Zbigniew Duszyński, Pedagogical University, Institute of Mathematics, Chodkiewicza 30, 85-064 Bydgoszcz, Poland. e-mail: imath@wsp.bydgoszcz.pl

AN OSCILLATION FUNCTION ON THE REAL LINE

Abstract

By means of a certain well known family \mathcal{B} of subsets of \mathbb{R} fulfilling two conditions we introduce some topologies on \mathbb{R} (in Section 2 we consider the density topology). We observe that the family of the sets $\Omega_f(y) := \{x \in \mathbb{R}; \omega_f(x) \ge y\}$ for an arbitrary bounded function $f : \mathbb{R} \to \mathbb{R}$ (where $\omega_f(x)$ is a kind of \mathcal{B} -oscillation of f) has three properties. Then we show that for each family $\{\Omega(y)\}_{y \in [0,1]} \subset 2^{\mathbb{R}}$ having similar properties and in addition fulfilling conditions M_1 and \mathcal{U}' (known from the literature) there is a function $f : \mathbb{R} \to [0, 1]$ such that $\Omega_f(y) = \Omega(y)$ for each $y \in [0, 1]$. In Section 2 we prove some analogous result for the density topology.¹

Let \mathbb{R} denote the set of all real numbers.

1 \mathcal{B} -Oscillation

Definition 1. Let $\mathcal{B}_0^+ \subset 2^{\mathbb{R}}$ be a nonempty family of sets fulfilling the following conditions:

- (1) if $B \in \mathcal{B}_0^+$, then for every $t > 0, B \cap (0, t) \in \mathcal{B}_0^+$,
- (2) $B_1 \cup B_2 \in \mathcal{B}_0^+$ if and only if $B_1 \in \mathcal{B}_0^+$ or $B_2 \in \mathcal{B}_0^+$.

For every set $A \subset \mathbb{R}$ and $x \in \mathbb{R}$ put $A + x = \{y \in \mathbb{R}; \exists_{a \in A} (y = a + x)\}$ and $-A := \{y \in \mathbb{R} : -y \in A\}.$

Now we can define the family \mathcal{B}_0^- as

$$\mathcal{B}_0^- := \left\{ B \subset \mathbb{R} : -B \in \mathcal{B}_0^+ \right\}$$

Key Words: oscillation function, density topology

Mathematical Reviews subject classification: 26Å15

Received by the editors December 20, 1999

 $^{^1{\}rm This}$ paper is continuation of author's investigation of oscillation function in RAE, vol 25(1) 1999/2000, pp. 489–492

²³⁷

and for each $x \in \mathbb{R}$

$$\mathcal{B}_x^+ := \left\{ B \subset \mathbb{R} : (B - x) \in \mathcal{B}_0^+ \right\},\\ \mathcal{B}_x^- := \left\{ B \subset \mathbb{R} : (-B - x) \in \mathcal{B}_0^+ \right\}$$

For $x \in \mathbb{R}$, put $\mathcal{B}_x := \mathcal{B}_x^+ \cup \mathcal{B}_x^-$ and by \mathcal{B} denote the family of all subsets B of \mathbb{R} such that there exists $x_B \in \mathbb{R}$ and $B \in \mathcal{B}_{x_B}$.

Definition 2. (see [2]) We say that a family \mathcal{B} fulfills condition M_1 , if for every $x_0 \in \mathbb{R}$ and a set $B \in \mathcal{B}_{x_0}^+$ and for every family of sets $\{B_x\}_{x \in B}$ such that $B_x \in \mathcal{B}_x$ ($x \in B$), the set $\bigcup_{x \in B} B_x$ belongs to the family $\mathcal{B}_{x_0}^+$.

Assume that the family \mathcal{B} fulfills M_1 . Let us define the operation "." in the following way: $\dot{A} := \{x \in \mathbb{R} : A \in \mathcal{B}_x\}$ for arbitrary $A \subset \mathbb{R}$. It is now possible to consider the closure operation "-" for each subset $A \subset \mathbb{R} : \overline{A} :=$ $A \cup \dot{A}$. In fact, it is not difficult to check that the operation "-" satisfies the Kuratowski's axioms. Let τ denotes the topology on \mathbb{R} generated by the operation "-".

