A. Meskhi, A. Razmadze Mathematical Institute, Georgian Academy of Sciences, 1, M. Aleksidze Str., 380093 Tbilisi, Georgia. e-mail:
meskhi@rmi.acnet.ge

CRITERIA FOR THE BOUNDEDNESS AND COMPACTNESS OF GENERALIZED ONE-SIDED POTENTIALS

Abstract

Necessary and sufficient conditions are found for the positive Borel measure ν, which provide the boundedness (compactness) of the generalized Riemann-Liouville operator from one Lebesgue space into another Lebesgue space with measure ν. The appropriate problem for the generalized Weyl operator is solved as well.

1 Introduction

In this paper, necessary and sufficient conditions are found, which ensure the boundedness (compactness) of the generalized Riemann-Liouville operator

$$
T_{\alpha} f(x, t)=\int_{0}^{x}(x-y+t)^{\alpha-1} f(y) d y, \quad x, t \in \mathbb{R}_{+}
$$

from $L^{p}\left(\mathbb{R}_{+}\right)$into $L_{\nu}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)$, where $0<p, q<\infty, p>1, \alpha>1 / p, \mathbb{R}_{+} \equiv[0, \infty)$ and ν is a positive σ-finite Borel measure on $\widetilde{\mathbb{R}}_{+}^{2} \equiv \mathbb{R}_{+} \times \mathbb{R}_{+}$(for $q<p$ it will be assumed that ν is absolutely continuous; i.e., $d \nu(x, t)=v(x, t) d x d t$, where v is a Lebesgue-measurable almost everywhere positive function on $\widetilde{\mathbb{R}}_{+}^{2}$).

An analogous problem for the classical Riemann-Liouville operator

$$
R_{\alpha} f(x)=\int_{0}^{x}(x-y)^{\alpha-1} f(y) d y
$$

was solved in [17], [18]. Necessary and sufficient conditions for the boundedness of R_{α} from $L_{w}^{p}\left(\mathbb{R}_{+}\right)$into $L_{v}^{q}\left(\mathbb{R}_{+}\right)$were found for $1<p<q<\infty$ and $0<\alpha<1$

[^0]in [9] (see also [10], Chapter 3). A similar problem was solved for $1<p \leq q<$ ∞ and $\alpha>1$ in [15], [25] and for $1<q<p<\infty$ and $\alpha>1$ in [25]. For the compactness of the operator R_{α} when $1<p, q<\infty$ and $\alpha>1$ see [26].

The boundedness problem for the generalized Riesz potential

$$
I_{\alpha} f(x, t)=\int_{\mathbb{R}^{n}}(|x-y|+t)^{\alpha-n} f(y) d y, \quad 0<\alpha<n
$$

from $L^{p}\left(\mathbb{R}^{n}\right)$ into $L_{\nu}^{q}\left(\mathbb{R}^{n} \times \mathbb{R}_{+}\right)(1<p<q<\infty)$ was solved in [1] (Theorem C) (see [8] for more general case).

A complete description of weight pairs (v, w) ensuring the validity of weak $(p, q)(1<p<q<\infty)$ type inequality for I_{α} was given in [7] (see also [10], Chapter 3). For the related Hörmander type maximal functions see [10], Chapter 4.

The different (Sawyer type) necessary and sufficient conditions for the validity of two-weight strong (p, q) type inequality for I_{α} and corresponding Hörmander type fractional maximal functions were established in [23].

Similar operators arise in boundary value problems in PDE, particularly in Polyharmonic Differential Equations. Some applications of operator I_{α} in weighted estimates for gradients were presented in [27], p. 923.

In this paper, criteria of the boundedness (compactness) from $L_{\nu}^{p}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)$ into $L^{q}\left(\mathbb{R}_{+}\right)$are also established for the operator

$$
\widetilde{T}_{\alpha} g(y)=\int_{[y, \infty) \times \mathbb{R}_{+}} g(x, t)(x-y+t)^{\alpha-1} d \nu(x, t)
$$

Finally, the upper and lower estimates of the distance of the operator T_{α} from a space of compact operators are derived in the non-compact case.

Some results of the present paper were announced in [20].

2 Preliminaries

Let ν be a positive σ-finite Borel measure on $\widetilde{\mathbb{R}}_{+}^{2}$. For $(0<q<\infty)$ denote by $L_{\nu}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)$ the class of all ν-measurable functions $g: \widetilde{\mathbb{R}}_{+}^{2} \rightarrow \mathbb{R}^{1}$ for which

$$
\|g\|_{L_{\nu}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)} \equiv\left(\int_{\widetilde{\mathbb{R}}_{+}^{2}}|g(x, t)|^{q} d \nu(x, t)\right)^{1 / q}<\infty .
$$

If ν is absolutely continuous (i.e., $d \nu(x, t)=v(x, t) d x d t$), then instead of $L_{\nu}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)$, we will use the notation $L_{v}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)$, and if $v \equiv 1$, then $L_{v}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)$ will be denoted by $L^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)$.

Let

$$
H f(x)=\int_{0}^{x} f(y) d y
$$

for a measurable function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}^{1}$.
Necessary and sufficient conditions for the boundedness of the operator H from $L_{w}^{p}\left(\mathbb{R}_{+}\right)$into $L_{v}^{q}\left(\mathbb{R}_{+}\right)$were found in [3], [12] (see also [16], §1.3) for $1<p \leq q<\infty$, and in [16], $\S 1.3$, for $1 \leq q<p<\infty$. (For the compactness of H see [5], [22].)

In what follows we will use the notation $U_{r} \equiv[r, \infty) \times \mathbb{R}_{+}$, where $r>0$. It is obvious that $[r, R) \times \mathbb{R}_{+}=U_{r} \backslash U_{R}$ for $0<r<R<\infty$.

To prove our main results, we need the following lemma.
Lemma 1. Let $1<p \leq q<\infty$ and μ be a positive Borel measure on $\widetilde{\mathbb{R}}_{+}^{2}$. Then the operator H is bounded from $L^{p}\left(\mathbb{R}_{+}\right)$into $L_{\mu}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)$ if and only if

$$
A \equiv \sup _{r>0}\left(\mu\left(U_{r}\right)\right)^{1 / q} r^{1 / p^{\prime}}<\infty, \quad p^{\prime}=p /(p-1)
$$

Moreover, $A \leq\|H\| \leq 4 A$.
Proof. Sufficiency. Let $f \geq 0, f \in L^{p}\left(\mathbb{R}_{+}\right)$and $I(t) \equiv \int_{0}^{t} f$. Assume that $\int_{0}^{\infty} f \in\left(2^{m}, 2^{m+1}\right]$ for some $m \in \mathbb{Z}$. Then there exist $x_{k}(k \leq m)$ such that $I\left(x_{k}\right)=2^{k}$. It is obvious that $2^{k}=\int_{x_{k}}^{x_{k+1}} f$ for $k \leq m-1$. The sequence $\left\{x_{k}\right\}$ increases. Moreover, if $\alpha=\lim _{k \rightarrow-\infty} x_{k}$, then $\mathbb{R}_{+}=[0, \alpha) \cup\left(\cup_{k \leq m}\left[x_{k}, x_{k+1}\right)\right)$, where $x_{k+1}=\infty$. When $\int_{0}^{\infty} f=\infty$, we have $\mathbb{R}_{+}=[0, \alpha] \cup\left(\cup_{k \in \mathbb{Z}}\left[x_{k}, x_{k+1}\right)\right)$ (i.e., $m=\infty$). If $y \in[0, \alpha]$, then $I(y)=0$, and if $y \in\left[x_{k}, x_{k+1}\right)$, then $I(y) \leq 2^{k+1}$. We have

$$
\begin{aligned}
\|H f\|_{L_{\mu}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)}^{p} & \leq \sum_{k}\left\|\chi_{U_{x_{k}} \backslash U_{x_{k+1}}} H f\right\|_{L_{\mu}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)}^{p} \\
& \leq \sum_{k} 2^{(k+1) p}\left\|\chi_{U_{x_{k}} \backslash U_{x_{k+1}}}\right\|_{L_{\mu}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)}^{p} \\
& =4^{p} \sum_{k}\left(\int_{x_{k-1}}^{x_{k}} f(y) d y\right)^{p}\left(\mu\left(U_{x_{k}} \backslash U_{x_{k+1}}\right)\right)^{p / q} \\
& \leq 4^{p}\left(\int_{x_{k-1}}^{x_{k}}(f(y))^{p} d y\right)\left(x_{k}-x_{k-1}\right)^{p-1}\left(\mu\left(U_{x_{k}} \backslash U_{x_{k+1}}\right)\right)^{p / q} \\
& \leq 4^{p} A^{p}\|f\|_{L^{p}\left(\mathbb{R}_{+}\right)}^{p}
\end{aligned}
$$

