Jolanta Jałocha, Department of Mathematics, pl. Weyssenhoffa 11, 85–072 Bydgoszcz, Poland.

QUOTIENTS OF DARBOUX FUNCTIONS

Abstract

We prove theorems concerning common divisor for the families of the quotients of Darboux functions with respect to Darboux property.

1 Introduction

The letter \mathbb{R} denotes the real line. The family of all functions from a set X into Y is denoted by Y^X . The word *function* denotes a mapping from \mathbb{R} to \mathbb{R} unless otherwise explicitly stated. We consider cardinals as ordinals not in one-to-one correspondence with the smaller ordinals. The symbol card X stands for the cardinality of a set X. We write $\mathfrak{c} = \operatorname{card} \mathbb{R}$. For a cardinal number κ we write $\mathrm{cf}(\kappa)$ for the *cofinality of* κ , and we say that κ is *regular*, if $\kappa = \mathrm{cf}(\kappa)$. The projection of a set $U \subset \mathbb{R}^2$ onto the x-axis is denoted by dom U. We say that a set $A \subset \mathbb{R}$ is *bilaterally* \mathfrak{c} -dense in itself if $\operatorname{card}(A \cap I) = \mathfrak{c}$ for every nondegenerate interval I with $A \cap I \neq \emptyset$.

Let $f : \mathbb{R} \to \mathbb{R}$. For each $y \in \mathbb{R}$ let $[f < y] = \{x \in \mathbb{R} : f(x) < y\}$. Similarly we define the symbols [f > y], [f = y], etc.

The symbol \mathcal{D} denotes the class of all *Darboux* functions; i.e., $f \in \mathcal{D}$ iff it has the intermediate value property.

There are several papers concerning theorems on a common summand [2], [1], or factor [6]. In this paper we are concerned with a common divisor for the families of the quotients of Darboux functions with respect to the Darboux property. (We were concerned with a similar problem in [3].) More precisely, we examine the cardinal

$$\mathbf{q}(\mathcal{D}) \stackrel{\mathrm{df}}{=} \min \left\{ \operatorname{card} \mathcal{F} : \mathcal{F} \subset \mathcal{D} /_{\mathcal{D}} \& \neg \left(\exists_g \forall_{f \in \mathcal{F}} f / g \in \mathcal{D} \right) \right\},\$$

where

$$\mathcal{D}_{\mathcal{D}} \stackrel{\text{di}}{=} \{ f/g : f, g \in \mathcal{D} \& g(x) \neq 0 \text{ for each } x \in \mathbb{R} \}.$$

Key Words: Darboux function, quotient of functions.

1.0

Mathematical Reviews subject classification: Primary 26A15. Secondary 54C08. Received by the editors June 6, 2000

³⁶⁵

In the above definition it is quite natural to restrict ourselves to subfamilies of $\mathcal{D}_{\mathcal{D}}$ only. Indeed, if there is a function g such that both f/g and 1/g are Darboux, then $f \in \mathcal{D}_{\mathcal{D}}$.

2 Main Results

Before we start our examination, recall the following theorem proved by Natkaniec and Orwat [7, Theorem 7].

Theorem 2.1. Let f be a function. Then $f \in \mathcal{D}_{\mathcal{D}}$ iff f satisfies the following conditions:

D1. if a < b and f(a)f(b) < 0, then $[f = 0] \cap (a, b) \neq \emptyset$;

D2. each of the sets [f > 0] and [f < 0] is bilaterally *c*-dense in itself.

Theorem 2.2. $q(\mathcal{D}) > \mathfrak{c}$.

PROOF. Let $\{f_{\alpha} : \alpha < \mathfrak{c}\} \subset \mathcal{D}/\mathcal{D}$. For $\alpha < \mathfrak{c}$ and i < 2 define

$$\mathcal{Q}_{\alpha i} = \{ [a, b] \cap [(-1)^i f_\alpha > 0] : a, b \in \mathbb{R} \} \setminus \{ \emptyset \},\$$

and observe that by D2, card $A = \mathfrak{c}$ whenever $A \in \mathcal{Q}_{\alpha i}$. By [4, Lemma 5], there is a family, $\{T_{\alpha iA} : \alpha < \mathfrak{c}, i < 2, A \in \mathcal{Q}_{\alpha i}\}$, composed of pairwise disjoint sets of cardinality \mathfrak{c} , such that each $T_{\alpha iA}$ is a subset of A. For each α , i, and A, let $g_{\alpha iA} : T_{\alpha iA} \to (0, \infty)$ be an arbitrary surjection. Define the function g by

$$g(x) = \begin{cases} (-1)^i (f_\alpha/g_{\alpha iA})(x) & \text{if } x \in T_{\alpha iA}, \alpha < \mathfrak{c}, i < 2, A \in \mathfrak{Q}_{\alpha i}, \\ 1 & \text{otherwise.} \end{cases}$$

Evidently g is positive. We will show that each function f_{α}/g is Darboux.