Definition 3. A number g is called a \mathcal{B} -limit number of a function $f : \mathbb{R} \to \mathbb{R}$ at a point x_0 if for every positive number ϵ

$$\{x \in \mathbb{R}; |f(x) - g| < \epsilon\} \in \mathcal{B}_{x_0}$$

By L(f, x) we denote the set of all \mathcal{B} -limit numbers of the function f at x. It is known that for each bounded or locally bounded function f and every point $x \in \mathbb{R}$ there exists at least one \mathcal{B} -limit number of f at x but for every fand $x \in \mathbb{R}$ the set L(f, x) is closed in the usual Euclidean topology on \mathbb{R} .

For a bounded function $f : \mathbb{R} \to \mathbb{R}$ let

$$m(f, x) = \min \left\{ L(f, x) \cup \left\{ f(x) \right\} \right\},\$$

$$M(f, x) = \max \left\{ L(f, x) \cup \left\{ f(x) \right\} \right\}.$$

We say that a function f is upper \mathcal{B} -semicontinuous (lower \mathcal{B} -semicontinuous) at a point x_0 if

$$M(f, x_0) \le f(x_0), \quad (m(f, x_0) \ge f(x_0)).$$

From theorem 14 in [2] we infer the following characterization. For an arbitrary bounded function f, the function M(f,x) ($x \in \mathbb{R}$) is upper \mathcal{B} -semicontinuous if and only if the family \mathcal{B} fulfills condition M_1 and similarly: the function m(f,x) is lower \mathcal{B} -semicontinuous if and only if the family \mathcal{B} fulfills condition M_1 .

238

By the symbol $\omega_f(x)$ we denote the \mathcal{B} -oscillation of a bounded real function f at x defined as follows:

$$\omega_f(x) := M(f, x) - m(f, x).$$

Let us observe that for an arbitrary bounded function $f : \mathbb{R} \to \mathbb{R}$, which is upper \mathcal{B} -semicontinuous at each point $x \in \mathbb{R}$ and for each $a \in \mathbb{R}$ and $x_0 \in E_a := \{x; f(x) < a\}$ there exists such a set $V_{x_0} \in \tau$ (with $x_0 \in V_{x_0}$) such that for any $x \in V_{x_0}$, f(x) < a. Hence the set E_a is τ -open. And conversely, if the set E_a is τ -open for each $a \in \mathbb{R}$, then f is upper \mathcal{B} -semicontinuous in each point $x \in \mathbb{R}$. Therefore for a bounded function $f : \mathbb{R} \to \mathbb{R}$ the following properties are true:.

- (1) The set $\Omega_f(y) := \{x : \omega_f(x) \ge y\}$ is τ -closed for each $y \in \mathbb{R}$.
- (2) If $y_1 < y_2$, then $\Omega_f(y_2) \subset \Omega_f(y_1)$.
- (3) The set $\bigcup_{y \in \mathbb{R}} [\Omega_f(y) \times \{y\}]$ is $\tau \times \tau_e$ -closed, where τ_e denotes the Euclidean topology on \mathbb{R} .

Now let $\{\Omega(y)\}_{0 \le y \le 1}$ be a nonempty family of nonempty subsets of \mathbb{R} such that:

- (α_1) the set $\Omega(y)$ is τ -closed for each $y \in [0, 1]$,
- (α_2) if $y_1 < y_2$, then $\Omega(y_2) \subset \Omega(y_1)$,
- (α_3) the set $\bigcup_{y \in \mathbb{R}} [\Omega(y) \times \{y\}]$ is $\tau \times \tau_e$ -closed,
- $(\alpha_4) \ \Omega(0) = \mathbb{R}.$

For each $y \in [0,1]$ put $\Omega(y) = A(y) \cup B(y)$, where $A(y) := \Omega(y)$ and $B(y) := \Omega(y) \setminus A(y)$. Assume that the family \mathcal{B} fulfills the following condition \mathcal{U}' which is a particular case of the condition \mathcal{U} from [4].