Necessity. Let $r>0$ and $f_{r}(x)=\chi_{[0, r)}(x)$. Then $\left\|f_{r}\right\|_{L^{p}\left(\mathbb{R}_{+}\right)}=r^{1 / p}$. On the other hand,

$$
\|H f\|_{L_{\mu}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)} \geq\left\|\chi_{U_{r}} H f_{r}\right\|_{L_{\mu}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)} \geq\left(\mu\left(U_{r}\right)\right)^{1 / q} r
$$

Hence the boundedness of H implies that $A<\infty$.
Lemma 2. Let $0<q<p<\infty_{2} p>1$ and let v be an almost everywhere positive measurable function on $\widetilde{\mathbb{R}}_{+}^{2}$. Then the operator H is bounded from $L^{p}\left(\mathbb{R}_{+}\right)$into $L_{v}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)$ if and only if

$$
A_{1} \equiv\left(\int_{0}^{\infty}\left(\int_{U_{x}} v(y, t) d y d t\right)^{\frac{p}{p-q}} x^{\frac{(q-1) p}{p-q}} d x\right)^{\frac{p-q}{p q}}<\infty
$$

Moreover, $\lambda_{1} A_{1} \leq\|H\| \leq \lambda_{2} A_{1}$, where $\lambda_{1}=\left(\frac{p-q}{p-1}\right)^{1 / q^{\prime}} q^{1 / q}$ and $\lambda_{2}=\left(p^{\prime}\right)^{1 / q^{\prime}} q^{1 / q}$ for $q>1, \lambda_{1}=\lambda_{2}=1$ for $q=1, \lambda_{1}=\left(q / p^{\prime}\right)^{\frac{p-q}{p q}}\left(p^{\prime}\right)^{1 / p^{\prime}} q^{1 / p \frac{p-q}{p}}$ and $\lambda_{2}=\left(\frac{p}{p-q}\right)^{\frac{p-q}{p q}} p^{1 / p}\left(p^{\prime}\right)^{1 / p^{\prime}}$ for $0<q<1$.
Proof. Applying Lemma 1.3.2 from [16] for $1 \leq q<p<\infty$ and using the arguments from [24] for $0<q<1<p<\infty$ we find that the condition $A_{1}<\infty$ is equivalent to the boundedness of H from $L^{p}\left(\mathbb{R}_{+}\right)$into $L_{\widetilde{v}}^{q}\left(\mathbb{R}_{+}\right)$, where

$$
\widetilde{v}(y)=\int_{0}^{\infty} v(y, t) d t
$$

But

$$
\|H f\|_{L_{\tilde{v}}^{q}\left(\mathbb{R}_{+}\right)}=\|H f\|_{L_{v}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)}
$$

Therefore the condition $A_{1}<\infty$ is equivalent to the boundedness of H from $L^{p}\left(\mathbb{R}_{+}\right)$into $L_{v}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)$. The constants λ_{1} and λ_{2} are from [16] (Section 1.3.2) for $q \geq 1$, and from [24] (see Theorem 2.4 and Remark) for $0<q<1$.

We need the following theorem which can be obtained from Lemma 2 in [11], Chapter XI (see also [13], Chapter 3).
Theorem A. Let $1<p, q<\infty$, ν be a positive σ-finite separable measure on $\widetilde{\mathbb{R}}_{+}^{2}$ (i.e., $L_{\nu}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)$ is separable). If

$$
\left\|\|k(z, \cdot)\|_{L^{p^{\prime}}\left(\mathbb{R}_{+}\right)}\right\|_{L_{\nu}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)}<\infty, \quad k \geq 0
$$

then the operator $K f(z)=\int_{0}^{\infty} k(z, y) f(y) d y, z \in \widetilde{\mathbb{R}}_{+}^{2}$, is compact from $L^{p}\left(\mathbb{R}_{+}\right)$into $L_{\nu}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)$.

3 Boundedness

In this section, criteria of the boundedness of the operators T_{α} and \widetilde{T}_{α} are established.

Theorem 1. Let $1<p \leq q<\infty, \alpha>1 / p$, ν be a positive σ-finite measure on $\widetilde{\mathbb{R}}_{+}^{2}$. Then the following conditions are equivalent:
(i) T_{α} is bounded from $L^{p}\left(\mathbb{R}_{+}\right)$into $L_{\nu}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)$;
(ii) $B \equiv \sup _{r>0}\left(\int_{U_{r}}(x+t)^{(\alpha-1) q} d \nu(x, t)\right)^{\frac{1}{q}} r^{\frac{1}{p^{\prime}}}<\infty$;
(iii) $B_{1} \equiv \sup _{k \in Z}\left(\int_{U_{2^{k} \backslash U_{2^{k+1}}}}(x+t)^{(\alpha-1) q} x^{q / p^{\prime}} d \nu(x, t)\right)^{\frac{1}{q}}<\infty$.

Moreover, there exist positive constants b_{1}, b_{2}, b_{3} and b_{4} depending only on p, q and α such that

$$
b_{1} B \leq\left\|T_{\alpha}\right\| \leq b_{2} B, \quad b_{3} B_{1} \leq\left\|T_{\alpha}\right\| \leq b_{4} B_{1}
$$

Proof. First we will show that (ii) implies (i). Let $f \geq 0$. If $\alpha \geq 1$, then using Lemma 1 we obtain

$$
\begin{aligned}
\left\|T_{\alpha} f\right\|_{L_{\nu}^{q}} & \leq 2^{\alpha-1}\left(\int_{\widetilde{\mathbb{R}}_{+}^{2}}(x+t)^{(\alpha-1) q}\left(\int_{0}^{x} f(y) d y\right)^{q} d \nu(x, t)\right)^{1 / q} \\
& \leq 2^{\alpha+1}\|f\|_{L^{p}\left(\mathbb{R}_{+}\right)}
\end{aligned}
$$

Now let $1 / p<\alpha<1$. We have

$$
\begin{aligned}
\left\|T_{\alpha} f\right\|_{L_{\nu}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)} \leq & \left(\int_{\widetilde{\mathbb{R}}_{+}^{2}}\left(\int_{0}^{x / 2} f(y)(x-y+t)^{\alpha-1} d y\right)^{q} d \nu(x, t)\right)^{1 / q} \\
& +\left(\int_{\widetilde{\mathbb{R}}_{+}^{2}}\left(\int_{x / 2}^{x} f(y)(x-y+t)^{\alpha-1} d y\right)^{q} d \nu(x, t)\right)^{1 / q} \\
\equiv & S_{1}+S_{2}
\end{aligned}
$$

If $y<x / 2$, then $(x-y+t)^{\alpha-1} \leq 2^{1-\alpha}(x+t)^{\alpha-1}$. By Lemma 1 we obtain

$$
S_{1} \leq 2^{1-\alpha}\left(\int_{\widetilde{\mathbb{R}}_{+}^{2}}(H f(x))^{q}(x+t)^{(\alpha-1) q} d \nu(x, t)\right)^{1 / q} \leq 2^{3-\alpha} B\|f\|_{L^{p}\left(\mathbb{R}_{+}\right)}
$$

Using the Hölder's inequality, we find that

$$
S_{2}^{q} \leq \int_{\widetilde{\mathbb{R}}_{+}^{2}}\left(\int_{x / 2}^{x}(f(y))^{p} d y\right)^{q / p}(\varphi(x, t))^{q / p^{\prime}} d \nu(x, t)
$$

where

$$
\varphi(x, t) \equiv \int_{x / 2}^{x}(x-y+t)^{(\alpha-1) p^{\prime}} d y
$$

Moreover, $\varphi(x, t) \leq c_{1}(x+t)^{(\alpha-1) p^{\prime}} x$, where $c_{1}=2^{(1-\alpha) p^{\prime}-1} 3\left((\alpha-1) p^{\prime}+1\right)^{-1}$. Indeed, if $t \leq x$ then

$$
\varphi(x, t) \leq\left((\alpha-1) p^{\prime}+1\right)^{-1}(x / 2+t)^{(\alpha-1) p^{\prime}+1} \leq c_{2}(x+t)^{(\alpha-1) p^{\prime}} x
$$

where $c_{2}=2^{(1-\alpha) p^{\prime}-1} 3\left((\alpha-1) p^{\prime}+1\right)^{-1}$. Let $t>x$. Then

$$
\varphi(x, t) \leq t^{(\alpha-1) p^{\prime}} x / 2 \leq 2^{(1-\alpha) p^{\prime}-1}(x+t)^{(\alpha-1) p^{\prime}} x
$$