Let $\alpha < \mathfrak{c}$, a < b, and assume that $(f_{\alpha}/g)(a) < (f_{\alpha}/g)(b)$. (The other case is analogous.) Fix a $y \in ((f_{\alpha}/g)(a), (f_{\alpha}/g(b)))$. We consider three cases.

If y = 0, then $f_{\alpha}(a) < 0 < f_{\alpha}(b)$. So by D1, $(f_{\alpha}/g)(x) = f_{\alpha}(x) = 0$ for some $x \in (a, b)$.

If y > 0, then $f_{\alpha}(b) > 0$, so $A = [a, b] \cap [f_{\alpha} > 0] \neq \emptyset$. Thus $A \in Q_{\alpha 0}$. Consequently, there is an $x \in T_{\alpha 0A} \subset [a, b]$ such that $(f_{\alpha}/g)(x) = g_{\alpha 0A}(x) = y$. We proceed similarly if y < 0.

To prove the next theorem we need the following definition.

$$\mathbf{a}(\mathcal{D}) \stackrel{\mathrm{dr}}{=} \min\{\operatorname{card} \mathcal{F} : \mathcal{F} \subset \mathbb{R}^{\mathbb{R}} \& \neg (\exists_g \forall_{f \in \mathcal{F}} f + g \in \mathcal{D})\}.$$

This cardinal was defined by Natkaniec [5] and was thoroughly examined by Ciesielski and Miller [1]. It is well-known that $\mathfrak{c} < \mathfrak{a}(\mathcal{D}) \leq 2^{\mathfrak{c}}$ [2]. Ciesielski and Miller generalized this result by showing that $\mathfrak{cf}(\mathfrak{a}(\mathcal{D})) > \mathfrak{c}$. They also proved that it is pretty much all that can be said about $\mathfrak{a}(\mathcal{D})$ in ZFC, by showing that $\mathfrak{a}(\mathcal{D})$ can be equal to any regular cardinal between \mathfrak{c}^+ and $2^{\mathfrak{c}}$, and that it can be equal to $2^{\mathfrak{c}}$ independently of the cofinality of $2^{\mathfrak{c}}$ [1]. (Actually, Ciesielski and Miller showed these results for the family of functions almost continuous in the sense of Stallings [8].)

Theorem 2.3. $a(\mathcal{D}) = \min \{ \operatorname{card} \mathcal{F} : \mathcal{F} \subset (0, \infty)^{\mathbb{R}} \& \neg (\exists_g \forall_{f \in \mathcal{F}} f/g \in \mathcal{D}) \}.$

PROOF. First we will prove that $a(\mathcal{D})$ is not smaller than the right-hand side of the above equality. Pick a family $\mathcal{F} \subset \mathbb{R}^{\mathbb{R}}$ such that card $\mathcal{F} = a(\mathcal{D})$ and

$$\forall_{g \in \mathbb{R}^{\mathbb{R}}} \exists_{f \in \mathcal{F}} f + g \notin \mathcal{D}.$$
(1)

Let $\mathcal{F}^* = \{ \exp \circ f : f \in \mathcal{F} \}$. Then $\mathcal{F}^* \subset (0, \infty)^{\mathbb{R}}$ and $\operatorname{card} \mathcal{F}^* = \operatorname{card} \mathcal{F}$. We will show that for each $g : \mathbb{R} \to \mathbb{R} \setminus \{0\}$ there is an $f^* \in \mathcal{F}^*$ such that $f^*/g \notin \mathcal{D}$. Let $g : \mathbb{R} \to \mathbb{R} \setminus \{0\}$. By (1), $f - \ln \circ |g| \notin \mathcal{D}$ for some $f \in \mathcal{F}$. Hence

$$\exp \circ (f - \ln \circ |g|) = (\exp \circ f)/|g| \notin \mathcal{D},$$

and consequently, $(\exp \circ f)/g \notin \mathcal{D}$.