Each subset $A \subset \mathbb{R}$ can be represented as a sum of such A_1 and A_2 that:

- (a) $A_1 \subset A, A_2 \subset A, A_1 \cap A_2 = \emptyset$,
- (b) $\dot{A_1} = \dot{A}, \ \dot{A_2} = \dot{A}.$

We prove the following theorem.

Theorem 1. Let \mathcal{B} be an arbitrary family fulfilling conditions M_1 and \mathcal{U}' . Then for each family of subsets $\{\Omega(y)\}_{0 \leq y \leq 1}$ of reals fulfilling conditions $(\alpha_1) - (\alpha_4)$ there exists a function $f : \mathbb{R} \to [0, 1]$ such that for any $0 \leq y \leq 1$ we have $\Omega(y) = \Omega_f(y)$. Let B_a stand for the set $\{y \in [0,1] : a \in B(y)\}$ and let F be the set of all $a \in \mathbb{R}$ for which $B_a \neq \emptyset$. Let $x_0 \in \mathbb{R}$ be an arbitrarily chosen point and

$$y_0 := \max\left\{ p_Y \left[\mathcal{P}(x_0) \cap \left(\bigcup_{0 \le y \le 1} (A(y) \times \{y\}) \right) \right] \right\},\$$

where $\mathcal{P}(x_0) := \{p \in \mathbb{R} \times \mathbb{R} : p = (x_0, y)\}$ and p_Y is the projection to Y axis. The point $x_0 \in A(y_0)$ because the set $\bigcup_{0 \le y \le 1} (A(y) \times \{y\})$ is $\tau \times \tau_e$ -closed. Conditions $(\alpha_1) - (\alpha_4)$ and definition of y_0 easily imply that there exists such h_0 that

$$(x_0 - h_0, x_0 + h_0) \cap p_X \left[\left(\bigcup_{y \in [0,1]} (B(y) \times \{y\}) \right) \cap \left(\bigcup_{y'_0 \le y} (\mathbb{R} \times \{y\}) \right) \right] \notin \mathcal{B},$$

where y'_0 is an arbitrarily chosen number from $(y_0, 1]$ and p_X is projection to the X axis.

To prove our theorem it is sufficient to define the function f by

$$f(x) := \begin{cases} \sup \{ y \in [0,1] : x \in \Omega(y) \} & \text{for } x \in A_1 \cup F, \\ 0 & \text{for } x \in \mathbb{R} \setminus (A_1 \cup F), \end{cases}$$

where the condition \mathcal{U}' was applied for $A = \{x : \sup\{y : x \in A(y)\} > 0\}.$

Prove the inclusion $\Omega(y) \subset \Omega_f(y)$. Let y_0 be some number from (0, 1] and $x \in \Omega(y_0)$.

- (I₁) Suppose $x \notin F$ and $y'_0 := \sup \{y \in [0,1] : x \in A(y)\}$. From (α_3) and definition of f we obtain that $x \in \Omega(y'_0)$ and $y'_0 = \max [L(f,x) \cup \{f(x)\}] = f(x)$. Since $\omega_f(x) = y'_0$, we infer that $x \in \Omega_f(y'_0)$ and because $y'_0 \ge y_0$, then $x \in \Omega_f(y_0)$.
- (I₂) If $x \in F$, then we have inequality $y'_0 < f(x)$ and again from (α_3) and definition of f it follows that $x \in \Omega(f(x))$. Since $\omega_f(x) = f(x) > y_0$, hence $x \in \Omega_f(y_0)$.

The proof of the converse inclusion is obvious.

2 Approximate Oscillation

In this section we find a necessary and sufficient condition for a family of sets to be the family of associated sets of approximate oscillation. Let $E \subset \mathbb{R}$ and $x_0 \in \mathbb{R}$. The upper outer density of E at the point x_0 is the number

$$\overline{D_{x_0}(E)} = \limsup_{h \to 0+} \frac{|E \cap (x_0 - h, x_0 + h)|}{2h}$$

where $|\cdot|$ denotes outer measure.

