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AN OSCILLATION FUNCTION ON THE
REAL LINE

Abstract

By means of a certain well known family B of subsets of R fulfill-
ing two conditions we introduce some topologies on R (in Section 2
we consider the density topology). We observe that the family of the
sets Ωf (y) := {x ∈ R; ωf (x) ≥ y} for an arbitrary bounded function
f : R → R (where ωf (x) is a kind of B-oscillation of f) has three
properties. Then we show that for each family {Ω(y)}y∈[0,1] ⊂ 2R hav-

ing similar properties and in addition fulfilling conditions M1 and U ′
(known from the literature) there is a function f : R → [0, 1] such that
Ωf (y) = Ω(y) for each y ∈ [0, 1]. In Section 2 we prove some analogous
result for the density topology. 1

Let R denote the set of all real numbers.

1 B-Oscillation

Definition 1. Let B+
0 ⊂ 2R be a nonempty family of sets fulfilling the follow-

ing conditions:

(1) if B ∈ B+
0 , then for every t > 0, B ∩ (0, t) ∈ B+

0 ,

(2) B1 ∪B2 ∈ B+
0 if and only if B1 ∈ B+

0 or B2 ∈ B+
0 .

For every set A ⊂ R and x ∈ R put A + x = {y ∈ R;∃a∈A (y = a+ x)}
and −A := {y ∈ R : −y ∈ A}.

Now we can define the family B−0 as

B−0 :=
{
B ⊂ R : −B ∈ B+

0

}
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and for each x ∈ R

B+
x :=

{
B ⊂ R : (B − x) ∈ B+

0

}
,

B−x :=
{
B ⊂ R : (−B − x) ∈ B+

0

}
.

For x ∈ R, put Bx := B+
x ∪ B−x and by B denote the family of all subsets B of

R such that there exists xB ∈ R and B ∈ BxB
.

Definition 2. (see [2]) We say that a family B fulfills condition M1, if for
every x0 ∈ R and a set B ∈ B+

x0
and for every family of sets {Bx}x∈B such

that Bx ∈ Bx (x ∈ B), the set
⋃

x∈B Bx belongs to the family B+
x0

.

Assume that the family B fulfills M1. Let us define the operation “.” in
the following way: Ȧ := {x ∈ R : A ∈ Bx} for arbitrary A ⊂ R. It is now
possible to consider the closure operation “−” for each subset A ⊂ R : A :=
A ∪ Ȧ. In fact, it is not difficult to check that the operation “− ” satisfies
the Kuratowski’s axioms. Let τ denotes the topology on R generated by the
operation “−”.

Definition 3. A number g is called a B-limit number of a function f : R→ R
at a point x0 if for every positive number ε

{x ∈ R; |f(x)− g| < ε} ∈ Bx0 .

By L(f, x) we denote the set of all B-limit numbers of the function f at x.
It is known that for each bounded or locally bounded function f and every

point x ∈ R there exists at least one B-limit number of f at x but for every f
and x ∈ R the set L(f, x) is closed in the usual Euclidean topology on R.

For a bounded function f : R→ R let

m(f, x) = min {L(f, x) ∪ {f(x)}] ,
M(f, x) = max {L(f, x) ∪ {f(x)}] .

We say that a function f is upper B-semicontinuous (lower B-semicontinuous)
at a point x0 if

M(f, x0) ≤ f(x0), (m(f, x0) ≥ f(x0)).

From theorem 14 in [2] we infer the following characterization. For an
arbitrary bounded function f , the function M(f, x) (x ∈ R) is upper B-
semicontinuous if and only if the family B fulfills condition M1 and similarly:
the function m(f, x) is lower B-semicontinuous if and only if the family B
fulfills condition M1.
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By the symbol ωf (x) we denote the B-oscillation of a bounded real function
f at x defined as follows:

ωf (x) := M(f, x)−m(f, x).

Let us observe that for an arbitrary bounded function f : R → R, which
is upper B-semicontinuous at each point x ∈ R and for each a ∈ R and
x0 ∈ Ea := {x; f(x) < a} there exists such a set Vx0 ∈ τ (with x0 ∈ Vx0) such
that for any x ∈ Vx0 , f(x) < a. Hence the set Ea is τ -open. And conversely,
if the set Ea is τ -open for each a ∈ R, then f is upper B-semicontinuous in
each point x ∈ R. Therefore for a bounded function f : R → R the following
properties are true:.

(1) The set Ωf (y) := {x : ωf (x) ≥ y} is τ -closed for each y ∈ R.

(2) If y1 < y2, then Ωf (y2) ⊂ Ωf (y1).