The proof of the opposite inequality is analogous.

By Theorem 2.1, we have $(0,\infty)^{\mathbb{R}} \subset \mathcal{D}_{\mathcal{D}}$. So, we obtain the following corollary.

Corollary 2.4. $q(\mathcal{D}) \leq a(\mathcal{D})$.

For a partially ordered set (\mathbb{P}, \leq) , we say that $G \subset \mathbb{P}$ is a \mathbb{P} -filter, if

- for all $p, q \in G$, there exists $r \in G$ with $r \leq p$ and $r \leq q$, and
- for all $p, q \in \mathbb{P}$, if $p \in G$ and $p \leq q$, then $q \in G$.

Define $D \subset \mathbb{P}$ to be *dense*, if for every $p \in \mathbb{P}$ there exists $q \in D$ with $q \leq p$.

For a cardinal κ and a poset \mathbb{P} , define the following statements (*Martin's Axiom for* \mathbb{P} and *Lusin's Axiom for* \mathbb{P}):

 $\operatorname{MA}_{\kappa}(\mathbb{P})$: for any family \mathfrak{D} of dense subsets of \mathbb{P} with $\operatorname{card} \mathfrak{D} < \kappa$, there exists a \mathbb{P} -filter G such that $D \cap G \neq \emptyset$ for every $D \in \mathfrak{D}$.

Lus_{κ}(\mathbb{P}): there exists a sequence $\langle G_{\alpha} : \alpha < \kappa \rangle$ of \mathbb{P} -filters, called a κ -Lusin sequence, such that for every dense set $D \subset \mathbb{P}$

$$\operatorname{card}\{\alpha < \kappa : G_{\alpha} \cap D = \emptyset\} < \kappa.$$

From now on, let

$$\mathbb{P} = \left\{ p \in (0,\infty)^X : X \subset \mathbb{R} \& \operatorname{card} X < \mathfrak{c} \right\}.$$

Define $p \leq q$ if $q \subset p$, i.e., if p extends q as a partial function.

The proof of the next theorem is actually a repetition of argument used by Ciesielski and Miller [1, Lemma 3.1].

Theorem 2.5. $MA_{\kappa}(\mathbb{P})$ implies $q(\mathcal{D}) \geq \kappa$.

PROOF. Assume $MA_{\kappa}(\mathbb{P})$. By Theorem 2.2, we may assume that $\kappa > \mathfrak{c}$.

First observe that for every $x \in \mathbb{R}$, the set $D_x = \{p \in \mathbb{P} : x \in \text{dom } p\}$ is dense in \mathbb{P} . Indeed, let $x \in \mathbb{R}$ and $p \in \mathbb{P}$. If $x \in \text{dom } p$, then put q = p; otherwise let $q = p \cup \{(x, 1)\}$. Clearly $q \in D_x$ and $q \leq p$.

Now we will show that for any $f \in \mathcal{D}_{\mathcal{D}}$, $y \neq 0$, and a < b, if the set $[a,b] \cap [f/y > 0]$ is nonempty, then the set

$$D_{fyab} = \left\{ p \in \mathbb{P} : \exists_{x \in [a,b] \cap \operatorname{dom} p} \ p(x) = f(x)/y \right\}$$

is dense in \mathbb{P} . Let $p \in \mathbb{P}$, $f \in \mathcal{D}/\mathcal{D}$, y > 0, a < b, and assume that $[a, b] \cap [f/y > 0] \neq \emptyset$. Since f satisfies D2, $\operatorname{card}([a, b] \cap [f/y > 0]) = \mathfrak{c}$. We have $\operatorname{card} \operatorname{dom} p < \mathfrak{c}$; so there is an $x \in (a, b) \cap [f/y > 0] \setminus \operatorname{dom} p$. Then the function $q = p \cup \{(x, f(x)/y)\}$ satisfies $q \in D_{fyab}$ and $q \leq p$.

To show that $q(\mathcal{D}) \geq \kappa$ pick a family of functions $\mathcal{F} \subset \mathcal{D}/\mathcal{D}$ with card $\mathcal{F} < \kappa$. Define

$$\mathfrak{D} = \left\{ D_x : x \in \mathbb{R} \right\} \cup \left\{ D_{fyab} : f \in \mathcal{F}, y \neq 0, a < b, [a, b] \cap [f/y > 0] \neq \emptyset \right\}.$$

Then \mathfrak{D} is a family of dense subsets of \mathbb{P} and $\operatorname{card} \mathfrak{D} < \kappa$. Applying $\operatorname{MA}_{\kappa}(\mathbb{P})$ we can find a \mathbb{P} -filter G which meets every $D \in \mathfrak{D}$.

