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DEFINABILITY IN FUNCTION SPACES∗

Abstract

We study C(X)∩Lp(X), the set of all continuous functions in Lp(X),
as a subspace of Lp(X), and show that it is Π0

3-complete when X is
Polish locally compact, while it is Π1

1-complete when X is Polish not
σ-compact. We also show that the subspace of Riemann integrable func-
tions and, for every k = 1, 2, . . . ,∞, Ck(R) are Π0

3-complete in Lp(R).
In contrast the subspace of all everywhere differentiable functions is Π1

1-
complete in Lp(R). If X is locally compact, we consider C(X) endowed
with the compact-open topology and establish the complexity of some
of its subspaces, including C0(X), C00(X) and UC(X, d).

1 Introduction

The main theme of this paper is the study, within the framework of descriptive
set theory, of various spaces of continuous or integrable real-valued functions.
In particular we are interested in how a given function space “sits” inside a
larger function space (whose topology in general does not extend the natural
topology of the first space). An instance of this is, for X a compact metrizable
space, the space of continuous functions C(X), which “sits” inside the space
L1(X,µ) of µ-integrable functions (for µ a “reasonable” measure on X).

To make precise the notion of “how a space sits inside another” we use
the Wadge hierarchy, which classifies the complexity of subsets of Polish (i.e.
separable completely metrizable) spaces. If A ⊆ X and B ⊆ Y are subsets
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of two Polish spaces, then A is Wadge reducible to B (write A ≤W B) if
there exists a continuous function (called a reduction of A to B) f : X → Y
such that f−1(B) = A. The preordering ≤W obviously induces an equivalence
relation on the class of all subsets of Polish spaces, whose equivalence classes
are called the Wadge degrees, and a partial ordering on the Wadge degrees,
which is called the Wadge hierarchy . The Wadge degree of a set is a measure
of its complexity (the higher the position in the Wadge hierarchy, the more
complex the set). For background information on the Wadge hierarchy we
refer the reader to [6].

We will study the Wadge degree of a function space viewed as a subset
of another function space. The following terminology is standard and will be
used in computing the Wadge degrees. Let Γ denote any of the classes (of
subsets of Polish spaces) Σ0

α, Π0
α (where α is a nonzero countable ordinal),

Σ1
n and Π1

n (where n is finite nonzero). In this case write Γ̌ for the class
where Π and Σ are interchanged. We say that a subset A of an arbitrary
Polish space is Γ-hard if for every subset B in Γ of a zero-dimensional Polish
space we have B ≤W A (intuitively this means that the Wadge degree of A is
at least as large as the Wadge degree of a set in Γ can be). If a Γ-hard set is
also in Γ then we say that it is Γ-complete. (It is obvious that the Γ-complete
subsets of zero-dimensional Polish spaces form a Wadge degree.) A set is true
Γ if it is in Γ but not in Γ̌.

It is immediate that every Γ-complete set is true Γ. When Γ is Σ0
α or Π0

α

the converse holds ([6, exercise 24.20]), but when Γ is Σ1
n or Π1

n it is consistent
with ZFC that there exist true Γ sets which are not Γ-complete.

The prototype of our results is the following fact (see [6, subsection 23.D]):
inside C(T), the space of all continuous real valued functions on the unit circle
T = R/Z with the sup norm, the set Ck(T) (k = 1, 2, . . . ,∞), is Π0

3-complete,
while the set A(T) of all analytic functions is Σ0

2-complete. Other results in
the same vein can be found among the examples of [6] and in the survey paper
[3].

The main technique for showing that a set B is Γ-hard is to show that
A ≤W B for some set A already known to be Γ-hard. Here is a short list of
complete sets (see [6] for proofs) which will be used to establish the hardness
of various spaces.

Examples 1.1.

Q2 =
{
α ∈ 2N | ∃M ∀n > M α(n) = 0

}
is Σ0

2-complete
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c0 =
{

(xn) ∈ IN | limxn = 0
}

is Π0
3-complete

c =
{

(xn) ∈ IN | limxn exists
}

is Π0
3-complete

where I = [0, 1] and 2N is the Cantor space.

Throughout the paper we follow (as above) the notation and terminology of
[6] and refer to this textbook for all standard facts on descriptive set theory. In
particular if µ is a measure on a setX we use the following notation for measure
quantifiers: ∀∗µx ∈ X P (x) holds if and only if µ({x ∈ X | ¬P (x) }) = 0,
∃∗µx ∈ X P (x) holds if and only if µ({x ∈ X | P (x) }) > 0. By a Borel
measure we mean a measure defined on the σ-algebra of the Borel subsets of
a second countable topological space. When X is a metric space, x ∈ X and
r > 0, we write B(x; r) for the open ball of center x and radius r.

If X is a topological space we denote by C(X) the set of continuous func-
tions from X to R. We will also use the following notions from topology (we
use K(X) to denote the hyperspace of the compact subsets of X).

Definition 1.2. A topological space X is σ-compact if we can write X =⋃
n∈N Kn with Kn ∈ K(X); obviously we can always assume that Kn ⊆ Kn+1.

X is hemicompact if moreover the Kn’s are cofinal in K(X), i.e. for every
K ∈ K(X) there exists n such that K ⊆ Kn.

A second countable Hausdorff (in particular: separable metrizable) space
is hemicompact if and only if it is locally compact (see [4, exercise 3.4.E.c]).
If X is locally compact Polish we fix a decomposition X =

⋃
nKn with the

Kn’s cofinal in K(X). Furthermore, if X is not compact, we may assume that
for every n the interior of Kn+1 \Kn is nonempty.

We now explain the organization of the paper. In section 2 we work in a
purely measure-theoretic setting and consider Lq(X,µ) and the space of all
simple functions as subsets of Lp(X,µ): they are both Σ0

2-complete under the
appropriate hypothesis. In section 3 we consider a “reasonable” measure µ
on the Polish space X and study the space of all continuous functions which
belong to Lp(X,µ). If X is locally compact this space turns out to be Borel
(and precisely Π0

3-complete), while if X is not σ-compact this space is Π1
1-

complete and hence not Borel. Section 4 specializes to X = R and Lebesgue
measure: we consider spaces of differentiable and Riemann integrable func-
tions. In section 5 we fix a locally compact Polish space X, endow C(X)
with the compact-open topology (which makes it Polish) and study various
subspaces of C(X) (often these subspaces are themselves Polish spaces, albeit
with different topologies).
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2 Some Subspaces of Lp(X,µ)

If 1 ≤ p <∞ and µ is a σ-finite measure on a countably generated σ-algebra
of subsets of a set X we consider the separable Banach (and hence Polish)
space Lp(X,µ) with the p-norm.

The following general lemma (which is related to [6, exercise 17.29]) is
interesting in its own right and will be useful also in sections 3 and 4.

Lemma 2.1. Let X be a separable metrizable space, µ a σ-finite Borel measure
on X. Let A be a closed subset of (X × R)k × Xh. Then the set B of all
(f, y1, . . . , yh) ∈ Lp(X,µ)×Xh such that

∀∗µx1 . . . xk ∈ X (x1, f(x1), . . . , xk, f(xk), y1, . . . , yh) ∈ A

is also closed.
Moreover, if A ⊆ Rk, µ can be any σ-finite measure on a countably gener-

ated σ-algebra of subsets of X (which does not need to be topological), and the
same conclusion holds.

Proof. First of all notice that the definition of B is meaningful:

if µ({x | f(x) 6= g(x) }) = 0, then (f, y1, . . . , yh) ∈ B ⇐⇒ (g, y1, . . . , yh) ∈ B.