Using the Minkowski's inequality we obtain

$$
\begin{aligned}
S_{2}^{q} & \leq c_{1}^{q / p^{\prime}} \int_{\widetilde{\mathbb{R}}_{+}^{2}}\left(\int_{x / 2}^{x}(f(y))^{p} d y\right)^{q / p}(x+t)^{(\alpha-1) q} x^{q / p^{\prime}} d \nu(x, t) \\
& \leq c_{1}^{q / p^{\prime}}\left(\int_{0}^{\infty}(f(y))^{p}\left(\int_{U_{y} \backslash U_{2 y}}(x+t)^{(\alpha-1) q} x^{q / p^{\prime}} d \nu(x, t)\right)^{p / q} d y\right)^{q / p} \\
& \leq 2^{q / p^{\prime}} c_{1}^{q / p^{\prime}}\left(\int_{0}^{\infty}(f(y))^{p}\left(\int_{U_{y}}(x+t)^{(\alpha-1) q} d \nu(x, t)\right)^{p / q} y^{p / p^{\prime}} d y\right)^{q / p} \\
& \leq\left(2 c_{1}\right)^{q / p^{\prime}} B^{q}\|f\|_{L^{p}\left(\mathbb{R}_{+}\right)}^{q} .
\end{aligned}
$$

Now we will show that (i) \Rightarrow (iii). Let $k \in \mathbb{Z}$ and $f_{k}(x)=\chi_{\left[0,2^{k-1}\right)}(x)$. Then $\left\|f_{k}\right\|_{L^{p}\left(\mathbb{R}_{+}\right)}=2^{(k-1) / p}$. On the other hand,

$$
\left\|T_{\alpha} f_{k}\right\|_{L_{\nu}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)} \geq c_{3}\left(\int_{U_{2^{k} \backslash U_{2^{k+1}}}}(x+t)^{(\alpha-1) q} 2^{(k-1) q} d \nu(x, t)\right)^{1 / q}
$$

Therefore $c_{4} B_{1} \leq\left\|T_{\alpha}\right\|<\infty$, where $c_{4}=3^{\alpha-1} 2^{-2 / p^{\prime}+1-\alpha}$ if $1 / p<\alpha<1$ and $c_{4}=2^{1-\alpha-2 / p^{\prime}}$ if $\alpha \geq 1$.

Analogously we can show that $c_{5} B \leq\left\|T_{\alpha}\right\|$, where $c_{5}=3^{\alpha-1} 2^{1 / p-\alpha}$ if $1 / p<\alpha<1$ and $c_{5}=2^{1 / p-\alpha}$ for $\alpha \geq 1$.

Let now $r>0$. Then $r \in\left[2^{m}, 2^{m+1}\right)$ for some $m \in \mathbb{Z}$. Therefore

$$
\begin{aligned}
\left(\int_{U_{r}}(x+t)^{(\alpha-1) q} d \nu(x, t)\right) r^{q / p^{\prime}} \leq 2^{(m+1) q / p^{\prime}} \int_{U_{2} m}(x+t)^{(\alpha-1) q} d \nu(x, t) \\
=2^{q / p^{\prime}} 2^{m q / p^{\prime}} \sum_{k=m}^{+\infty} \int_{U_{2^{k}} \backslash U_{2^{k+1}}}(x+t)^{(\alpha-1) q} d \nu(x, t) \\
\leq 2^{q / p^{\prime}} B_{1}^{q} 2^{m q / p^{\prime}} \sum_{k=m}^{+\infty} 2^{-k q / p^{\prime}}=2^{q / p^{\prime}}\left(1-2^{-q / p^{\prime}}\right)^{-1} B_{1}^{q}
\end{aligned}
$$

Thus (iii) implies (ii). So that finally (ii) \Rightarrow (i) \Rightarrow (iii) \Rightarrow (ii).
Remark 1. For the constants b_{1}, b_{2}, b_{3} and b_{4} from Theorem 1 we have: $b_{1}=$ $3^{\alpha-1} 2^{1 / p-\alpha}, b_{2}=2^{3-\alpha}+3^{1 / p^{\prime}} 2^{1-\alpha}\left((\alpha-1) p^{\prime}+1\right)^{-1 / p^{\prime}}, b_{3}=3^{\alpha-1} 2^{-2 / p^{\prime}+1-\alpha}$ in the case, where $1 / p<\alpha<1$ and $b_{1}=2^{1 / p-\alpha}, b_{2}=2^{\alpha+1}, b_{3}=2^{-2 / p^{\prime}+1-\alpha}$ if $\alpha \geq 1$. $b_{4}=2^{1 / p^{\prime}}\left(1-2^{-q / p^{\prime}}\right)^{-1 / q} b_{2}$.

Let us now consider the case $q<p$.
Theorem 2. Let $0<q<p<\infty, p>1$ and $\alpha>1 / p$. Assume that v is an almost everywhere positive Lebesgue-measurable function on $\widetilde{\mathbb{R}}_{+}^{2}$. Then the operator T_{α} is bounded from $L^{p}\left(\mathbb{R}_{+}\right)$into $L_{v}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)$ if and only if

$$
D \equiv\left(\int_{0}^{\infty}\left(\int_{U_{x}}(y+t)^{(\alpha-1) q} v(y, t) d y d t\right)^{\frac{p}{p-q}} x^{\frac{(q-1) p}{p-q}} d x\right)^{\frac{p-q}{p q}}<\infty
$$

Moreover, there exist positive constants d_{1} and d_{2} depending only on p, q and α such that

$$
d_{1} D \leq\left\|T_{\alpha}\right\| \leq d_{2} D
$$

Proof. Let $f \geq 0$ and let $\alpha \geq 1$. Then using Lemma 2 we obtain

$$
\begin{aligned}
\left\|T_{\alpha} f\right\|_{L_{v}^{q}} & \leq 2^{\alpha-1}\left(\int_{\widetilde{\mathbb{R}}_{+}^{2}}(x+t)^{(\alpha-1) q}\left(\int_{0}^{x} f(y) d y\right)^{q} v(x, t) d x d t\right)^{1 / q} \\
& \leq \lambda_{2} 2^{\alpha-1} D\|f\|_{L^{p}\left(\mathbb{R}_{+}\right)}
\end{aligned}
$$

where λ_{2} is from Lemma 2. Now let $1 / p<\alpha<1$. Then as in the proof of

Theorem 1, we have

$$
\begin{aligned}
\left\|T_{\alpha} f\right\|_{L_{v}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)} \leq & c_{1}\left(\int_{\widetilde{\mathbb{R}}_{+}^{2}}\left(\int_{0}^{x / 2} f(y)(x-y+t)^{\alpha-1} d y\right)^{q} v(x, t) d x d t\right)^{1 / q} \\
& +c_{1}\left(\int_{\widetilde{\mathbb{R}}_{+}^{2}}\left(\int_{x / 2}^{x} f(y)(x-y+t)^{\alpha-1} d y\right)^{q} v(x, t) d x d t\right)^{1 / q} \\
\equiv & I_{1}+I_{2}
\end{aligned}
$$

where $c_{1}=1$ if $q \geq 1$ and $c_{1}=2^{1 / q-1}$ if $0<q<1$. By virtue of Lemma 2, for I_{1} we obtain

$$
\begin{aligned}
I_{1} & \leq 2^{1-\alpha} c_{1}\left(\int_{\widetilde{\mathbb{R}}_{+}^{2}}(H f(x))^{q}(x+t)^{(\alpha-1) q} v(x, t) d x d t\right)^{1 / q} \\
& \leq c_{1} \lambda_{2} 2^{1-\alpha} D\|f\|_{L^{p}\left(\mathbb{R}_{+}\right)}
\end{aligned}
$$