Let $g = \bigcup G$. Evidently g is a function and g is positive. For every $x \in \mathbb{R}$, we have $D_x \cap G \neq \emptyset$; so dom $g = \mathbb{R}$. We will show that each f/g is Darboux. Let $f \in \mathcal{F}$, a < b, and assume that (f/g)(a) < (f/g)(b). (The other case is analogous.) Fix a $y \in ((f/g)(a), (f/g)(b))$. We consider three cases. If y = 0, then f(a) < 0 < f(b). So by D1, (f/g)(x) = f(x) = 0 for some $x \in (a, b)$. If y > 0, then f(b) > 0, so $[a, b] \cap [f/y > 0] \neq \emptyset$. Since $D_{fyab} \cap G \neq \emptyset$, there are a $p \in G$ and an $x \in [a, b] \cap \text{dom } p$ such that p(x) = f(x)/y. Then (f/g)(x) = (f/p)(x) = y.

We proceed similarly if y < 0.

To prove the next theorem we will use two other posets. Let

$$\mathbb{P}' = \{ p \in \mathbb{R}^X : X \subset \mathbb{R} \& \text{ card } X < \mathfrak{c} \},\$$

and $p \leq q$ iff $q \subset p$. Moreover let

$$\mathbb{P}^* = \{ (p, \mathcal{E}) : p \in \mathbb{P}', \ \mathcal{E} \subset \mathbb{R}^{\mathbb{R}} \& \ \operatorname{card} \mathcal{E} < \mathfrak{c} \},\$$

and define $(p, \mathcal{E}) \leq (q, \mathcal{F})$ iff

$$q \subset p, \mathcal{E} \supset \mathcal{F}$$
, and $p(x) \neq f(x)$ for all $x \in \text{dom } p \setminus \text{dom } q$ and $f \in \mathcal{F}$.

Theorem 2.6. Suppose that $\kappa > \mathfrak{c}$, κ is regular, and $\operatorname{Lus}_{\kappa}(\mathbb{P}^*)$ holds. Then $q(\mathcal{D}) = \mathfrak{a}(\mathcal{D}) = \kappa$.

PROOF. The inequality $q(\mathcal{D}) \leq a(\mathcal{D})$ follows by Corollary 2.4. The inequality $a(\mathcal{D}) \leq \kappa$ follows by [1, Lemma 3.2 and Theorem 2.1]. By [1, Lemma 3.3], $\operatorname{Lus}_{\kappa}(\mathbb{P}^*)$ implies $\operatorname{MA}_{\kappa}(\mathbb{P}')$. But the posets \mathbb{P} and \mathbb{P}' are order isomorphic; so $\operatorname{MA}_{\kappa}(\mathbb{P})$ holds. Now the inequality $q(\mathcal{D}) \geq \kappa$ follows by Theorem 2.5. \Box

Ciesielski and Miller proved that the assumptions of Theorem 2.6 are independent of ZFC [1]. So, we have the following problem.

Problem. Can the equality $q(\mathcal{D}) = a(\mathcal{D})$ be proved in ZFC?

References

- K. Ciesielski and A. W. Miller, Cardinal invariants concerning functions whose sum is almost continuous, Real Anal. Exchange, 20 (1994–95), no. 2, 657–672.
- [2] H. Fast, Une remarque sur la propriété de Weierstrass, Colloq. Math., 7 (1959), 75–77.
- [3] J. Jałocha, Quotients of quasi-continuous functions, J. App. Anal., 6 (2000), no. 2, to appear.
- [4] A. Maliszewski, Sums of bounded Darboux functions, Real Anal. Exchange, 20 (1994–95), no. 2, 673–680.
- [5] T. Natkaniec, Almost continuity, Real Anal. Exchange, 17 (1991–92), no. 2, 462–520.
- [6] T. Natkaniec, Products of Darboux functions, Real Anal. Exchange, 18 (1992–93), no. 1, 232–236.

- [7] T. Natkaniec and W. Orwat, Variations on products and quotients of Darboux functions, Real Anal. Exchange, 15 (1989–90), no. 1, 193–202.
- [8] J. Stallings, Fixed point theorem for connectivity maps, Fund. Math., 47 (1959), 249–263.