A. Meskhi, A. Razmadze Mathematical Institute, Georgian Academy of Sciences, 1, M. Aleksidze Str., 380093 Tbilisi, Georgia. e-mail: meskhi@rmi.acnet.ge

CRITERIA FOR THE BOUNDEDNESS AND COMPACTNESS OF GENERALIZED ONE-SIDED POTENTIALS

Abstract

Necessary and sufficient conditions are found for the positive Borel measure ν , which provide the boundedness (compactness) of the generalized Riemann–Liouville operator from one Lebesgue space into another Lebesgue space with measure ν . The appropriate problem for the generalized Weyl operator is solved as well.

1 Introduction

In this paper, necessary and sufficient conditions are found, which ensure the boundedness (compactness) of the generalized Riemann-Liouville operator

$$T_{\alpha}f(x,t) = \int_0^x (x-y+t)^{\alpha-1}f(y) \, dy, \ x,t \in \mathbb{R}_+,$$

from $L^p(\mathbb{R}_+)$ into $L^q_{\nu}(\widetilde{\mathbb{R}}^2_+)$, where $0 < p, q < \infty, p > 1, \alpha > 1/p, \mathbb{R}_+ \equiv [0, \infty)$ and ν is a positive σ -finite Borel measure on $\widetilde{\mathbb{R}}^2_+ \equiv \mathbb{R}_+ \times \mathbb{R}_+$ (for q < p it will be assumed that ν is absolutely continuous; i.e., $d\nu(x,t) = v(x,t) dx dt$, where v is a Lebesgue-measurable almost everywhere positive function on $\widetilde{\mathbb{R}}^2_+$).

An analogous problem for the classical Riemann-Liouville operator

$$R_{\alpha}f(x) = \int_0^x (x-y)^{\alpha-1}f(y)dy$$

was solved in [17], [18]. Necessary and sufficient conditions for the boundedness of R_{α} from $L_{w}^{p}(\mathbb{R}_{+})$ into $L_{v}^{q}(\mathbb{R}_{+})$ were found for $1 and <math>0 < \alpha < 1$

Key Words: Generalized Riemann–Liouville and Weyl operators, boundedness and compactness, weight, Borel measure

Mathematical Reviews subject classification: 42B20, 46E40, 47G60 Received by the editors December 1, 1999

²¹⁷

in [9] (see also [10], Chapter 3). A similar problem was solved for $1 and <math>\alpha > 1$ in [15], [25] and for $1 < q < p < \infty$ and $\alpha > 1$ in [25]. For the compactness of the operator R_{α} when $1 < p, q < \infty$ and $\alpha > 1$ see [26].

The boundedness problem for the generalized Riesz potential

$$I_{\alpha}f(x,t) = \int_{\mathbb{R}^n} (|x-y|+t)^{\alpha-n} f(y) \, dy, \ 0 < \alpha < n,$$

from $L^p(\mathbb{R}^n)$ into $L^q_{\nu}(\mathbb{R}^n \times \mathbb{R}_+)$ (1 was solved in [1] (Theorem C) (see [8] for more general case).

A complete description of weight pairs (v, w) ensuring the validity of weak (p,q) $(1 type inequality for <math>I_{\alpha}$ was given in [7] (see also [10], Chapter 3). For the related Hörmander type maximal functions see [10], Chapter 4.

The different (Sawyer type) necessary and sufficient conditions for the validity of two-weight strong (p, q) type inequality for I_{α} and corresponding Hörmander type fractional maximal functions were established in [23].

Similar operators arise in boundary value problems in PDE, particularly in Polyharmonic Differential Equations. Some applications of operator I_{α} in weighted estimates for gradients were presented in [27], p. 923.

In this paper, criteria of the boundedness (compactness) from $L^p_{\nu}(\mathbb{R}^2_+)$ into $L^q(\mathbb{R}_+)$ are also established for the operator

$$\widetilde{T}_{\alpha}g(y) = \int_{[y,\infty)\times\mathbb{R}_+} g(x,t)(x-y+t)^{\alpha-1} \, d\nu(x,t).$$

Finally, the upper and lower estimates of the distance of the operator T_{α} from a space of compact operators are derived in the non-compact case.

Some results of the present paper were announced in [20].

2 Preliminaries

Let ν be a positive σ -finite Borel measure on $\widetilde{\mathbb{R}}^2_+$. For $(0 < q < \infty)$ denote by $L^q_{\nu}(\widetilde{\mathbb{R}}^2_+)$ the class of all ν -measurable functions $g: \widetilde{\mathbb{R}}^2_+ \to \mathbb{R}^1$ for which

$$\|g\|_{L^{q}_{\nu}(\widetilde{\mathbb{R}}^{2}_{+})} \equiv \left(\int_{\widetilde{\mathbb{R}}^{2}_{+}} |g(x,t)|^{q} \, d\nu(x,t)\right)^{1/q} < \infty.$$

If ν is absolutely continuous (i.e., $d\nu(x,t) = v(x,t) dx dt$), then instead of $L^q_{\nu}(\widetilde{\mathbb{R}}^2_+)$, we will use the notation $L^q_{\nu}(\widetilde{\mathbb{R}}^2_+)$, and if $v \equiv 1$, then $L^q_{\nu}(\widetilde{\mathbb{R}}^2_+)$ will be denoted by $L^q(\widetilde{\mathbb{R}}^2_+)$.

Let

$$Hf(x) = \int_0^x f(y) \, dy$$

for a measurable function $f : \mathbb{R}_+ \to \mathbb{R}^1$.