Let $\mathcal{B}_x = \mathcal{U}_x$ be the family of all sets for which x is not a dispersion point (i. e. $\overline{D_x}(E) > 0$). For $\mathcal{B} = \mathcal{U}$ the number g is called an approximate limit number (\mathcal{U} -limit number). Let $L_{\mathcal{U}}(f, x)$ denote the set of all \mathcal{U} -limit numbers of a function f at a point x.

For a bounded function $f : \mathbb{R} \to \mathbb{R}$ we write

$$m_{\mathcal{U}}(f,x) = \min \{ L_{\mathcal{U}}(f,x) \cup \{f(x)\} \}, \ M_{\mathcal{U}}(f,x) = \max \{ L_{\mathcal{U}}(f,x) \cup \{f(x)\} \}.$$

We say that the function f is upper \mathcal{U} -semicontinuous (lower \mathcal{U} -semicontinuous) at a point x_0 if $M_{\mathcal{U}}(f, x_0) \leq f(x_0)$, $(m_{\mathcal{U}}(f, x_0) \geq f(x_0))$.

The \mathcal{U} -oscillation of a bounded function $f : \mathbb{R} \to \mathbb{R}$ at a point $x \in \mathbb{R}$ is a function $\omega_f(x) = M_{\mathcal{U}}(f, x) - m_{\mathcal{U}}(f, x)$.

Let τ_s denote the density topology on $\mathbb{R}([1], [5])$ and τ_e the natural topology. It is easy to see that for an arbitrary bounded function $f : \mathbb{R} \to \mathbb{R}$, which is upper \mathcal{U} -semicontinuous at each point of \mathbb{R} and for each $a \in \mathbb{R}$ and $x_0 \in E_a = \{x : f(x) < a\}$ there exists a set $V_0 \in \tau_s \ (x_0 \in V_0)$ such that f(x) < a for every $x \in V_0$. (It follows from the Lebesgue Density Theorem.) Hence the set E_a is τ_s -open.

Conversely, if the set E_a is τ_s -open for each $a \in \mathbb{R}$, then f is upper \mathcal{U} semicontinuous at each point $x \in \mathbb{R}$. It is easy to see ([2], [3]), that the
following facts hold for each bounded function $f : \mathbb{R} \to \mathbb{R}$:

- (1) The set $\Omega_f(y) = \{x : \omega_f(x) \ge y\}$ is τ_s -closed for each $y \in \mathbb{R}$.
- (2) If $y_1 < y_2$, then $\Omega_f(y_2) \subset \Omega_f(y_1)$.
- (3) The set $\bigcup_{y \in \mathbb{R}} (\Omega_f(y) \times \{y\})$ is $\tau_s \times \tau_e$ -closed on the plane $\mathbb{R} \times \mathbb{R}$.

It follows from the Lebesgue Density Theorem that every nonempty τ_s -closed set D can be represented as a sum of two disjoint subsets D_1 , D_2 , the first one consisting of all points of density of D and the second one satisfying $|D_2| = 0$.

Let $\{\Omega(y)\}_{0 \le y \le 1}$ be a nonempty family of subsets of \mathbb{R} such that:

- (α_1) The set $\Omega(y)$ is τ_s -closed for each $y \in [0, 1]$,
- (α_2) If $y_1 < y_2$, then $\Omega(y_2) \subset \Omega(y_1)$,
- (α_3) The set $\bigcup_{y \in [0,1]} (\Omega(y) \times \{y\})$ is $\tau_s \times \tau_e$ -closed.

 $(\alpha_4) \quad \Omega(0) = \mathbb{R} .$

For each $y \in [0, 1]$ let $\Omega(y) = A(y) \cup B(y)$, where A(y) is the set of all density points of $\Omega(y)$ and $B(y) = \Omega(y) \setminus A(y)$.

The main result of this section is the following.

Theorem 2. For every family $\{\Omega(y)\}_{0 \le y \le 1}$ fulfilling conditions $(\alpha_1) - (\alpha_4)$ there exists a function $f : \mathbb{R} \to [0,1]$ such that for each $0 \le y \le 1$ we have $\Omega(y) = \Omega_f(y)$.