Applying the Hölder's inequality twice, we find

$$
\begin{aligned}
I_{2}^{q} \leq & c_{2} \int_{\widetilde{\mathbb{R}}_{+}^{2}}\left(\int_{x / 2}^{x}(f(y))^{p} d y\right)^{q / p}(x+t)^{(\alpha-1) q} x^{q / p^{\prime}} v(x, t) d x d t \\
\leq & c_{2} \sum_{k \in \mathbb{Z}}\left(\int_{2^{k-1}}^{2^{k+1}}(f(y))^{p} d y\right)^{q / p}\left(\int_{U_{2^{k}} \backslash U_{2^{k+1}}}(x+t)^{(\alpha-1) q} x^{q / p^{\prime}} v(x, t) d x d t\right) \\
\leq & c_{2}\left(\sum_{k \in \mathbb{Z}} \int_{2^{k-1}}^{2^{k+1}}(f(y))^{p} d y\right)^{q / p} \\
& \times\left(\sum_{k \in \mathbb{Z}}\left(\int_{U_{2^{k}} \backslash U_{2^{k+1}}}(x+t)^{(\alpha-1) q} x^{q / p^{\prime}} v(x, t) d x d t\right)^{\frac{p}{p-q}}\right)^{\frac{p-q}{p}} \\
\leq & 2^{q / p} c_{2}\|f\|_{L^{p}\left(\mathbb{R}_{+}\right)}^{q} \widetilde{B}_{1}
\end{aligned}
$$

where $c_{2}=c_{1}^{q}\left(3 \cdot 2^{(1-\alpha) p^{\prime}-1}\left((\alpha-1) p^{\prime}+1\right)^{-1}\right)^{q / p^{\prime}}$ and

$$
\begin{aligned}
\widetilde{B}_{1} & \equiv\left(\sum_{k \in \mathbb{Z}}\left(\int_{U_{2^{k} \backslash U_{2^{k+1}}}}(x+t)^{(\alpha-1) q} x^{q / p^{\prime}} v(x, t) d x d t\right)^{\frac{p}{p-q}}\right)^{\frac{p-q}{p}} \\
& \equiv\left(\sum_{k \in \mathbb{Z}} \widetilde{B}_{1, k}\right)^{\frac{p-q}{p}}
\end{aligned}
$$

For $\widetilde{B}_{1, k}$ we have

$$
\begin{aligned}
\widetilde{B}_{1, k} & \leq 2^{\frac{(k+1) q(p-1)}{p-q}}\left(\int_{U_{2^{k} \backslash U_{2^{k+1}}}}(x+t)^{(\alpha-1) q} v(x, t) d x d t\right)^{\frac{p}{p-q}} \\
& \leq c_{3} \int_{2^{k-1}}^{2^{k}} y^{\frac{p(q-1)}{p-q}}\left(\int_{U_{y}}(x+t)^{(\alpha-1) q} v(x, t) d x d t\right)^{\frac{p}{p-q}} d y,
\end{aligned}
$$

where $c_{3}=4^{\frac{(p-1) q}{p-q}} \frac{q(p-1)}{p-q}\left(2^{\frac{(p-1) q}{p-q}}-1\right)^{-1}$. Therefore $\widetilde{B}_{1} \leq\left(c_{3}\right)^{\frac{p-q}{p}} D^{q}$. Finally, we obtain $I_{2} \leq c_{4} D\|f\|_{L^{p}\left(\mathbb{R}_{+}\right)}$, where $c_{4}=2^{1 / p}\left(c_{2}\right)^{1 / q}\left(c_{3}\right)^{\frac{p-q}{p q}}$.

Now let us prove the necessity. Let T_{α} be bounded from $L^{p}\left(\mathbb{R}_{+}\right)$into $L_{v}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)$. Then for each $x \in(0, \infty)$ we have

$$
\int_{U_{x}} v(y, t)(y+t)^{(\alpha-1) q} d y d t<\infty .
$$

Let $n \in \mathbb{Z}$ and

$$
f_{n}(x)=\left(\int_{x}^{\infty} \bar{v}_{n}(y) d y\right)^{\frac{1}{p-q}} x^{\frac{q-1}{p-q}}
$$

where

$$
\bar{v}_{n}(x)=\left(\int_{0}^{\infty} v(x, t)(x+t)^{(\alpha-1) q} d t\right) \chi_{(1 / n, n)}(x)
$$

The boundedness of T_{α} implies that $f_{n}(x)<\infty$ for each $x \in \mathbb{R}_{+}$. Applying integration by parts, we obtain

$$
\begin{aligned}
\left\|f_{n}\right\|_{L^{p}\left(\mathbb{R}_{+}\right)} & =\left(\int_{0}^{\infty}\left(\int_{x}^{\infty} \bar{v}_{n}(y) d y\right)^{\frac{p}{p-q}} x^{\frac{p(q-1)}{p-q}} d x\right)^{1 / p} \\
& =\left(\frac{p^{\prime}}{q} \int_{0}^{\infty}\left(\int_{x}^{\infty} \bar{v}_{n}(y) d y\right)^{\frac{q}{p-q}} \bar{v}_{n}(x) x^{\frac{q(p-1)}{p-q}} d x\right)^{1 / p}<\infty
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \left\|T_{\alpha}\right\|_{L_{v}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)} \geq\left(\int_{\widetilde{\mathbb{R}}_{+}^{2}}\left(\int_{0}^{x / 2} f_{n}(y)(x-y+t)^{\alpha-1} d y\right)^{q} v(x, t) d x d t\right)^{1 / q} \\
& \quad \geq\left(\int_{\tilde{\mathbb{R}}_{+}^{2}}\left(\int_{x}^{\infty} \bar{v}_{n}(y) d y\right)^{\frac{q}{p-q}}\left(\int_{0}^{x / 2}(x-y+t)^{\alpha-1} y^{\frac{q-1}{p-q}} d y\right)^{q} v(x, t) d x d t\right)^{1 / q} \\
& \quad \geq c_{5}\left(\int_{\widetilde{\mathbb{R}}_{+}^{2}} v(x, t)\left(\int_{x}^{\infty} \bar{v}_{n}(y) d y\right)^{\frac{q}{p-q}}(x+t)^{(\alpha-1) q} x^{\frac{q(p-1)}{p-q}} d x d t\right)^{1 / q} \\
& \quad=c_{5}\left(\int_{0}^{\infty}\left(\int_{0}^{\infty} v(x, t)(x+t)^{(\alpha-1) q} d t\right)\left(\int_{x}^{\infty} \bar{v}_{n}(y) d y\right)^{\frac{q}{p-q}} x^{\frac{(p-1) q}{p-q}} d x\right)^{1 / q} \\
& \quad \geq c_{5}\left(\int_{0}^{\infty} \bar{v}_{n}(x)\left(\int_{x}^{\infty} \bar{v}_{n}(y) d y\right)^{\frac{q}{p-q}} x^{\frac{(p-1) q}{p-q}} d x\right)^{1 / q} \\
& \quad=c_{6}\left(\int_{0}^{\infty}\left(\int_{x}^{\infty} \bar{v}_{n}(y) d y\right)^{\frac{p}{p-q}} x^{\frac{(q-1) p}{p-q}} d x\right)^{1 / q},
\end{aligned}
$$

with $c_{6}=\left(q / p^{\prime}\right)^{1 / q} 2^{-\frac{p-1}{p-q}} \frac{p-q}{p-1} c_{7}$, where $c_{7}=\left(\frac{3}{2}\right)^{\alpha-1}$ if $1 / p<\alpha<1$ and $c_{7}=\left(\frac{1}{2}\right)^{\alpha-1}$ if $\alpha \geq 1$. Therefore

$$
c_{6}\left(\int_{0}^{\infty}\left(\int_{x}^{\infty} \bar{v}_{n}(y) d y\right)^{\frac{p}{p-q}} x^{\frac{(q-1) p}{p-q}} d x\right)^{\frac{p-q}{p q}} \leq\left\|T_{\alpha}\right\| .
$$