(3) The set
⋃

y∈R [Ωf (y)× {y}] is τ × τe-closed, where τe denotes the Eu-
clidean topology on R.

Now let {Ω(y)}0≤y≤1 be a nonempty family of nonempty subsets of R such
that:

(α1) the set Ω(y) is τ -closed for each y ∈ [0, 1],

(α2) if y1 < y2, then Ω(y2) ⊂ Ω(y1),

(α3) the set
⋃

y∈R [Ω(y)× {y}] is τ × τe-closed,

(α4) Ω(0) = R.

For each y ∈ [0, 1] put Ω(y) = A(y) ∪ B(y), where A(y) := ˙Ω(y) and
B(y) := Ω(y) \A(y). Assume that the family B fulfills the following condition
U ′ which is a particular case of the condition U from [4].

Each subset A ⊂ R can be represented as a sum of such A1 and A2 that:

(a) A1 ⊂ A, A2 ⊂ A, A1 ∩A2 = ∅,

(b) Ȧ1 = Ȧ, Ȧ2 = Ȧ.

We prove the following theorem.

Theorem 1. Let B be an arbitrary family fulfilling conditions M1 and U ′.
Then for each family of subsets {Ω(y)}0≤y≤1 of reals fulfilling conditions (α1) -
(α4) there exists a function f : R→ [0, 1] such that for any 0 ≤ y ≤ 1 we have
Ω(y) = Ωf (y).
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Let Ba stand for the set {y ∈ [0, 1] : a ∈ B(y)} and let F be the set of all
a ∈ R for which Ba 6= ∅. Let x0 ∈ R be an arbitrarily chosen point and

y0 := max

{
pY

[
P(x0) ∩

( ⋃
0≤y≤1

(A(y)× {y})
)]}

,

where P(x0) := {p ∈ R× R : p = (x0, y)} and pY is the projection to Y axis.
The point x0 ∈ A(y0) because the set

⋃
0≤y≤1(A(y) × {y}) is τ × τe-closed.

Conditions (α1) - (α4) and definition of y0 easily imply that there exists such
h0 that

(x0 − h0, x0 + h0) ∩ pX

[( ⋃
y∈[0,1]

(B(y)× {y})
)
∩
( ⋃

y′
0≤y

(R× {y})
)]
6∈ B,

where y′0 is an arbitrarily chosen number from (y0, 1] and pX is projection to
the X axis.

To prove our theorem it is sufficient to define the function f by

f(x) :=
{

sup {y ∈ [0, 1] : x ∈ Ω(y)} for x ∈ A1 ∪ F,
0 for x ∈ R \ (A1 ∪ F ),

where the condition U ′ was applied for A = {x : sup{y : x ∈ A(y)} > 0}.
Prove the inclusion Ω(y) ⊂ Ωf (y). Let y0 be some number from (0, 1] and

x ∈ Ω(y0).

(I1) Suppose x 6∈ F and y′0 := sup {y ∈ [0, 1] : x ∈ A(y)}. From (α3) and def-
inition of f we obtain that x ∈ Ω(y′0) and y′0 = max [L(f, x) ∪ {f(x)}] =
f(x). Since ωf (x) = y′0, we infer that x ∈ Ωf (y′0) and because y′0 ≥ y0,
then x ∈ Ωf (y0).

(I2) If x ∈ F , then we have inequality y′0 < f(x) and again from (α3) and
definition of f it follows that x ∈ Ω(f(x)). Since ωf (x) = f(x) > y0,
hence x ∈ Ωf (y0).

The proof of the converse inclusion is obvious.

2 Approximate Oscillation

In this section we find a necessary and sufficient condition for a family of sets
to be the family of associated sets of approximate oscillation.
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Let E ⊂ R and x0 ∈ R . The upper outer density of E at the point x0 is
the number

Dx0(E) = lim sup
h→0+

|E ∩ (x0 − h, x0 + h)|
2h

,

where | · | denotes outer measure.
Let Bx = Ux be the family of all sets for which x is not a dispersion point

(i. e. Dx(E) > 0). For B = U the number g is called an approximate limit
number (U-limit number). Let LU (f, x) denote the set of all U-limit numbers
of a function f at a point x.

For a bounded function f : R→ R we write

mU (f, x) = min {LU (f, x) ∪ {f(x)}} , MU (f, x) = max {LU (f, x) ∪ {f(x)}} .

We say that the function f is upper U-semicontinuous (lower U-semicontinuous)
at a point x0 if MU (f, x0) ≤ f(x0), (mU (f, x0) ≥ f(x0)) .

The U-oscillation of a bounded function f : R → R at a point x ∈ R is a
function ωf (x) = MU (f, x)−mU (f, x).