For the sake of notational simplicity, we assume k = h = 1. Let d be a
compatible metric on X and denote by D the metric on X × R×X which is
the product of two copies of d and of the Euclidean metric on R.

Suppose towards a contradiction that the sequence (fn, yn) converges to
(f, y) within Lp(X,µ)×X, (fn, yn) ∈ B for every n, and (f, y) /∈ B. Since for
µ-almost all x, D((x, fn(x), yn), A) = 0, then

D((x, f(x), y), A) ≤
D((x, f(x), y), (x, fn(x), y)) +D((x, fn(x), y), (x, fn(x), yn))

and therefore for µ-almost all x

|f(x)− fn(x)| ≥ D((x, f(x), y), A)− d(y, yn).

Since {x ∈ X | (x, f(x), y) /∈ A } has positive measure and A is closed, for
some ε > 0 we have µ(Yε) > 0, where Yε = {x | D((x, f(x), y), A) > ε }. For
every n such that d(y, yn) < ε/2 we have

‖f − fn‖pp ≥
∫
Yε

|f(x)− fn(x)|p dµ(x)

>

∫
Yε

(
ε− ε

2

)p
dµ(x) = µ(Yε)

(ε
2

)p
> 0.
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This contradicts fn → f in Lp(X,µ).
The second part of the theorem follows easily, since in that case no topo-

logical properties of X are used.

An interesting subspace of Lp(X,µ) is the set SIM(X,µ) of all simple
functions, which is often used to define integration with respect to µ. Recall
that f ∈ SIM(X,µ) if its range is finite and the inverse image of each of
its nonzero elements is a measurable set of finite measure. Since a member
of Lp(X,µ) is actually a class of measurable functions which are µ-almost
everywhere equal, when we say that f ∈ Lp(X,µ) is simple we mean that
there is a simple function which is µ-a.e. equal to f . Therefore we can view
SIM(X,µ) as a subset of Lp(X,µ).

Theorem 2.2. Let µ be a σ-finite measure on a countably generated σ-algebra
of subsets of an infinite set X. Assume furthermore that for every ε > 0 there
exists A ⊆ X such that 0 < µ(A) ≤ ε. Then SIM(X,µ) is Σ0

2-complete in
Lp(X,µ).

Proof. If f ∈ Lp(X,µ), then f ∈ SIM(X,µ) if and only if

∃K ∈ K(R)(K is finite & ∀∗µx ∈ X f(x) ∈ K).

The collection of finite sets is Σ0
2 in K(R) ([6, exercise 4.30]). Therefore

F =
{

(K, f) ∈ K(R)× Lp(X,µ) | K is finite & ∀∗µx ∈ X f(x) ∈ K
}

is Σ0
2 by lemma 2.1. Since R is locally compact, it is immediate (using the

fact that K(X) is compact when X is compact) that K(R) is σ-compact. That
SIM(X,µ) is Σ0

2 follows at once from the following folklore result, a proof of
which can be found, for example, in [2, lemma 1.3].

Lemma 2.3. If F ⊆ K × Y is Σ0
2, with K σ-compact and Y Polish, then

{ y ∈ Y | ∃k ∈ K (k, y) ∈ F } is Σ0
2.

By the result mentioned in the introduction, in order to show that SIM(X,µ)
is Σ0

2-complete it is enough to prove it is not Π0
2. By Baire’s category theorem

it is enough to prove that SIM(X,µ) and Lp(X,µ) \ SIM(X,µ) are dense in
Lp(X,µ). The density of SIM(X,µ) is immediate, and using the existence of
sets of arbitrarily small measure, any f ∈ SIM(X,µ) can be approximated
by a g /∈ SIM(X,µ) with countable range. Therefore Lp(X,µ) \ SIM(X,µ) is
dense in Lp(X,µ) and this concludes the proof.

If µ is finite and p < q, then Lq(X,µ) ⊆ Lp(X,µ). More in general we can
study Lq(X,µ) ∩ Lp(X,µ) as a subspace of Lp(X,µ).
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Theorem 2.4. If µ is a σ-finite measure on a countably generated σ-algebra
of subsets of a set X, then Lq(X,µ) ∩ Lp(X,µ) is Σ0

2 in Lp(X,µ). Moreover
if Lp(X,µ) * Lq(X,µ), then Lq(X,µ)∩Lp(X,µ) is Σ0

2-complete in Lp(X,µ).

Proof. LetX =
⋃
Xk where µ(Xk) is finite andXk ⊆ Xk+1. If f ∈ Lp(X,µ),

then f ∈ Lq(X,µ) if and only if

∃M ∀n ∀k
∫
Xk

min(|f(x)|q, n) dµ ≤M.

For every n and k the map Lp(X,µ)→ R, f 7→
∫
Xk

min(|f(x)|q, n) dµ, (which
is actually defined for every µ-measurable function f) is continuous and hence
the first part of the theorem follows immediately.

Since simple functions are dense in Lp(X,µ) and belong to Lq(X,µ), we
have that Lq(X,µ) ∩ Lp(X,µ) is dense in Lp(X,µ). The hypothesis of the
second part of the theorem implies that Lp(X,µ) \ Lq(X,µ) is also dense in
Lp(X,µ): to see this it suffices to notice that if f ∈ Lp(X,µ)\Lq(X,µ) and g ∈
Lq(X,µ)∩Lp(X,µ), then for every ε 6= 0, g+εf belongs to Lp(X,µ)\Lq(X,µ).
It now suffices to argue as in the proof of Theorem 2.2, using the Baire category
theorem.

Notice that for the hypothesis of the second part of theorem 2.4 to hold,
it suffices either that there exist sets of arbitrarily small positive measure and
p < q, or that µ is infinite and p > q.

3 C(X) as a Subspace of Lp(X,µ)

Suppose X is a compact space and µ a finite Borel measure on X non-vanishing
on open sets, i.e. for every nonempty open U ⊆ X, µ(U) > 0. Endow C(X)
with the sup norm and consider again Lp(X,µ) with the p-norm (1 ≤ p <∞).
Let j : C(X) → Lp(X,µ) be defined by letting j(f) to be the element of
Lp(X,µ) (which is an equivalence class of Borel functions) determined by f .
Then j is injective and continuous.

If X is also metrizable (and hence Polish) j(C(X)) is Borel in Lp(X,µ)
(because one-to-one continuous images of Polish spaces are Borel, see e.g. [6,
theorem 15.1]). We identify C(X) with its image via j in Lp(X,µ) and write,
with abuse of notation, C(X) ⊆ Lp(X,µ).

If X is not compact we do not have this inclusion, but it is still worth
studying C(X) ∩ Lp(X,µ) as a subspace of Lp(X,µ).

Lemma 3.1. Suppose X is Polish and µ is a σ-finite Borel measure on X non-
vanishing on open sets. Suppose also there exists x0 ∈ X such that µ({x0}) = 0
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and for some open neighborhood U of x0, 0 < µ(U) < ∞. Then C(X) ∩
Lp(X,µ) is Π0

3-hard in Lp(X,µ).

Proof. Fix a complete compatible metric d for X; it follows from the hy-
pothesis that 0 < µ(B(x0; r0)) < ∞ for some r0 > 0. This implies that
limr→0 µ(B(x0; r)) = 0 and we can choose r0 > r1 > · · · such that the se-
quence (µ(B(x0; rn)))n is strictly decreasing and converging to 0: we may
assume that for every n there exists yn such that d(yn, x0) = rn. Moreover,
since µ is non-vanishing on open sets, limn rn = 0.