Notice, that if for some $y' \in (0,1]$, $x \in A(y')$, then $x \in A(y)$ for every $0 \le y < y'$. Similarly, if $x \in B(y'')$, for some y'' < y', then $x \in B(y)$ for each y'' < y < y'. For each $a \in \mathbb{R}$ define the set B_a by

$$B_a = \{y \in [0,1] : a \in B(y)\}.$$

Let F be the set of all $a \in \mathbb{R}$, for which B_a is nondegenerate interval.

Lemma 1.

$$|F| = 0.$$

PROOF OF LEMMA. Take an arbitrary point $x_0 \in F$ and h > 0. Put

$$y_0 = \inf\left\{y: ([(x_0 - h, x_0 + h) \setminus A(y)] \times \{y\}) \cap \bigcup_{a \in F} (\{a\} \times B_a) \neq \emptyset\right\}$$

and take the following sequence of sets.

$$W_{1} = p_{X} \left\{ \left[\left((x_{0} - h, x_{0} + h) \setminus A(y_{0} + \frac{1 - y_{0}}{2}) \right) \\ \times \left\{ y_{0} + \frac{1 - y_{0}}{2} \right\} \right] \cap \bigcup_{a \in F} (\{a\} \times B_{a}) \right\} \\ W_{2} = p_{X} \left\{ \bigcup_{k=1}^{2^{2}} \left[\left((x_{0} - h, x_{0} + h) \setminus A(y_{0} + \frac{k(1 - y_{0})}{2^{2}}) \right) \\ \times \left\{ y_{0} + \frac{k(1 - y_{0})}{2^{2}} \right\} \right] \cap \bigcup_{a \in F} (\{a\} \times B_{a}) \right\}$$

$$\begin{split} W_{2n} &= p_X \Big\{ \bigcup_{k=1}^{2^{2n}} \Big[\big((x_0 - h, x_0 + h) \setminus A(y_0 + \frac{k(1 - y_0)}{2^{2n}}) \big) \\ &\times \Big\{ y_0 + \frac{k(1 - y_0)}{2^{2n}} \Big\} \Big] \cap \bigcup_{a \in F} (\{a\} \times B_a) \Big\} \end{split}$$

242

It is easy to verify that

$$0 \le |(x_0 - h, x_0 + h) \cap F| \le |W_1| + \sum_{n=1}^{\infty} |W_{2n}|.$$

From the Lebesgue theorem it is clear that

$$(x_0 - h, x_0 + h) \cap F| = 0.$$

Since the number h > 0 was chosen arbitrarily, $\overline{D_{x_0}(F)} = 0$. So F consists of upper outer dispersion points of F. Once again using the Lebesgue theorem we obtain that |F| = 0.

To prove Theorem 2 let $A = \{x : \sup \{y : x \in A(y)\} > 0\}$. It is known ([6]) that A can be represented as a sum of two subsets A_1 and A_2 such that

- (a) $A_1 \cap A_2 = \emptyset$,
- **(b)** $|A_1| = |A|$, $|A_2| = |A|$.

Our function f can be now defined as follows:

$$f(x) = \begin{cases} \sup\{y \in [0,1] : x \in \Omega(y)\} & \text{for } x \in A_1 \cup F, \\ 0 & \text{for } x \in \mathbb{R} \setminus (A_1 \cup F). \end{cases}$$

The rest of the proof follows the lines of the proof of Theorem 1.

References

- C. Goffman, C. Neugebauer, T. Nishiura, *Density topology and approximate continuity*, Duke Math J., 28 (1961), 497–506.
- [2] J. M. Jędrzejewski, O granicy i ciągłości uogólnionej, Zeszyty Naukowe Uniwersytetu Łódzkiego, Seria II 52 (1973), 19–38.
- [3] J. M. Jędrzejewski, On limit numbers of real functions, Fund. Math., LXXXIII (1974), 269–281.
- [4] J. M. Jędrzejewski, W. Wilczyński, O rodzinie zbiorów B-granicznych, Zeszyty Naukowe Uniwersytetu Łódzkiego, Seria II 52 (1973), 39–43 (in Polish).
- [5] J. C. Oxtoby, Measure and category, Springer-Verlag (1976).
- [6] W. Wilczyński, On the family of sets of approximate limit numbers, Fund. Math., LXXV (1972), 169–174.

Zbigniew Duszyński