Let τs denote the density topology on R ([1], [5]) and τe the natural topol-
ogy. It is easy to see that for an arbitrary bounded function f : R → R,
which is upper U-semicontinuous at each point of R and for each a ∈ R and
x0 ∈ Ea = {x : f(x) < a} there exists a set V0 ∈ τs (x0 ∈ V0) such that
f(x) < a for every x ∈ V0. (It follows from the Lebesgue Density Theorem.)
Hence the set Ea is τs-open.

Conversely, if the set Ea is τs-open for each a ∈ R , then f is upper U-
semicontinuous at each point x ∈ R . It is easy to see ([2], [3]), that the
following facts hold for each bounded function f : R→ R:

(1) The set Ωf (y) = {x : ωf (x) ≥ y} is τs-closed for each y ∈ R.

(2) If y1 < y2, then Ωf (y2) ⊂ Ωf (y1).

(3) The set
⋃

y∈R (Ωf (y)× {y}) is τs × τe-closed on the plane R× R .

It follows from the Lebesgue Density Theorem that every nonempty τs-closed
set D can be represented as a sum of two disjoint subsets D1, D2, the first one
consisting of all points of density of D and the second one satisfying |D2| = 0.

Let {Ω(y)}0≤y≤1 be a nonempty family of subsets of R such that:

(α1) The set Ω(y) is τs-closed for each y ∈ [0, 1],

(α2) If y1 < y2, then Ω(y2) ⊂ Ω(y1),

(α3) The set
⋃

y∈[0,1] (Ω(y)× {y}) is τs × τe-closed.
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(α4) Ω(0) = R .

For each y ∈ [0, 1] let Ω(y) = A(y)∪B(y), where A(y) is the set of all density
points of Ω(y) and B(y) = Ω(y) \A(y).

The main result of this section is the following.

Theorem 2. For every family {Ω(y)}0≤y≤1 fulfilling conditions (α1) – (α4)
there exists a function f : R → [0, 1] such that for each 0 ≤ y ≤ 1 we have
Ω(y) = Ωf (y).

Notice, that if for some y′ ∈ (0, 1], x ∈ A(y′), then x ∈ A(y) for every
0 ≤ y < y′. Similarly, if x ∈ B(y′′), for some y′′ < y′, then x ∈ B(y) for each
y′′ < y < y′. For each a ∈ R define the set Ba by

Ba = {y ∈ [0, 1] : a ∈ B(y)} .

Let F be the set of all a ∈ R , for which Ba is nondegenerate interval.

Lemma 1.
|F | = 0.

Proof of lemma. Take an arbitrary point x0 ∈ F and h > 0. Put

y0 = inf
{
y : ([(x0 − h, x0 + h) \A(y)]× {y}) ∩

⋃
a∈F

({a} ×Ba) 6= ∅
}

and take the following sequence of sets.

W1 =pX

{[(
(x0 − h, x0 + h) \A(y0 +

1− y0
2

)
)

×
{
y0 +

1− y0
2

}]
∩
⋃

a∈F

({a} ×Ba)
}

W2 =pX

{ 22⋃
k=1

[(
(x0 − h, x0 + h) \A(y0 +

k(1− y0)
22

)
)

×
{
y0 +

k(1− y0)
22

}]
∩
⋃

a∈F

({a} ×Ba)
}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

W2n = pX

{ 22n⋃
k=1

[(
(x0 − h, x0 + h) \A(y0 +

k(1− y0)
22n

)
)

×
{
y0 +

k(1− y0)
22n

}]
∩
⋃

a∈F

({a} ×Ba)
}
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
It is easy to verify that

0 ≤ |(x0 − h, x0 + h) ∩ F | ≤ |W1|+
∞∑

n=1

|W2n| .

From the Lebesgue theorem it is clear that

|(x0 − h, x0 + h) ∩ F | = 0.

Since the number h > 0 was chosen arbitrarily, Dx0(F ) = 0. So F consists of
upper outer dispersion points of F . Once again using the Lebesgue theorem
we obtain that |F | = 0.
To prove Theorem 2 let A = {x : sup {y : x ∈ A(y)} > 0}. It is known ([6])
that A can be represented as a sum of two subsets A1 and A2 such that

(a) A1 ∩A2 = ∅,

(b) |A1| = |A| , |A2| = |A|.
Our function f can be now defined as follows:

f(x) =

{
sup{y ∈ [0, 1] : x ∈ Ω(y)} for x ∈ A1 ∪ F,
0 for x ∈ R \ (A1 ∪ F ) .

The rest of the proof follows the lines of the proof of Theorem 1.
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