We show that c (see 1.1) is Wadge reducible to C(X) ∩ Lp(X,µ). For
(zn) ∈ IN let z−1 = 0 and define f(zn) : X → R to be equal to 0 on x0

and outside the ball B(x0; r0), equal to zn on the surface of B(x0; rn+1), and
extended by linearity on the other points:

f(zn)(x) =


0 if d(x, x0) ≥ r0 or x = x0;
tzn + (1− t)zn−1 if rn+1 ≤ d(x, x0) ≤ rn and

d(x, x0) = rn − t(rn − rn+1).

Then f(zn) is bounded and continuous at every x 6= x0; hence f(zn) ∈ Lp(X,µ).
Moreover, since limµ(B(x0; rn)) = 0 and |f(zn)(x)| ≤ 1 for every x, the map
IN → Lp(X,µ), (zn) 7→ f(zn), is continuous.

Obviously (zn) ∈ c if and only if limx→x0 f(zn)(x) exists. Therefore, if
(zn) ∈ c, then f(zn) ∈ C(X) ∩ Lp(X,µ), since the function obtained from
f(zn) by assigning value limx→x0 f(zn)(x) to x0 is µ-a.e. equal to f(zn) and
continuous.

On the other hand, if (zn) /∈ c let ε = lim sup zn − lim inf zn > 0. For
every n let Wn be an open neighborhood of yn such that |f(zn)(w)− zn| < ε/3
for every w ∈ Wn. Let g be µ-a.e. equal to f(zn). Since µ is non-vanishing
on open sets for every n, there exists wn ∈ Wn such that g(wn) = f(zn)(wn).
Therefore lim sup g(wn)− lim inf g(wn) ≥ ε/3. Since limwn = x0, g cannot be
continuous at x0 and f(zn) /∈ C(X) ∩ Lp(X,µ).

Lemma 3.2. Let X be a compact Polish space and µ a σ-finite Borel measure
on X non-vanishing on open sets. Then C(X) is Π0

3 in Lp(X,µ).

Proof. Let d be a compatible metric on X. For f ∈ Lp(X,µ) we claim that
f ∈ C(X) if and only if

∀ε > 0 ∃δ > 0 ∀∗µx, y ∈ X(d(x, y) < δ =⇒ |f(x)− f(y)| ≤ ε). (1)

Using Lemma 2.1 this equivalence implies that C(X) is Π0
3.
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One direction of the equivalence is almost immediate. If f is equal µ-a.e.
to a continuous function g, then g is uniformly continuous and hence for every
ε there exists δ such that d(x, y) < δ implies |g(x) − g(y)| ≤ ε. This implies
that

∀∗µx, y(d(x, y) < δ =⇒ |f(x)− f(y)| ≤ ε).

For the other direction suppose f ∈ Lp(X,µ) satisfies (1). Let δn be the δ
corresponding to ε = 2−n. Then

Zn =
{
x ∈ X | ∃∗µy ∈ X(d(x, y) < δn & |f(x)− f(y)| > 2−n)

}
has measure 0. Therefore T = X \

⋃
n Zn is such that µ(X \T ) = 0 and hence,

since µ is non-vanishing on open sets, T is dense in X. It suffices to show that
f is uniformly continuous on T (in this case for every x ∈ X \ T the limit of
f(y) for y ∈ T and y → x exists, and these limits provide the definition of a
function continuous on X which is equal to f on T ).

To complete the proof we show that if x1, x2 ∈ T are such that d(x1, x2) <
δn+1, then |f(x1) − f(x2)| ≤ 2−n. As U = B(x1; δn+1) ∩ B(x2; δn+1) 6= ∅ is
open we have µ(U) > 0. As xi /∈ Zn+1

∀∗µy ∈ U |f(xi)− f(y)| ≤ 2−n−1.

Thus there exists y ∈ U such that |f(xi)− f(y)| ≤ 2−n−1 for i = 1, 2. Hence

|f(x1)− f(x2)| ≤ |f(x1)− f(y)|+ |f(y)− f(x2)| ≤ 2−n,

as claimed.

Lemma 3.2 has been shown independently by H. Becker with a somewhat
different proof (personal communication).

Theorem 3.3. Let X be a compact Polish space, µ a finite Borel measure
on X non-vanishing on open sets and suppose there exists x0 ∈ X such that
µ({x0}) = 0. Then C(X) is Π0

3-complete in Lp(X,µ).

Proof. Immediate from Lemmas 3.1 and 3.2.

The assumptions on the finiteness of the measure and on the compactness
of the space can be relaxed.

Theorem 3.4. Let X be locally compact Polish, µ a σ-finite Borel measure on
X non-vanishing on open sets which is finite on compact sets. Suppose there
exists x0 ∈ X such that µ({x0}) = 0. Then C(X) ∩ Lp(X,µ) is Π0

3-complete
in Lp(X,µ).
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Proof. The hypotheses of Lemma 3.1 hold and hence C(X) ∩ Lp(X,µ) is
Π0

3-hard.
To show that C(X) ∩ Lp(X,µ) is Π0

3 let X =
⋃
nKn where each Kn

is compact and every compact subset of X is contained in some Kn (see
Definition 1.2). If f ∈ Lp(X,µ), the cofinality of the Kn’s within K(X) implies
that f ∈ C(X) if and only if f � Kn is continuous for every n, if and only if
f � Int(Kn) is continuous for every n. (Here Int(A) denotes the interior of the
set A.) Then for f ∈ Lp(X,µ) we have f ∈ C(X) if and only if for all n and
every ε > 0 there exists δ > 0 such that

∀∗µx, y ∈ X(x, y ∈ Int(Kn) & d(x, y) < δ =⇒ |f(x)− f(y)| ≤ ε).

The proof of this equivalence is analogous to the proof of the similar equiva-
lence in lemma 3.2. Lemma 2.1 implies that C(X) ∩ Lp(X,µ) is Π0

3.

Corollary 3.5. C(I) is Π0
3-complete in Lp(I), and C(R) ∩ Lp(R) is Π0

3-
complete in Lp(R). (Both Lp’s are taken with respect to Lebesgue measure.)

We can also turn the problem around and consider C(X) ∩ Lp(X,µ) as a
subspace of C(X) with the compact-open topology.

Lemma 3.6. Let X be Polish locally compact and non-compact, and let µ be a
σ-finite Borel measure on X, non-vanishing on open sets and finite on compact
sets. Then C(X) ∩ Lp(X,µ) is Σ0

2-complete in C(X) with the compact-open
topology.

Proof. Let X =
⋃
nKn, with Kn ∈ K(X), Kn ⊆ Kn+1, the Kn’s cofinal in

K(X), and Int(Kn+1 \ Kn) 6= ∅. Recall that the compact open topology on
C(X) is generated by the metric

d(f, g) =
∑
n

2−n
sup { |f(x)− g(x)| | x ∈ Kn }

sup { |f(x)− g(x)| | x ∈ Kn }+ 1
.

For f ∈ C(X) we have

f ∈ Lp(X,µ) ⇐⇒ ∃M ∀n
∫
Kn

|f |p dµ ≤M,

and since for every compact K the map C(X) → R, f 7→
∫
K
|f |p dµ, is con-

tinuous, then Lp(X,µ) ∩ C(X) is Σ0
2.