By virtue of Fatou's lemma we finally conclude that $c_{6} D \leq\left\|T_{\alpha}\right\|<\infty$.
Remark 2. It follows from the proof of Theorem 2 that for the constants d_{1} and d_{2} we have: $d_{1}=\left(\frac{q}{p^{\prime}}\right)^{1 / q} 2^{\frac{1-p}{p-q}} \frac{p-q}{p-1} \gamma_{1}(\alpha)$, where $\gamma_{1}(\alpha)=(3 / 2)^{\alpha-1}$ if $1 / p<\alpha<1$ and $\gamma_{1}(\alpha)=(1 / 2)^{\alpha-1}$ if $\alpha \geq 1, d_{2}=\lambda_{2} 2^{\alpha-1}$ for $\alpha \geq 1$, and if $1 / p<\alpha<1$, then

$$
\begin{aligned}
d_{2}= & \lambda_{2} \gamma_{2}(q) 2^{1-\alpha}+2^{2 / p-\alpha} 3^{1 / p^{\prime}}\left((\alpha-1) p^{\prime}+1\right)^{-1 / p^{\prime}} 4^{1 / p^{\prime}} \\
& \times\left(\frac{q(p-1)}{p-q}\right)^{\frac{p-q}{p q}}\left(2^{\frac{(p-1) q}{p-q}}-1\right)^{-\frac{p-q}{p q}} \gamma_{2}(q)
\end{aligned}
$$

where $\gamma_{2}(q)=1$ for $q \geq 1, \gamma_{2}(q)=2^{1 / q-1}$ for $0<q<1$.
Using dual arguments, we readily obtain the following theorems:
Theorem 3. Let $1<p \leq q<\infty, \alpha>(q-1) / q$. Then the following conditions are equivalent:
(i) \widetilde{T}_{α} is bounded from $L_{\nu}^{p}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)$ into $L^{q}\left(\mathbb{R}_{+}\right)$;
(ii) $\widetilde{B} \equiv \sup _{r>0}\left(\int_{U_{r}}(x+t)^{(\alpha-1) p^{\prime}} d \nu(x, t)\right)^{\frac{1}{p^{\prime}}} r^{\frac{1}{q}}<\infty$;
(iii) $\widetilde{B}_{1} \equiv \sup _{k \in Z}\left(\int_{U_{2^{k}} \backslash U_{2^{k+1}}}(x+t)^{(\alpha-1) p^{\prime}} x^{p^{\prime} / q} d \nu(x, t)\right)^{\frac{1}{p^{\prime}}}<\infty$.

Moreover, there exist positive constants $\widetilde{b}_{1}, \widetilde{b}_{2}, \widetilde{b}_{3}$ and \widetilde{b}_{4} depending only on p, q and α such that

$$
\widetilde{b}_{1} \widetilde{B} \leq\left\|\widetilde{T}_{\alpha}\right\| \leq \widetilde{b}_{2} \widetilde{B}, \quad \widetilde{b}_{3} \widetilde{B}_{1} \leq\left\|\widetilde{T}_{\alpha}\right\| \leq \widetilde{b}_{4} \widetilde{B}_{1}
$$

Theorem 4. Let $1<q<p<\infty$ and $\alpha>(q-1) / q$. Let ν be absolutely continuous, i.e. $d \nu(x, y)=w(x, t) d x d t$. Then \widetilde{R}_{α} is bounded from $L_{w}^{p}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)$ into $L^{q}\left(\mathbb{R}_{+}\right)$if and only if

$$
\widetilde{D} \equiv\left(\int_{0}^{\infty}\left(\int_{U_{x}}(y+t)^{(\alpha-1) p^{\prime}} w(y, t) d y d t\right)^{\frac{q(p-1)}{p-q}} x^{\frac{q}{p-q}} d x\right)^{\frac{p-q}{p q}}<\infty
$$

Moreover, $\widetilde{d}_{1} \widetilde{D} \leq\left\|\widetilde{T}_{\alpha}\right\| \leq \widetilde{d}_{2} \widetilde{D}$, where the positive constants \widetilde{d}_{1} and \widetilde{d}_{2} depend only on p, q and α.

4 Compactness

In this section, criteria for the compactness of the operators T_{α} and \widetilde{T}_{α} are established. First we will prove

Lemma 3. Let $1<p \leq q<\infty, \alpha>1 / p$ and let ν be separable measure. If
(i) $B<\infty$;
(ii) $\lim _{a \rightarrow 0} B^{(a)}=\lim _{b \rightarrow+\infty} B^{(b)}=0$, where

$$
\begin{aligned}
B^{(a)} & \equiv \sup _{0<r<a}\left(\int_{U_{r} \backslash U_{a}}(x+t)^{(\alpha-1) q} d \nu(x, t)\right)^{1 / q} r^{1 / p^{\prime}} \\
B^{(b)} & \equiv \sup _{r>b}\left(\int_{U_{r}}(x+t)^{(\alpha-1) q} d \nu(x, t)\right)^{1 / q} r^{1 / p^{\prime}}
\end{aligned}
$$

then T_{α} is compact from $L^{p}\left(\mathbb{R}_{+}\right)$into $L_{\nu}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)$.

Proof. Let us represent T_{α} as

$$
\begin{aligned}
T_{\alpha} f= & \chi_{V_{a}} T_{\alpha}\left(\chi_{[0, a)} f\right)+\chi_{V_{b} \backslash V_{a}} T_{\alpha}\left(\chi_{(0, b)} f\right)+\chi_{U_{b}} T_{\alpha}\left(\chi_{(0, b / 2]} f\right) \\
& +\chi_{U_{b}} T_{\alpha}\left(\chi_{(b / 2, \infty)} f\right) \equiv P_{1} f+P_{2} f+P_{3} f+P_{4} f,
\end{aligned}
$$

where $V_{r} \equiv[0, r) \times \mathbb{R}_{+}$. (It is obvious that $[a, b) \times \mathbb{R}_{+}=V_{b} \backslash V_{a}$.)
For P_{2} we have

$$
P_{2} f(x, t)=\int_{0}^{\infty} \bar{k}(x, t, y) f(y) d y
$$

where $\bar{k}(x, t, y)=\chi_{V_{b} \backslash V_{a}}(x, t) \chi_{(0, x)}(y)(x-y+t)^{\alpha-1}$. Moreover, using the inequality

$$
\int_{0}^{x}(x-y+t)^{(\alpha-1) p^{\prime}} d y \leq b(x+t)^{(\alpha-1) p^{\prime}} x
$$

where the constant $b>0$ is independent of x and t, we get

$$
\begin{aligned}
\left\|\|\bar{k}(x, t, y)\|_{L^{p^{\prime}}\left(\mathbb{R}_{+}\right)}\right\|_{L_{\nu}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)} & =\left(\int_{V_{b} \backslash V_{a}}\left(\int_{0}^{x}(x-y+t)^{(\alpha-1) p^{\prime}} d y\right)^{q / p^{\prime}} d \nu(x, t)\right)^{1 / q} \\
& \leq c_{1}\left(\int_{V_{b} \backslash V_{a}}(x+t)^{(\alpha-1) q} x^{q / p^{\prime}} d \nu(x, t)\right)^{1 / q}<\infty
\end{aligned}
$$

For P_{3} we obtain $P_{3} f(x, t)=\int_{0}^{\infty} \widetilde{k}(x, t, y) f(y) d y$, where

$$
\widetilde{k}(x, t, y)=\chi_{U_{b}}(x, t) \chi_{(0, b / 2]}(y)(x-y+t)^{\alpha-1}
$$

It can be easily verified that $\left\|\|\widetilde{k}(x, t, y)\|_{L^{p^{\prime}}\left(\mathbb{R}_{+}\right)}\right\|_{L_{\nu}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)}<\infty$. Using Theorem A we conclude that P_{2} and P_{3} are compact operators.

By Theorem 1 we have

$$
\begin{equation*}
\left\|P_{1}\right\| \leq b_{2} B^{(a)}<\infty \quad \text { and } \quad\left\|P_{4}\right\| \leq b_{2} B^{(b / 2)}<\infty \tag{1}
\end{equation*}
$$

where b_{2} is from Theorem 1. Hence we obtain

$$
\begin{equation*}
\left\|T_{\alpha}-P_{2}-P_{3}\right\| \leq\left\|P_{1}\right\|+\left\|P_{4}\right\| \rightarrow 0 \tag{2}
\end{equation*}
$$

as $a \rightarrow 0$ and $b \rightarrow+\infty$. Therefore T_{α} is compact as a limit of the sequence of compact operators.

