κ.

Proof. The inequality q(D) ≤ a(D) follows by Corollary 2.4. The inequality
a(D) ≤ κ follows by [1, Lemma 3.2 and Theorem 2.1]. By [1, Lemma 3.3],
Lusκ(P∗) implies MAκ(P′). But the posets P and P′ are order isomorphic; so
MAκ(P) holds. Now the inequality q(D) ≥ κ follows by Theorem 2.5.

Ciesielski and Miller proved that the assumptions of Theorem 2.6 are in-
dependent of ZFC [1]. So, we have the following problem.

Problem. Can the equality q(D) = a(D) be proved in ZFC?
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