Given any f ∈ C(X) and any n we can find g, h ∈ C(X) agreeing with f
on Kn and such that g ∈ Lp(X,µ), and h /∈ Lp(X,µ). Hence C(X)∩Lp(X,µ)
and C(X) \ Lp(X,µ) are both dense in C(X). Arguing as in the proof of
Theorem 2.2 C(X) ∩ Lp(X,µ) is Σ0

2-complete.
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To show that some topological hypothesis on X is necessary in Theorem 3.4
we will show that if X is Polish not σ-compact (which is only slightly stronger
than being not locally compact), then C(X) ∩ Lp(X,µ) is Π1

1-complete in
Lp(X,µ).

First we obtain the following quite general upper bound for the complexity
of C(X) ∩ Lp(X,µ) within Lp(X,µ):

Lemma 3.7. Let X be a Polish space and µ a σ-finite Borel measure on X.
Then C(X) ∩ Lp(X,µ) is Π1

1 in Lp(X,µ).

Proof. Let X ′ be the set of all elements of X such that µ assigns positive
measure to any open neighborhood of x. Notice that X ′ is closed in X and
µ(X \X ′) = 0. The map Lp(X,µ)→ Lp(X ′, µ), f 7→ f � X ′, is a homeomor-
phism and its restriction to C(X)∩Lp(X,µ) is onto C(X ′)∩Lp(X ′, µ) by the
Tietze extension theorem. Hence it suffices to show that C(X ′)∩Lp(X ′, µ) is
Π1

1 in Lp(X ′, µ). Therefore we may assume that µ is non-vanishing on open
sets.

Let d be a complete metric on X and let f ∈ Lp(X,µ). We claim that
f ∈ C(X) ∩ Lp(X,µ) if and only if

∀x ∈ X ∃!r ∈ R ∀ε > 0 ∃δ > 0 ∀∗µy ∈ X(d(x, y) < δ =⇒ |f(y)− r| ≤ ε). (2)

Using Lemma 2.1 and the well known fact that ∃! in front of a Borel matrix
behaves as a universal quantifier (see e.g. [6, theorem 18.11]), the claim suffices
to prove the lemma.

If f ∈ C(X) ∩ Lp(X,µ), then f is equal µ-a.e. to a unique continuous
function g. For any x ∈ X let r = g(x) and, given ε let δ be such that ∀y ∈
X(d(x, y) < δ =⇒ |g(y)−r| ≤ ε). Then ∀∗µy(d(x, y) < δ =⇒ |f(y)−r| ≤ ε).
Since µ is non-vanishing on open sets, no other r could work for x and hence
(2) is satisfied.

Now suppose f ∈ Lp(X,µ) satisfies (2) and define g : X → R by letting
g(x) be the unique r given by (2). We claim that f = g µ-a.e. and that g is
continuous, so that f ∈ C(X) ∩ Lp(X,µ).

Suppose f 6= g on a set of positive measure. Then for some ε > 0 we have
that for a set E with µ(E) > 0, |f(x) − g(x)| ≥ 2ε for every x ∈ E. Since
f can be assumed to be Borel measurable, there exists a Borel set E′ ⊆ E
with µ(E′) > 0 such that f � E′ is continuous ([6, theorem 17.12]). For every
x ∈ E′ there exists δx > 0 such that for every y ∈ E′ with d(x, y) < δx we
have |f(y) − f(x)| < ε. If δx is small enough, using (2) and the definition of
g, we have

∀∗µy(d(x, y) < δx =⇒ |f(y)− g(x)| ≤ ε).
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Using the fact that E′ is a Lindelöf space it follows that µ(E′ ∩B(x; δx)) > 0
for some x ∈ E′. Fix such an x and let

F = E′ ∩B(x; δx) ∩ { y | |f(y)− g(x)| ≤ ε } ,

so that µ(F ) > 0. Then if y ∈ F we have d(x, y) < δx, y ∈ E′ and |f(y) −
g(x)| ≤ ε. Therefore

|f(x)− g(x)| ≤ |f(x)− f(y)|+ |f(y)− g(x)| < 2ε,

against x ∈ E′ ⊆ E which implies |f(x)− g(x)| ≥ 2ε. Therefore f = g µ-a.e.
Now suppose g is not continuous at some x ∈ X. There exist ε > 0 and a

sequence (xn) converging to x such that |g(xn) − g(x)| > 2ε for every n. By
(2) there exists δ > 0 such that

∀∗µy(d(x, y) < δ =⇒ |f(y)− g(x)| ≤ ε).

Let n be such that d(xn, x) < δ/2 and (again by (2) and the definition of g)
let δn < δ/2 be such that

∀∗µy(d(xn, y) < δn =⇒ |f(y)− g(xn)| ≤ ε).

Notice that d(xn, y) < δn implies d(x, y) < δ and let

Dn = { y | d(xn, y) < δn & |f(y)− g(xn)| ≤ ε & |f(y)− g(x)| ≤ ε } ,

so that µ(Dn) > 0. If y ∈ Dn, then |f(y) − g(xn)| ≤ ε and |f(y) − g(x)| ≤ ε
which imply |g(xn)− g(x)| ≤ 2ε, a contradiction.

In the proof of the next theorem we will have to deal with the Baire space
NN and use the following notation. N<N is the set of all finite sequences of
natural numbers; if α ∈ NN is an infinite sequence of natural numbers, then
α � n ∈ N<N is the finite initial segment of α with length n.

Theorem 3.8. Let X be a Polish space which is not σ-compact and µ a
finite Borel measure on X which is non-vanishing on open sets. Then C(X)∩
Lp(X,µ) is Π1

1-complete in Lp(X,µ).

Proof. By Lemma 3.7 C(X) ∩ Lp(X,µ) is Π1
1 in Lp(X,µ). By Hurewicz

theorem ([6, theorem 7.10]) there exists a set F ⊆ X which is closed in X and
homeomorphic to NN. We identify F with NN. Furthermore we may assume
that F is nowhere dense in X. If this were not the case we can substitute F
with its closed and nowhere dense subset {α ∈ F | ∀n α(2n) = 0 }, which is
still homeomorphic to NN.



296 Alessandro Andretta and Alberto Marcone

Fix a complete metric d on X. It is the metric we use when we speak of
the diameter of a subset of X. Also fix a bijection # : N<N → N and, for
every s ∈ N<N, denote by s∗ a fixed element of NN which extends s (e.g. s
concatenated with infinitely many 0’s). For every s ∈ N<N we define an open
set Ws such that

i) Ws has at least two elements;

ii) diam(Ws) < 2−#(s);

iii) the sets Ws are pairwise disjoint;

iv) d(s∗,Ws) < 2−#(s) (here s∗ is viewed as an element of F );

v) the closure of Ws is disjoint from F .

To see that this construction is possible we proceed by induction on #(s).
Assume we have defined Wt for all t ∈ N<N with #(t) < #(s). Since s∗ is
not in the closure of

⋃
#(t)<#(s)Wt, there is an open neighborhood Us of s∗

with diameter less than 2−#(s) which is disjoint from
⋃

#(t)<#(s)Wt. Since F
is nowhere dense, Us \ F contains at least two points and we can define Ws

as the union of two open neighborhoods of these points which are contained
in Us and have positive distance from F . It is immediate to check that Ws

satisfies i)-v).
Notice that for every ε > 0 there is a finite number of s such that Ws has

measure greater than ε. This follows from the finiteness of µ and the fact that
the Ws’s are pairwise disjoint.

Let (sn) be a sequence of distinct elements of N<N; then lim #(sn) = +∞
and hence, if xn ∈ Wsn

for every n and limxn = x, then x ∈ F . In fact
d(s∗n, xn) < 2−#(sn) → 0, so x = lim s∗n ∈ F .