Theorem 5. Let p, q, α and ν satisfy the conditions of Lemma 3. Then the following conditions are equivalent:
(i) T_{α} is compact from $L^{p}\left(\mathbb{R}_{+}\right)$to $L_{\nu}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)$;
(ii) $B<\infty$ and $\lim _{a \rightarrow 0} B^{(a)}=\lim _{b \rightarrow+\infty} B^{(b)}=0$;
(iii) $B<\infty$ and $\lim _{r \rightarrow 0} B(r)=\lim _{r \rightarrow+\infty} B(r)=0$, where

$$
B(r) \equiv\left(\int_{U_{r}}(x+t)^{(\alpha-1) q} d \nu(x, t)\right)^{\frac{1}{q}} r^{\frac{1}{p^{\prime}}}
$$

(iv) $B_{1}<\infty$ and $\lim _{k \rightarrow-\infty} B_{1}(k)=\lim _{k \rightarrow+\infty} B_{1}(k)=0$, where

$$
B_{1}(k) \equiv\left(\int_{U_{2^{k}} \backslash U_{2^{k+1}}}(x+t)^{(\alpha-1) q} x^{q / p^{\prime}} d \nu(x, t)\right)^{\frac{1}{q}}
$$

Proof. By Lemma 3 we have (ii) \Rightarrow (i). Now let us show that (iii) \Rightarrow (ii). Since

$$
B^{(a)} \leq \sup _{0<r<a} B(r) \text { and } B^{(b)}=\sup _{r>b} B(r)
$$

we obtain $B^{(a)} \rightarrow 0$ as $a \rightarrow 0$ and $B^{(b)} \rightarrow+\infty$ as $b \rightarrow \infty$. Therefore (iii) \Rightarrow (ii). Let now T_{α} be compact from $L^{p}\left(\mathbb{R}_{+}\right)$into $L_{\nu}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)$. Let $r>0$ and $f_{r}(x)=\chi_{(0, r / 2)}(x) r^{-1 / p}$. Now it can be easily verified that f_{r} weakly converges to 0 if $r \rightarrow 0$. On the other hand, $\left\|T_{\alpha} f_{r}\right\|_{L_{\nu}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)} \geq c_{1} B(r) \rightarrow 0$ as $r \rightarrow 0$, since $T_{\alpha} f_{r}$ strongly converges to 0 . Now, if we take

$$
g_{r}(x, t)=\chi_{U_{r}}(x, t)(x+t)^{(\alpha-1)(q-1)}\left(\int_{U_{r}}(y+t)^{(\alpha-1) q} d \nu(y, t)\right)^{-1 / q^{\prime}}
$$

then we readily find that g_{r} weakly converges to 0 as $r \rightarrow+\infty$. Since \widetilde{T}_{α} is compact from $L_{\nu}^{q^{\prime}}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)$ into $L^{p^{\prime}}\left(\mathbb{R}_{+}\right)$and $\left\|\widetilde{T}_{\alpha} g_{r}\right\|_{L^{p^{\prime}}\left(\mathbb{R}_{+}\right)} \geq c_{2} B(r)$, we obtain $\lim _{r \rightarrow+\infty} B(r)=0$. Therefore (i) \Rightarrow (iii).

Now we will prove that (ii) follows from (iv). Using Theorem 1, we establish the fact that $B \leq b_{1} B_{1}$. Let $a>0$. Then $a \in\left[2^{m}, 2^{m+1}\right.$) for some $m \in \mathbb{Z}$. Therefore $B^{(a)} \leq \sup _{0<r<2^{m}} B_{2^{m}, r} \equiv B^{\left(2^{m}\right)}$, where

$$
B_{2^{m}, r} \equiv\left(\int_{U_{r} \backslash U_{2} m}(x+t)^{(\alpha-1) q} d \nu(x, t)\right)^{\frac{1}{q}} r^{\frac{1}{p^{\prime}}}
$$

If $r \in\left[0,2^{m}\right)$, then $r \in\left[2^{j-1}, 2^{j}\right)$ for some $j \in \mathbb{Z}, j \leq m$. Furthermore,

$$
B_{2^{m}, r}^{q} \leq 2^{\frac{j q}{p^{\prime}}} \sum_{k=j}^{m} \int_{U_{2^{k-1}} \backslash U_{2^{k}}}(x+t)^{(\alpha-1) q} d \nu(x, t) \leq c_{3}\left(\sup _{k \leq m} B_{1}(k-1)\right)^{q}
$$

Hence we have $B^{\left(2^{m}\right)} \leq c_{4} B_{1}^{(m)}$, where $B_{1}^{(m)} \equiv \sup _{k \leq m} B_{1}(k-1)$. If $a \rightarrow 0$, then $m \rightarrow-\infty$ and $B_{1}^{(m)} \rightarrow 0$. Therefore $\lim _{a \rightarrow 0} B^{(a)}=0$.

Let now $\tau>0$. Then $\tau \in\left[2^{m}, 2^{m+1}\right)$ and we have

$$
\begin{aligned}
B^{q}(\tau) & \leq c_{5} B^{q}\left(2^{m}\right)=c_{5} 2^{\frac{m q}{p^{\prime}}} \sum_{k=m}^{+\infty} \int_{U_{2^{k} \backslash U_{2^{k+1}}}}(x+t)^{(\alpha-1) q} d \nu(x, t) \\
& \leq c_{6}\left(\sup _{k \geq m} B_{1}(k)\right)^{q} .
\end{aligned}
$$

Hence it readily follows that $\lim _{\tau \rightarrow+\infty} B(\tau) \leq c_{7} \lim _{m \rightarrow+\infty} \sup _{k \geq m} B_{1}(k)=0$ and $\lim _{b \rightarrow+\infty} B^{(b)}=0$. Thus (iv) \Rightarrow (ii). Let now T_{α} is compact from $L^{p}\left(\mathbb{R}_{+}\right)$ into $L_{\nu}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right), k \in \mathbb{Z}$ and $f_{k}(x)=\chi_{\left[2^{k-2}, 2^{k-1}\right)}(x) 2^{-k / p}$. Then the sequence f_{k} weakly converges to 0 as $k \rightarrow-\infty$ or $k \rightarrow+\infty$. Moreover, it is easy to show that $\left\|T_{\alpha} f_{k}\right\|_{L_{\nu}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)} \geq c_{8} B_{1}(k)$. Therefore (iv) is valid. Finally, we obtain (i) \Leftrightarrow (iii), (iv) \Rightarrow (ii) \Rightarrow (i) \Rightarrow (iv).

Our next theorem is proved in a similar manner. It is also a corollary of the well-known Ando's theorem (see, e.g., [2] and [14], §5).

Theorem 6. Let p, q, α and v satisfy the condition of Theorem 2. Then T_{α} is compact from $L^{p}\left(\mathbb{R}_{+}\right)$into $L_{v}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)$ if and only if $D<\infty$.

By dual arguments we obtain the following theorems.
Theorem 7. Let $1<p \leq q<\infty, \alpha>\frac{q-1}{q}$. It is assumed that ν is a positive σ-finite measure such that the space $L_{\nu}^{p}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)$ is separable. Then the following conditions are equivalent:
(i) \widetilde{T}_{α} is compact from $L_{\nu}^{p}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)$ into $L^{q}\left(\mathbb{R}_{+}\right)$;
(ii) $\widetilde{B}<\infty$ and $\lim _{a \rightarrow 0} \widetilde{B}^{(a)}=\lim _{b \rightarrow+\infty} \widetilde{B}^{(b)}=0$, where

$$
\begin{aligned}
\widetilde{B}^{(a)} & \equiv \sup _{0<r<a}\left(\int_{U_{r} \backslash U_{a}}(x+t)^{(\alpha-1) p^{\prime}} d \nu(x, t)\right)^{1 / p^{\prime}} r^{1 / q} \\
\widetilde{B}^{(b)} & \equiv \sup _{r>b} \widetilde{B}(r) \equiv \sup _{r>b}\left(\int_{U_{r}}(x+t)^{(\alpha-1) p^{\prime}} d \nu(x, t)\right)^{1 / p^{\prime}} r^{1 / q} ;
\end{aligned}
$$

(iii) $\widetilde{B}<\infty$ and $\lim _{r \rightarrow 0} \widetilde{B}(r)=\lim _{r \rightarrow+\infty} \widetilde{B}(r)=0$;
(iv) $\widetilde{B}_{1}<\infty$ and $\lim _{k \rightarrow-\infty} \widetilde{B}_{1}(k)=\lim _{k \rightarrow+\infty} \widetilde{B}_{1}(k)=0$, where

$$
\widetilde{B}_{1}(k) \equiv\left(\int_{U_{2^{k}} \backslash U_{2^{k+1}}}(x+t)^{(\alpha-1) p^{\prime}} x^{p^{\prime} / q} d \nu(x, t)\right)^{\frac{1}{q}} .
$$

Theorem 8. Let $1<q<p<\infty$ and $\alpha>\frac{q-1}{q}$. Suppose that $d \nu(x, t)=$ $w(x, t) d x d t$, where w is a measurable a.e. positive function on $\widetilde{\mathbb{R}}_{+}^{2}$. Then \widetilde{T}_{α} is compact from $L_{w}^{p}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)$ into $L^{q}\left(\mathbb{R}_{+}\right)$if and only if $\widetilde{D}<\infty$.

5 Measure of Non-Compactness

In this section, the distance of the operator T_{α} from a space of compact operators is estimated.