For every s ∈ N<N define a continuous function fs : X → [0, 1] such that
fs = 0 outside Ws, and fs takes the values 0 and 1 on elements of Ws. Such a
function exists by i) and the Tietze extension theorem. Suppose now that Y
is a Polish space and A ⊆ Y is Σ1

1. We will define a continuous function Y →
Lp(X,µ), y 7→ gy, such that y /∈ A if and only if gy ∈ C(X) ∩ Lp(X,µ). This
shows Y \A ≤W C(X) ∩ Lp(X,µ) and completes the proof. For every y ∈ Y ,
gy is of the form

∑
s∈N<N hs(y)fs where each hs : Y → [0, 1] is continuous.

Notice that this implies that the range of gy is contained in [0, 1]. To define
hs fix a compatible metric d′ on Y and let ϕ : NN → A be a continuous onto
map (ϕ exists because A is Σ1

1). Let

δs(y) = inf { d′(ϕ(α), y) | α extends s } ,
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and define hs(y) =
1

1 + #(s)δs(y)
. It is easy to check that gy ∈ Lp(X,µ)

and that y 7→ gy is continuous. (This uses the fact noted above that only
finitely many Ws’s have measure greater than a given ε > 0.) Moreover gy is
a continuous function on X \ F for every y ∈ Y .

If gy fails to be continuous at some α ∈ F , then (since gy(α) = 0), there
exists a sequence (xn) with limxn = α and gy(xn) ≥ η > 0. This implies
that for every n there exists sn ∈ N<N such that xn ∈ Wsn

and hsn
(y) ≥ η.

Clearly lim s∗n = α and by v) we may assume that the sn’s are all distinct.
Since lim #(sn) = +∞, we have lim δsn(y) = 0. From lim δsn(y) = d′(ϕ(α), y)
it follows that ϕ(α) = y, i.e. y ∈ A. Therefore if y /∈ A, then gy ∈ C(X) ∩
Lp(X,µ).

If y ∈ A, let g be a function which is µ-a.e. equal to gy and fix α ∈ NN

such that ϕ(α) = y. For every n let sn = α � n, so that δsn
(y) = 0 and for

every x ∈ Wsn
we have gy(x) = fsn

(x). For every n let V 0
n , V

1
n ⊆ Wsn

be
nonempty open sets such that fsn(x) < 1

4 for every x ∈ V 0
n and fsn

(x) > 3
4

for every x ∈ V 1
n . Since µ(V in) > 0 (because µ is non-vanishing on open sets),

there exists xin ∈ V in such that g(xin) = gy(xin) = fsn
(xin). xin ∈ Wsn

implies
that limxin = α for i = 0, 1. Since xin ∈ V in, it follows that g is not continuous
at α. Therefore if y ∈ A, then gy /∈ C(X) ∩ Lp(X,µ).

The crucial idea in the preceding proof is due to the anonymous referee.
In an earlier draft we could only prove Theorem 3.8 under more specific as-
sumptions, i.e. when X = NN or X is an infinite-dimensional separable Banach
space.

Theorem 3.8 can be improved by relaxing the hypothesis that the measure
is finite. It suffices to assume that µ (beside being non-vanishing on open
sets) is σ-finite and that limε→0 µ(B(x; ε)) = 0 for every x ∈ X. The proof is
essentially the same, but we require that Ws satisfies the additional condition
µ(Ws) < 2−#(s). This can be achieved because each point of X has neighbor-
hoods with arbitrarily small positive measure. Therefore also in this case only
finitely many Ws’s have measure greater than a given ε > 0, and this was the
only consequence of the finiteness of µ which was actually used in the proof.

4 Differentiable and Integrable Functions in Lp(R)

As usual, let 1 ≤ p < ∞. Throughout this section we will use the Lebesgue
measure on I and R, which we denote by m, but actually any Borel measure
non-vanishing on open sets which is finite on compact sets will work in the
same way. Similarly the results in this section can be generalized to the case
of several variables.
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We start with an extension of Corollary 3.5. Consider, for k = 1, 2, . . . ,∞,
Ck(I) as a subset of Lp(I) and Ck(R) ∩ Lp(R) as a subset of Lp(R). In this
context Ck(I) (and similarly Ck(R)) is the space of Lp(I) functions which are
m-a.e. equal to a (necessarily unique) k-times continuously differentiable real
valued function defined on I.

Lemma 4.1. For every k = 1, 2, . . . ,∞, Ck(I) is Π0
3-hard in Lp(I) and

C∞(R) ∩ Lp(R) is Π0
3-hard in Lp(R).

Proof. Notice that the proof of theorem 23.14 of [6] shows that C∞(I) is
Π0

3-hard in C(I) and can be easily converted to a proof that the set C∞(R)∩
{ f ∈ C(R) | Supp(f) ⊆ I } is Π0

3-hard in { f ∈ C(R) | Supp(f) ⊆ I } (as usual
Supp(f) denotes the support of f).

As noticed at the beginning of section 3, C(I) (with the topology of the
sup norm) continuously embeds in Lp(I) and therefore, by the same token,
{ f ∈ C(R) | Supp(f) ⊆ I } continuously embeds in Lp(R). Therefore any Π0

3-
hard subset of C(I) is also Π0

3-hard in Lp(I) (and the same holds for Lp(R)),
and the case k =∞ is proved.

If k <∞ the same sort of argument applies but, since in [6, theorem 23.14]
this part of the proof is left to the reader, we provide some more details and
show that c0 ≤W Ck(I). For every n let gn be a C∞ function defined on
I with Supp(gn) ⊆ (2−n−1, 2−n) such that sup

{
|g(k)
n (x)| | x ∈ I

}
= 1 and

therefore ∀h < k sup
{
|g(h)
n (x)| | x ∈ I

}
≤ 2−n(k−h). For every (yn) ∈ IN let

f(yn)(x) =
∑
n yngn(x). It is clear that the map IN → Lp(I), (yn) 7→ f(yn) is

continuous. It is also easy to check that f(yn) ∈ Ck−1(I), and that f(yn) is Ck

on I \ {0}, for every (yn) ∈ IN. It is now clear that

f(yn) ∈ Ck(I) ⇐⇒ f
(k)
(yn)(0) exists and f

(k)
(yn) is continuous at 0

⇐⇒ lim
x→0

f
(k)
(yn)(x) = 0

⇐⇒ (yn) ∈ c0.

The above proof shows also that c0 ≤W Ck(R) ∩ Lp(R): it suffices to let
f(yn)(x) = 0 for x /∈ I.

Now we take care of the upper bound. To this end we need to express the
k-th derivative in terms of the original function. This is accomplished by a
calculus exercise resulting in the following lemma.
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Lemma 4.2. If k ≥ 1 and f ∈ Ck−1(I), then for every x ∈ I we have

f (k)(x) = lim
y1→x

· · · lim
yk→x

∑
S⊆{1,...,k}

(−1)k−|S|f

(∑
i∈S

yi − (|S| − 1)x

)
k∏
i=1

(yi − x)

, (3)

i.e. either both sides exist and are equal or both sides do not exist.

Proof. The proof is by induction on k. For k = 1 the right hand side of (3)

is just limy1→x
f(y1)− f(x)

y1 − x
.

Now assume the lemma holds for k and let f ∈ Ck(I); then f ′ ∈ Ck−1(I)
and we can apply the induction hypothesis to f ′. We have

f (k+1)(x) = (f ′)(k)(x)

= lim
y1→x

· · · lim
yk→x

∑
S⊆{1,...,k}

(−1)k−|S|f ′
(∑
i∈S

yi − (|S| − 1)x

)
k∏
i=1

(yi − x)

.

Fix S ⊆ {1, . . . , k}

f ′

(∑
i∈S

yi − (|S| − 1)x

)

= lim
yk+1→x

f

(∑
i∈S

yi − (|S| − 1)x+ yk+1 − x

)
− f

(∑
i∈S

yi − (|S| − 1)x

)
yk+1 − x

= lim
yk+1→x

f

(∑
i∈S′

yi − (|S′| − 1)x

)
− f

(∑
i∈S

yi − (|S| − 1)x

)
yk+1 − x

where S′ = S ∪ {k + 1}. Hence f (k+1)(x) equals

lim
y1→x

. . . lim
yk→x

lim
yk+1→x

∑
T⊆{1,...,k+1}

(−1)k+1−|T |f

(∑
i∈T

yi − (|T | − 1)x

)
k+1∏
i=1

(yi − x)

.
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Lemma 4.3. For every k = 1, 2, . . . ,∞, Ck(I) is Π0
3 in Lp(I).

Proof. First of all notice that the case k = ∞ follows from the other cases
because C∞(I) =

⋂
k C

k(I) and Π0
3 is closed under countable intersections.

For k <∞ the proof is by induction on k and we start with the case k = 1.
Let f ∈ Lp(I). We claim that f ∈ C1(I) if and only if f ∈ C(I) and for

all ε > 0 there exists δ > 0 such that

∀∗mx, y, z
(

0 < |x− y|, |x− z| < δ =⇒
∣∣∣∣f(x)− f(y)

x− y
− f(x)− f(z)

x− z

∣∣∣∣ ≤ ε) .
(4)

The result follows from this equivalence, using Corollary 3.5 and Lemma 2.1.
To prove the forward direction of the equivalence suppose f is a Borel

function such that (its equivalence class) belongs to Lp(I) and to C1(I) ⊆
C(I). Let ε > 0 and let g be the unique continuously differentiable function
which is a.e. equal to f . Since I is compact, there exists δ > 0 such that for

every x, y ∈ I with 0 < |x− y| < δ we have
∣∣∣∣g′(x)− g(x)− g(y)

x− y

∣∣∣∣ ≤ ε

2
. Then

∀x, y, z
(

0 < |x− y|, |x− z| < δ =⇒
∣∣∣∣g(x)− g(y)

x− y
− g(x)− g(z)

x− z

∣∣∣∣ ≤ ε)
and hence (using m({x | f(x) 6= g(x) }) = 0)

∀∗mx, y, z
(

0 < |x− y|, |x− z| < δ =⇒
∣∣∣∣f(x)− f(y)

x− y
− f(x)− f(z)

x− z

∣∣∣∣ ≤ ε) .
Now assume that (the equivalence class of) f belongs to C(I) and for all

ε there exists δ satisfying (4). Let g be the unique continuous function which
is a.e. equal to f . Notice that f ∈ C1(I) if and only if g is continuously
differentiable. We have that for all ε there exists δ such that

∀∗mx, y, z
(

0 < |x− y|, |x− z| < δ =⇒
∣∣∣∣g(x)− g(y)

x− y
− g(x)− g(z)

x− z

∣∣∣∣ ≤ ε)
which, by the continuity of g, implies

∀x, y, z
(

0 < |x− y|, |x− z| < δ =⇒
∣∣∣∣g(x)− g(y)

x− y
− g(x)− g(z)

x− z

∣∣∣∣ ≤ ε) .
This implies that limy→x

g(x)− g(y)
x− y

converges uniformly in x to a continuous

function g′(x); i.e., that g is continuously differentiable.
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If 1 < k < ∞, we need to generalize appropriately (4). By a proof
analogous to the one for k = 1, using Lemma 4.2, it turns out that, for
f ∈ Lp(I), f ∈ Ck(I) if and only if f ∈ Ck−1(I) and for all ε > 0 there
exists δ > 0 such that for m-almost all x, y1, . . . , yk, z1, . . . , zk ∈ I, if 0 <
|x− y1|, . . . , |x− yk|, |x− z1|, . . . , |x− zk| < δ, then the absolute value of the
difference between

∑
S⊆{1,...,k}

(−1)k−|S|f

(∑
i∈S

yi − (|S| − 1)x

)
k∏
i=1

(yi − x)

and

∑
S⊆{1,...,k}

(−1)k−|S|f

(∑
i∈S

zi − (|S| − 1)x

)
k∏
i=1

(zi − x)

is less than or equal to ε.
The result follows from this equivalence, using the the induction hypothesis

(asserting that Ck−1(I) is Π0
3) and Lemma 2.1.

Theorem 4.4. For every k = 1, 2, . . . ,∞, Ck(I) is Π0
3-complete in Lp(I).

Proof. Immediate from Lemmas 4.1 and 4.3.

Theorem 4.5. For every k = 1, 2, . . . ,∞, Ck(R) ∩ Lp(R) is Π0
3-complete in

Lp(R).

Proof. The hardness part is contained in Lemma 4.1. For k < ∞ to show
that Ck(R)∩Lp(R) is Π0

3 we can modify the proof of Theorem 4.3 exactly as
to prove the analogous part of theorem 3.4 we modified the proof of Lemma
3.2. Then C∞(R) ∩ Lp(R) =

⋂
k C

k(R) ∩ Lp(R) is also Π0
3.

Let DIFF(I) and DIFF(R) be the set of all continuous functions (on I or
R, respectively) which are m-a.e. equal to a (necessarily unique) everywhere
differentiable function.

Theorem 4.6. DIFF(I) is Π1
1-complete in Lp(I) and DIFF(R) ∩ Lp(R) is

Π1
1-complete in Lp(R).
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Proof. The set of everywhere differentiable functions on I is Π1
1-complete

in C(I) by a classical theorem of Mazurkiewicz (see e.g. [6, theorem 33.9]).
Arguing as in the proof of Lemma 4.1, this implies that DIFF(I) is Π1

1-hard
in Lp(I) and DIFF(R) ∩ Lp(R) is Π1

1-hard in Lp(R).
To prove that the two sets are also Π1

1 we claim that for f ∈ Lp(R) we
have that f ∈ DIFF(R) if and only if for all x ∈ R there exists a unique pair
(r0, r1) ∈ R2 such that

∀ε ∃δ ∀∗my ∈ R
(
|y − x| < δ =⇒ |f(y)− r0| ≤ ε &

∣∣∣∣f(y)− r0
y − x

− r1
∣∣∣∣ ≤ ε) .

The latter condition is Π1
1 and an argument analogous to the one of the proof

of Lemma 3.7 shows that the claim holds, completing the proof.

Let RIEM(I) and RIEM(R) be the set of all functions (on I or R, respec-
tively) which are m-a.e. equal to a (non-unique) Riemann integrable function.
Notice that with this definition some of the classical examples of non-Riemann
integrable functions, such as the Dirichlet function which takes value 1 on Q
and 0 elsewhere, do belong to RIEM(R).

Theorem 4.7. RIEM(I) ∩ Lp(I) is Π0
3-complete in Lp(I) and RIEM(R) ∩

Lp(R) is Π0
3-complete in Lp(R).