Let X and Y be Banach spaces. Denote by $\mathbb{B}(X, Y)$ a space of bounded operators from X into Y. Let $\mathbb{K}(X, Y)$ be a class of all compact operators from X into $Y, \mathbb{F}_{r}(X, Y)$ be a space of operators of finite rank.

It is assumed that v is a Lebesgue-measurable almost everywhere positive function on $\widetilde{\mathbb{R}}_{+}^{2}$.

We need the following lemmas.
Lemma 4. [[4], Chapter V, Corollary 5.4]. Let $1 \leq q<\infty$ and $P \in \mathbb{B}(X, Y)$, where $Y=L^{q}\left(\mathbb{R}_{+}^{2}\right)$. Then

$$
\operatorname{dist}(P, \mathbb{K}(X, Y))=\operatorname{dist}\left(P, \mathbb{F}_{r}(X, Y)\right) .
$$

Our next lemma is proved like Lemma V.5.6 in [4] (see also [21], Lemma 2.2).

Lemma 5. Let $1 \leq q<\infty$ and $Y=L^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)$. It is assumed that $P \in \mathbb{F}_{r}(X, Y)$ and $\epsilon>0$. Then there exist $T \in \mathbb{F}_{r}(X, Y)$ and $[\alpha, \beta] \subset(0, \infty)$ such that $\|P-T\|<\epsilon$ and supp $T f \subset[\alpha, \beta] \times \mathbb{R}_{+}$for any $f \in X$.

Let $T_{\alpha}^{\prime}(0<\alpha<1)$ be an operator of the form $T_{\alpha}^{\prime} f(x, t)=v^{1 / q}(x, t) T_{\alpha} f(x, t)$. We denote

$$
\widetilde{I} \equiv \operatorname{dist}\left(T _ { \alpha } , \mathbb { K } (X , L _ { v } ^ { q } (\widetilde { \mathbb { R } } _ { + } ^ { 2 })) , \text { and } \overline { I } \equiv \operatorname { d i s t } \left(T_{\alpha}^{\prime}, \mathbb{K}\left(X, L^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)\right) .\right.\right.
$$

Lemma 6. Let $1 \leq q<\infty$. Then $\widetilde{I}=\bar{I}$.
Proof. Let $E \equiv\left\{f:\|f\|_{X} \leq 1\right\}$ and $P \in \mathbb{K}\left(X, L_{v}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)\right)$. Then

$$
\begin{aligned}
\left\|T_{\alpha}-P\right\| & =\sup _{E}\left\|\left(T_{\alpha}-P\right) f\right\|_{L_{v}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)} \\
& =\sup _{E}\left\|T_{\alpha}^{\prime} f-v^{1 / q} P f\right\|_{L^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)}=\left\|T_{\alpha}^{\prime}-\bar{P}\right\|,
\end{aligned}
$$

where $\bar{P}=v^{1 / q} P$. But $\bar{P} \in \mathbb{K}\left(X, L^{q}\left(\mathbb{R}_{+}^{2}\right)\right)$. Therefore $\bar{I} \leq \widetilde{I}$. Similarly, we obtain $\widetilde{I} \leq \bar{I}$.

Theorem 9. Let $1<p \leq q<\infty, \alpha>1 / p$ and let $X=L^{p}\left(\mathbb{R}_{+}\right), Y=L_{v}^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)$. Assume that $B<\infty$ for $d \nu(x, t)=v(x, t) d x d t$. Then there exist positive constants ϵ_{1} and ϵ_{2} depending only on p, q and α such that

$$
\epsilon_{1} J \leq \operatorname{dist}\left(T_{\alpha}, \mathbb{K}(X, Y)\right) \leq \epsilon_{2} J
$$

where $J=\lim _{a \rightarrow 0} J^{(a)}+\lim _{d \rightarrow+\infty} J^{(d)}$,

$$
\begin{aligned}
J^{(a)} & \equiv \sup _{0<r<a}\left(\int_{U_{r} \backslash U_{a}} v(x, t)(x+t)^{(\alpha-1) q} d x d t\right)^{1 / q} r^{1 / p^{\prime}} \\
J^{(d)} & \equiv \sup _{r>d}\left(\int_{U_{r}} v(x, t)(x+t)^{(\alpha-1) q} d x d t\right)^{1 / q} r^{1 / p^{\prime}}
\end{aligned}
$$

Proof. By the inequalities (1) and (2) from the proof of Lemma 3, we obtain $\widetilde{I} \equiv \operatorname{dist}\left(T_{\alpha}, \mathbb{K}(X, Y)\right) \leq b_{2} J$, where b_{2} is from Theorem 1. Let $\lambda>\widetilde{I}$. By Lemma 6 we have $\widetilde{I}=\bar{I}$. Using Lemma 4, we find that there exists an operator of finite rank $P: X \rightarrow L^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)$ such that $\left\|T_{\alpha}^{\prime}-P\right\|<\lambda$. From Lemma 5 it follows that for $\epsilon=\left(\lambda-\left\|T_{\alpha}^{\prime}-P\right\|\right) / 2$ there are $T \in \mathbb{F}_{r}\left(X, L^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)\right)$ and $[\alpha, \beta] \subset(0, \infty)$ such that $\|P-T\|<\epsilon$ and $\operatorname{supp} T f \subset[\alpha, \beta] \times \mathbb{R}_{+}$. Therefore for all $f \in X$ we have $\left\|T_{\alpha}^{\prime} f-T f\right\|_{L^{q}\left(\widetilde{\mathbb{R}}_{+}^{2}\right)} \leq \lambda\|f\|_{X}$. Moreover,

$$
\begin{equation*}
\int_{[0, \alpha] \times \mathbb{R}_{+}}\left|T_{\alpha}^{\prime} f(x, t)\right|^{q} d x d t+\int_{[\beta, \infty) \times \mathbb{R}_{+}}\left|T_{\alpha}^{\prime} f(x, t)\right|^{q} d x d t \leq \lambda^{q}\|f\|_{L^{p}\left(\mathbb{R}_{+}\right)}^{q} \tag{3}
\end{equation*}
$$

Let now $d>\beta$ and $r \in(d, \infty)$. Assume that $f_{r}(y)=\chi_{0, r / 2)}(y)$. Then $\left\|f_{r}\right\|_{L^{p}\left(\mathbb{R}_{+}\right)}^{q}=2^{-q / p} r^{q / p}$. On the other hand,

$$
\begin{aligned}
\int_{U_{r}}\left|T_{\alpha}^{\prime} f_{r}(x, t)\right|^{q} j d t & \geq \int_{U_{r}}\left(\int_{0}^{r / 2}(x-y+t)^{\alpha-1} d y\right)^{q} v(x, t) d x d t \\
& \geq c_{1}\left(\int_{U_{r}} v(x, t)(x+t)^{(\alpha-1) q} d x d t\right) r^{q}
\end{aligned}
$$

where $c_{1}=3^{(\alpha-1) q} 2^{-\alpha q}$ if $1 / p<\alpha<1$ and $c_{1}=2^{-\alpha q}$ for $\alpha \geq 1$. Therefore

$$
\lambda \geq c_{1}^{1 / q} 2^{1 / p}\left(\int_{U_{r}} v(x, t)(x+t)^{(\alpha-1) q} d x d t\right)^{1 / q} r^{1 / p^{\prime}}
$$

for all $r>d$. Hence we have $c_{2} J^{(d)} \leq \lambda$ for any $d>\beta$ and, finally, we obtain $c_{2} \lim _{d \rightarrow+\infty} J^{(d)} \leq \lambda$. Since λ is arbitrarily close to \widetilde{I}, we conclude that $c_{2} \lim _{d \rightarrow+\infty} J^{(d)} \leq \widetilde{I}$, where $c_{2}=c_{1}^{1 / q} 2^{1 / p}$.