Proof. If f ∈ Lp(I), then f ∈ RIEM(I) if and only if for all ε > 0 there
exist three finite sequences of real numbers, (ri)i=0,...,n+1, (mi)i=0,...,n, and
(Mi)i=0,...,n, such that 0 = r0 < r1 < · · · < rn+1 = 1,

n∑
i=0

(ri+1 − ri)(Mi −mi) ≤ ε

and
∀i ≤ n ∀∗mx ∈ I (ri < x < ri+1 =⇒ mi ≤ f(x) ≤Mi) .

Using Lemmas 2.1 and 2.3 as in the proof of Theorem 2.2 this shows that
RIEM(I) ∩ Lp(I) is Π0

3 in Lp(I).
To obtain the upper bound for RIEM(R) ∩ Lp(R) let f ∈ Lp(R); then

f ∈ RIEM(R) if and only if f ∈ L1(R) and f ∈ RIEM([−n, n]) for every n.
Thus Theorem 2.4 and the above result about I (which obviously holds for
every bounded closed interval) imply that RIEM(R) ∩ Lp(R) is Π0

3 in Lp(R).
To show that RIEM(I)∩Lp(I) is Π0

3-hard we show that c0 ≤W RIEM(I)∩
Lp(I) by defining a map IN → Lp(I), (zn) 7→ f(zn). First of all let us fix a
Cantor set of positive measure C ⊆ I. This can be obtained by modifying a
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bit the standard construction of the usual Cantor 1/3-set so that we remove
smaller portions of the intervals as the construction progresses. Let us denote
by An the set removed at stage n (so that An consists of 2n disjoint open
intervals and C = I \

⋃
nAn). Let also D be the countable set of all the

endpoints of the intervals appearing in some An.
For every (zn) ∈ IN define f(zn) : I → R by

f(zn)(x) =

{
0 if x ∈ C,
zn if x ∈ An.

Since C and the An’s are Borel, it is immediate that f(zn) ∈ Lp(I) holds.
To check that (zn) ∈ c0 if and only if f(zn) ∈ RIEM(I) we use the classical

fact (see e.g. [7, theorem 11.33]) that a bounded real-valued function f defined
on I is Riemann integrable if and only the set of points of discontinuity of f
has measure 0. Thus we need to check the continuity of f(zn) on I and, since
m(D) = 0, we can disregard the points in D. Moreover f(zn) is continuous at
every point of

⋃
nAn and we can focus on the points in C \D, which is a set

of positive measure. Fix x ∈ C \D. Notice that every open neighborhood of
x intersects every An for n large enough. Conversely, given N we can find an
open neighborhood of x which intersects only the An’s with n > N . These
facts imply that f(zn) is continuous at x if and only if (zn) ∈ c0. Since this
holds for every point of a set of positive measure, f(zn) is Riemann integrable
if and only if (zn) ∈ c0. Since each An has positive measure, every function
which is m-a.e. equal to f(zn) with (zn) /∈ c0 is also discontinuous at almost
every x ∈ C \D (in fact, at every x ∈ C \D) and hence (zn) ∈ c0 if and only
if f(zn) ∈ RIEM(I).

The above proof that RIEM(I) ∩ Lp(I) is Π0
3-hard can easily be turned

into a proof that RIEM(R)∩Lp(R) is Π0
3-hard (just define f(zn)(x) = 0 when

x /∈ I), completing the proof of the theorem.

5 C(X) and its Subspaces with the Compact-Open Topol-
ogy

If X is locally compact Polish, then the compact-open topology makes C(X)
a separable Frechet space; i.e., a vector space whose topology is induced by a
complete metric. In particular C(X) is a Polish group. For various purposes
different subsets (which are usually also vector spaces, and in particular sub-
groups) of C(X) are of interest. In general these are not Polish (as it will
follow from our results, using the fact that a subset of a Polish space is Polish
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if and only if it is Π0
2) with the induced compact-open topology, but some of

them come equipped with their own Polish topology.

Definition 5.1. If X is Polish locally compact, let C00(X) = {f ∈ C(X) | f
has compact support} equipped with the sup metric and let C0(X) be the
completion of C00(X). C0(X) is Polish (with respect to the sup metric) and
its elements are called functions vanishing at infinity.

The above terminology is justified by the fact that f ∈ C0(X) if and only
if f ∈ C(X) and for every ε > 0 the set of points such that |f(x)| ≥ ε has
compact closure.

The following lemmas imply also that neither C00(X) nor C0(X) is Polish
with the topology inherited from C(X), unless X is compact (in which case
C00(X) = C0(X) = C(X)).

Theorem 5.2. If X is Polish locally compact and not compact, then C00(X)
is Σ0

2-complete as a subset of C(X).

Proof. Let (Kn) ⊆ K(X) be a decomposition of X as described in the in-
troduction; we may also assume K0 = ∅. For f ∈ C(X) we have f ∈ C00(X)
if and only if ∃n ∀x /∈ Kn f(x) = 0. Since { f ∈ C(X) | f � (X \Kn) = 0 } is
clearly closed within C(X), we have that C00(X) is Σ0

2.
To see that C00(X) is Σ0

2-hard we use Q2 (see 1.1). For every n let yn be an
element of the interior of Kn+1 \Kn. Since the Kn’s are cofinal in K(X), the
sequence (yn) has no cluster points. We define a continuous map 2N → C(X),
α 7→ fα, showing Q2 ≤W C00(X). For every n let Ln = Kn ∪ (X \Kn+1) and
ηn = d(yn, Ln) > 0. Given x ∈ X let n(x) be the least n such that x ∈ Kn+1

and let

fα(x) =
min(ηn(x), d(x, Ln(x)))

ηn(x)
· α(n(x)).

It is easy to check that fα is continuous (on the boundary of each Kn takes
value 0) and that α 7→ Fα is continuous. Since fα(yn) = α(n), for every n it
follows that fα ∈ C00(X) if and only if α ∈ Q2.

Remark 5.3. A slight variant of the proof of Theorem 5.2 (in which we
replace α(n(x)) with α(n(x))

n(x)+1 in the definition of fα) shows also that if X is
Polish, then C00(X) is Σ0

2-complete as a subset of C0(X).

Theorem 5.4. If X is Polish locally compact and not compact, then C0(X)
is Π0

3-complete as a subset of C(X).
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Proof. Let Kn be as in the proof of Theorem 5.2 and fix a countable dense
set D ⊆ X. If f ∈ C(X) we have that f ∈ C0(X) is equivalent to

∀ε > 0 ∃n ∀x ∈ D(x /∈ Kn =⇒ |f(x)| ≤ ε).

This shows that C0(X) is Π0
3.

To see that it is Π0
3-hard we use c0 (see 1.1) and follow the notation of the

proof of theorem 5.2. We map continuously each (xk) ∈ IN to the function
f(xk) ∈ C(X) defined by

f(xk)(x) =
min(ηn(x), d(x, Ln(x)))

ηn(x)
· xn(x).

This shows that c0 ≤W C0(X) and completes the proof.

We can also consider C00(X) and C0(X) as subspaces of Lp(X,µ).

Theorem 5.5. Let X be Polish locally compact and µ a Borel measure on
X non-vanishing on open sets and finite on compact sets. Suppose also there
exists x0 ∈ X such that µ({x0}) = 0. Then C00(X) and C0(X)∩Lp(X,µ) are
Π0

3-complete in Lp(X,µ).

Proof. For f ∈ Lp(X,µ) we have

f ∈ C00(X) ⇐⇒ f ∈ C(X) & ∃n
∫
X\Kn

|f |p dµ = 0.

By Theorem 3.4 C(X) is Π0
3. Hence C00(X) is the intersection of a Π0

3 and a
Σ0

2 set, and is Π0
3. The reduction in the proof of Lemma 3.1 actually shows

that C00(X) is Π0
3-hard in Lp(X,µ).

Fix a countable basis {Um} for the topology of X. We may assume that
every Um is included in some Kn and hence has finite measure. For f ∈
Lp(X,µ) we have f ∈ C0(X) if and only if

f ∈ C(X) & ∀ε > 0 ∃n ∀m
(
Um ∩Kn = ∅ =⇒

∫
Um

|f |p dµ ≤ εp · µ(Um)
)
.

As the map f 7→
∫
Um
|f |p dµ is continuous, C0(X) is the intersection of two

Π0
3 sets and hence it is Π0

3. The reduction in the proof of Lemma 3.1 shows
also that C0(X) ∩ Lp(X,µ) is Π0

3-hard in Lp(X,µ).

A generalization of C0(X) is given by the following definition.
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Definition 5.6. If X is Polish locally compact let Cc(X) be the set of all
f ∈ C(X) such that there exists L ∈ R such that for every ε > 0 there exists
K ∈ K(X) such that for every x /∈ K we have |f(x) − L| < ε. The elements
of Cc(X) are called functions constant at infinity. The sup metric can be
used also to make Cc(X) a Polish space (homeomorphic to C0(X)×R via the
obvious bijection).

Theorem 5.7. If X is Polish locally compact and not compact, then Cc(X)
is Π0

3-complete as a subset of C(X).

Proof. Let Kn, yn and D be as in the proof of Theorem 5.4. To see that
Cc(X) is Π0

3 notice that if f ∈ C(X) we have that f ∈ Cc(X) is equivalent to

∀ε > 0 ∃n ∈ N ∀x, y ∈ D(x, y /∈ Kn =⇒ |f(x)− f(y)| ≤ ε).

To prove that Cc(X) is Π0
3-hard notice that the reduction used in the proof

of theorem 5.4 shows that c ≤W Cc(X).

A further extension of Cc(X) is the set Cb(X) of all f ∈ C(X) such that f
is bounded. The sup metric can be used also in Cb(X) but if X is not compact
the resulting topology is not separable and hence not Polish. Cb(X) inherits
a topology from C(X). The next theorem implies that Cb(X) is not Polish
with this topology as well.

Theorem 5.8. If X is Polish locally compact and not compact, then Cb(X)
is Σ0

2-complete as a subset of C(X).

Proof. Let Kn, yn and D be as in the proof of Theorem 5.4. For f ∈ C(X)
we have f ∈ Cb(X) if and only if ∃M ∈ N ∀x ∈ D |f(x)| ≤ M . This shows
that Cb(X) is Σ0

2.
To see that Cb(X) is Σ0

2-hard we use again Q2. Using again the notation
of the proof of Theorem 5.2 we define a continuous map α 7→ fα from 2N to
C(X) setting

fα(x) =
min(ηn(x), d(x, Ln(x)))

ηn(x)
·
n(x)∑
i=0

α(i),

so that fα(yn) =
∑n
i=0 α(i). Clearly this shows Q2 ≤W Cb(X) and completes

the proof.

Let (X, d) be a separable metric space. Let

UC(X, d) = { f ∈ C(X) | f is d-uniformly continuous } .

Metric spaces such that UC(X, d) = C(X) are usually called Atsuji spaces.
Notice that this is a metric property: the same metrizable space may be Atsuji
with respect to one compatible metric and not Atsuji with respect to another.
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Theorem 5.9. If (X, d) is separable metric which is not Atsuji and X is
locally compact, then UC(X, d) is Π0

3-complete in C(X) with the compact-
open topology.

Proof. Let D ⊆ X be countable dense. For f ∈ C(X) we have that

f ∈ UC(X, d) ⇐⇒ ∀ε ∃δ ∀x, y ∈ D(d(x, y) < δ =⇒ |f(x)− f(y)| ≤ ε).

This shows that UC(X, d) is Π0
3. Since X is not Atsuji, there exist two disjoint

sequences (an) and (bn) of elements of X such that limn→∞ d(an, bn) = 0 and
neither sequence has cluster points (see e.g. [5]). For every n let

ηn =
1
2

inf ({ d(am, bn) | m ∈ N } ∪ { d(bm, bn) | m 6= n }) .

Notice that ηn > 0 and that lim ηn = 0. Let Bn = B(bn; ηn): we have
Bn ∩ Bm = ∅ whenever n 6= m and am /∈ Bn for every m. We will show that
c0 ≤W UC(X, d) by defining a map IN → C(X), (zn) 7→ f(zn). If x ∈ X \

⋃
Bn

we set f(zn)(x) = 0. If x ∈ Bn we set

f(zn)(x) =
ηn − d(x, bn)

ηn
zn.

It is easy to check that f(zn) ∈ C(X) and that the map (zn) 7→ f(zn) is con-
tinuous. (For the latter fact notice that every compact subset of X intersects
finitely many Bn’s.) Notice also that sup

{
f(zn)(x) | x ∈ Bn

}
= zn.

If (zn) ∈ c0 and ε > 0 let δ = εmin { ηn/zn | zn ≥ ε } > 0. (The minimum
is on a finite set.) We want to show that d(x, y) < δ =⇒ |f(zn)(x)−f(zn)(y)| <
ε. If d(x, y) < δ, then the only possibility for |f(zn)(x)− f(zn)(y)| ≥ ε to hold
is if at least one of x and y belongs to some Bn with zn ≥ ε, say x ∈ Bn. If
y ∈ Bm with n 6= m, then

ηn − d(y, bn)
ηn

zn < 0 < f(zn)(y).

Hence

|f(zn)(x)− f(zn)(y)| ≤
∣∣∣∣ηn − d(x, bn)− ηn + d(y, bn)

ηn
zn

∣∣∣∣
≤ zn
ηn
d(x, y)

<
zn
ηn
δ

≤ zn
ηn
ε
ηn
zn

= ε.
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If y ∈ Bn or if y /∈
⋃
mBm, then the first inequality above holds trivially so

we are done again. Therefore f(zn) ∈ UC(X, d).
If (zn) /∈ c0 for some ε > 0 there exist infinitely many n’s such that zn > ε.

For every δ there exists one such n with d(an, bn) < δ. Then f(zn)(an) = 0
and f(zn)(bn) = zn show that δ does not work for ε in the definition of uniform
continuity. Therefore f(zn) /∈ UC(X, d).

If X is not locally compact C(X) does not have a natural Polish topology.
Still, if D ⊆ X is countable dense it makes sense to view UC(X, d) as a subset
of RD exactly as we did with the whole C(X) in [1]. Let

UC̃p(X, d;D) = { (ya)a∈D | ∃f ∈ UC(X, d) ∀a ∈ D f(a) = ya } .

Theorem 5.10. If (X, d) is separable metric space which is not Atsuji and
D ⊆ X is countable dense, then UC̃p(X, d;D) is Π0

3-complete in RD.

Proof. The proof is the same of Theorem 5.9. It suffices to restrict f(zn) to
D.

The above theorem implies (using the analogue of lemma 2.2 of [1]) that
UC(X, d) with the Borel structure of the pointwise topology is a standard
Borel space for every separable metric space (X, d). (A measurable space
(X,S) is standard Borel if there exists a Polish topology on X whose Borel
sets are S.) Contrast this with the results obtained in [1], where it is shown
that C(X) with the Borel structure of the pointwise topology can fail to be a
standard Borel space even when X is a Polish space.
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