Let us choose $n \in \mathbb{Z}$ such that $2^{n}<\alpha$. Assume that $j \in \mathbb{Z}, j \leq n-1$ and $f_{j}(y)=\chi_{\left(0,2^{j-1}\right)}(y)$. Then we obtain

$$
\begin{aligned}
\int_{U_{2^{j}} \backslash U_{2 j+1}}\left|T_{\alpha}^{\prime} f(x, t)\right|^{q} d x d t & \geq \int_{U_{2^{j}} \backslash U_{2^{j+1}}} v(x, y)\left(\int_{0}^{2^{j-1}}(x-y+t)^{\alpha-1} d y\right)^{q}, d x d t \\
& \geq c_{3} \int_{U_{2^{j} \backslash U_{2^{j+1}}}} v(x, y)(x+t)^{(\alpha-1) q} 2^{(j-1) q} d x d t,
\end{aligned}
$$

where $c_{3}=(3 / 2)^{(\alpha-1) q}$ in the case, where $1 / p<\alpha<1$ and $c_{3}=(1 / 2)^{(\alpha-1) q}$ for $\alpha \geq 1$. On the other hand, $\left\|f_{j}\right\|_{X}^{q}=2^{(j-1) q / p}$. By (3) we find that

$$
c_{3}^{1 / q} 4^{-1 / p^{\prime}} \bar{B}_{1}(j) \leq \lambda
$$

for every integer $j, j \leq n-1$, where

$$
\bar{B}(j) \equiv\left(\int_{U_{2^{j}} \backslash U_{2 j+1}} v(x, t)(x+t)^{(\alpha-1) q} x^{q / p^{\prime}} d x d t\right)^{1 / q}
$$

Consequently $c_{3}^{1 / q} 4^{-1 / p^{\prime}} \sup _{j \leq n} \bar{B}_{1}(j) \leq \lambda$ for every integer n with the condition $2^{n}<\alpha$. Let $a<2^{n}<\alpha$. Then $a \in\left[2^{m}, 2^{m+1}\right)$ for some $m, m \leq n-1$. As in the proof of Theorem 5 we have that

$$
B^{(a)} \leq B^{\left(2^{m}\right)} \leq 2^{1 / p^{\prime}}\left(1-2^{-q / p^{\prime}}\right)^{-1 / q} \sup _{j \leq m} \bar{B}_{1}(j)
$$

where

$$
B^{\left(2^{m}\right)} \equiv \sup _{0<r<2^{m}}\left(\int_{U_{r} \backslash U_{2} m} v(x, t)(x+t)^{(\alpha-1) q} d x d t\right)^{1 / q} r^{1 / p^{\prime}}
$$

Therefore $c_{4} \lim _{a \rightarrow 0} B^{(a)} \leq \lambda$ with $c_{4}=2^{-3 / p^{\prime}} c_{3}^{1 / q}\left(1-2^{-q / p^{\prime}}\right)^{1 / q}$. Finally we obtain $c_{5} J \leq \widetilde{a \rightarrow 0}$, where $c_{5}=1 / 2 \min \left\{c_{2}, c_{4}\right\}$.

An analogous theorem for the classical Riemann-Liouville operator R_{α} is proved for $\alpha>1 / p$ in [19]. Estimates of the distance of R_{α} from the class of compact operators in the case of two weights for $\alpha>1$ are obtained in [6], [21] (for the case $\alpha=1$ see [5]).

Remark 3. For the constants ϵ_{1} and ϵ_{2} from Theorem 9 we have: $\epsilon_{2}=b_{2}$, $\epsilon_{1}=1 / 2 \min \left\{\beta_{1}, \beta_{2}\right\}$, where $\beta_{1}=2^{1 / p} \gamma_{3}, \beta_{2}=2^{-3 / p^{\prime}}\left(1-2^{-q / p^{\prime}}\right)^{1 / q} \gamma_{4}$ with $\gamma_{3}=3^{\alpha-1} 2^{-\alpha}$ for $1 / p<\alpha<1, \gamma_{3}=2^{-\alpha}$ for $\alpha \geq 1$ and $\gamma_{4}=(3 / 2)^{\alpha-1}$ for $1 / p<\alpha<1, \gamma_{4}=(1 / 2)^{\alpha-1}$ if $\alpha \geq 1$.

Acknowledgements. I express my gratitude to Prof. V. Kokilashvili for drawing my attention to the above-considered problems and for his helpful remarks and to the referee for useful comments.

References

[1] D. R. Adams, A trace inequality for generalized potentials, Studia Math. 48 (1973), 99-105.
[2] T. Ando, On the compactness of integral operators, Indag. Math. (N.S.) 24 (1962), 235-239.
[3] J. S. Bradley, Hardy inequality with mixed norms, Canad. Math. Bull. 21 (1978), 405-408.
[4] D. E. Edmunds and W.D. Evans, Spectral theory and differential operators, Oxford Univ. Press, Oxford, 1987.
[5] D. E. Edmunds, W. D. Evans and D. J. Harris, Approximation numbers of certain Volterra integral operators, J. London Math. Soc. 37 (1988), No. 2, 471-489.
[6] D. E. Edmunds and V. D. Stepanov, The measure of non-compactness and approximation numbers of certain Volterra integral operators, Math. Ann. 298 (1994), 41-66.
[7] M. Gabidzashvili, I. Genebashvili and V. Kokilashvili, Two-weight inequalities for generalized potentials. (Russian) Trudy Mat. Inst. Steklov 194(1992), 89-96. English transl. Proc. Steklov Inst. Math. 94 (1993), Issue 4, 91-99.
[8] I. Genebashvili, Carleson measures and potentials defined on the spaces of homogeneous type. Bull. Georgian Acad. Sci. 135(1989), No. 3, 505-508.
[9] I. Genebashvili, A. Gogatishvili and V. Kokilashvili, Solution of twoweight problems for integral transforms with positive kernels, Georgian math. J. 3 (1996), No. 1, 319-342.
[10] I. Genebashvili, A. Gogatishvili, V. Kokilashvili and M. Krbec, Weight theory for integral transforms on spaces of homogeneous type, Pitman Monographs and Surveys in Pure and Applied Mathematics, 92, Longman, Harlow, 1998.
[11] L. P. Kantorovich and G. P. Akilov, Functional Analysis, Pergamon, Oxford, 1982.
[12] V. M. Kokilashvili, On Hardy's inequalities in weighted spaces. (Russian) Soobsch. Akad. Nauk Gruz. SSR 96 (1979), 37-40.
[13] H. König, Eigenvalue distribution of comapct operators. Birkäuser, Boston, 1986.
[14] M. A. Kransnoselskii, P. P. Zabreiko, E. I. Pustilnik and P.E. Sobolevskii, Integral operators in spaces of summable functions. (Russian) Nauka, Moscow, 1966, English transl. Noordhoft International Publishing, Leiden, 1976.
[15] Martin-Reyes and E. Sawyer, Weighted inequalities for Riemann-Liouville fractional integrals of order one and greater, Proc. Amer. Math. Soc. 106 (1989), 727-733.
[16] V. G. Mazya, Sobolev spaces, Springer, Berlin, 1985.
[17] A. Meskhi, Solution of some weight problems for the Riemann-Liouville and Weyl operator, Georgian math. J. 5 (1998), No. 6, 565-574.
[18] A. Meskhi, Boundedness and compactness weighted criteria for RiemannLiouville and one-sided maximal operators, Proc. A.Razmadze Math. Inst. 117 (1998), 126-128.
[19] A. Meskhi, Criteria for the boundedness and compactness of integral transforms with positive kernels, Proc. Edinburgh Math. Soc. (to appear).
[20] A. Meskhi, Boundedness and compactness criteria for the generalized Riemann-Liouville operator, Proc. A. Razmadze Math. Inst. 121 (1999), 161-162.
[21] B. Opic, On the distance of the Riemann-Liouville operators from compact operators, Proc. Amer. Math. Soc. 122 (1994), No. 2, 495-501.
[22] S. D. Riemenschneider, Compactness of a class of Volterra operators. Tôhoku Math. J. (2) 26 (1974), 285-387.
[23] E. T. Sawyer, R. L. Wheeden and S. Zhao, Weighted norm inequalities for operators of potential type and fractional maximal functions, Potential Analysis, 5 (1996), 523-580.
[24] G. Sinnamon and V. D. Stepanov, The weighted Hardy inequality: new proofs and the case $p=1$, J. London Math. Soc. 54 (1996), 89-101.
[25] V. D. Stepanov, Two-weighted estimates for Riemann-Liouville integrals. Report No. 39, Math. Inst. Czechoslovak Acad. Sci., 1988, p. 28.
[26] V. D. Stepanov, Weigted inequalities of Hardy type for higher derivatives, and their applications. (Russian) Soviet Math. Dokl., 38 (1989), 389-393.
[27] R. L. Wheeden and J. M. Wilson, Weighted norm estimates for gradients of half-space extensions, Indiana Univ. Math. J. 44 (1995), No. 3, 917969.

[^0]: Key Words: Generalized Riemann-Liouville and Weyl operators, boundedness and compactness, weight, Borel measure

 Mathematical Reviews subject classification: 42B20, 46E40, 47G60
 Received by the editors December 1, 1999