Necessary and sufficient conditions for the boundedness of the operator H from $L^p_w(\mathbb{R}_+)$ into $L^q_v(\mathbb{R}_+)$ were found in [3], [12] (see also [16], §1.3) for $1 , and in [16], §1.3, for <math>1 \leq q . (For the compactness of <math>H$ see [5], [22].)

In what follows we will use the notation $U_r \equiv [r, \infty) \times \mathbb{R}_+$, where r > 0. It is obvious that $[r, R) \times \mathbb{R}_+ = U_r \setminus U_R$ for $0 < r < R < \infty$.

To prove our main results, we need the following lemma.

Lemma 1. Let $1 and <math>\mu$ be a positive Borel measure on $\widetilde{\mathbb{R}}^2_+$. Then the operator H is bounded from $L^p(\mathbb{R}_+)$ into $L^q_\mu(\widetilde{\mathbb{R}}^2_+)$ if and only if

$$A \equiv \sup_{r>0} (\mu(U_r))^{1/q} r^{1/p'} < \infty, \ p' = p/(p-1).$$

Moreover, $A \leq ||H|| \leq 4A$.

PROOF. Sufficiency. Let $f \ge 0$, $f \in L^p(\mathbb{R}_+)$ and $I(t) \equiv \int_0^t f$. Assume that $\int_0^{\infty} f \in (2^m, 2^{m+1}]$ for some $m \in \mathbb{Z}$. Then there exist x_k $(k \le m)$ such that $I(x_k) = 2^k$. It is obvious that $2^k = \int_{x_k}^{x_{k+1}} f$ for $k \le m-1$. The sequence $\{x_k\}$ increases. Moreover, if $\alpha = \lim_{k \to -\infty} x_k$, then $\mathbb{R}_+ = [0, \alpha) \cup (\cup_{k \le m} [x_k, x_{k+1}))$, where $x_{k+1} = \infty$. When $\int_0^{\infty} f = \infty$, we have $\mathbb{R}_+ = [0, \alpha] \cup (\cup_{k \in \mathbb{Z}} [x_k, x_{k+1}))$ (i.e., $m = \infty$). If $y \in [0, \alpha]$, then I(y) = 0, and if $y \in [x_k, x_{k+1})$, then $I(y) \le 2^{k+1}$. We have

$$\begin{aligned} \|Hf\|_{L^{q}_{\mu}(\widetilde{\mathbb{R}}^{2}_{+})}^{p} &\leq \sum_{k} \|\chi_{U_{x_{k}}\setminus U_{x_{k+1}}} Hf\|_{L^{q}_{\mu}(\widetilde{\mathbb{R}}^{2}_{+})}^{p} \\ &\leq \sum_{k} 2^{(k+1)p} \|\chi_{U_{x_{k}}\setminus U_{x_{k+1}}}\|_{L^{p}_{\mu}(\widetilde{\mathbb{R}}^{2}_{+})}^{p} \\ &= 4^{p} \sum_{k} \Big(\int_{x_{k-1}}^{x_{k}} f(y)dy\Big)^{p} \Big(\mu(U_{x_{k}}\setminus U_{x_{k+1}}))^{p/q} \\ &\leq 4^{p} \Big(\int_{x_{k-1}}^{x_{k}} (f(y))^{p}dy\Big) (x_{k} - x_{k-1})^{p-1} \Big(\mu(U_{x_{k}}\setminus U_{x_{k+1}}))^{p/q} \\ &\leq 4^{p} A^{p} \|f\|_{L^{p}(\mathbb{R}_{+})}^{p}. \end{aligned}$$

Necessity. Let r > 0 and $f_r(x) = \chi_{[0,r)}(x)$. Then $||f_r||_{L^p(\mathbb{R}_+)} = r^{1/p}$. On the other hand,

$$\|Hf\|_{L^{q}_{\mu}(\widetilde{\mathbb{R}}^{2}_{+})} \geq \|\chi_{U_{r}}Hf_{r}\|_{L^{q}_{\mu}(\widetilde{\mathbb{R}}^{2}_{+})} \geq (\mu(U_{r}))^{1/q}r.$$

Hence the boundedness of H implies that $A < \infty$.

Lemma 2. Let $0 < q < p < \infty$, p > 1 and let v be an almost everywhere positive measurable function on $\widetilde{\mathbb{R}}^2_+$. Then the operator H is bounded from $L^p(\mathbb{R}_+)$ into $L^q_v(\widetilde{\mathbb{R}}^2_+)$ if and only if

$$A_1 \equiv \left(\int_0^\infty \left(\int_{U_x} v(y,t) \, dy \, dt\right)^{\frac{p}{p-q}} x^{\frac{(q-1)p}{p-q}} \, dx\right)^{\frac{p-q}{pq}} < \infty$$

Moreover, $\lambda_1 A_1 \leq ||H|| \leq \lambda_2 A_1$, where $\lambda_1 = \left(\frac{p-q}{p-1}\right)^{1/q'} q^{1/q}$ and $\lambda_2 = (p')^{1/q'} q^{1/q}$ for q > 1, $\lambda_1 = \lambda_2 = 1$ for q = 1, $\lambda_1 = (q/p')^{\frac{p-q}{pq}} (p')^{1/p'} q^{1/p} \frac{p-q}{p}$ and $\lambda_2 = \left(\frac{p}{p-q}\right)^{\frac{p-q}{pq}} p^{1/p} (p')^{1/p'}$ for 0 < q < 1.

PROOF. Applying Lemma 1.3.2 from [16] for $1 \le q and using the arguments from [24] for <math>0 < q < 1 < p < \infty$ we find that the condition $A_1 < \infty$ is equivalent to the boundedness of H from $L^p(\mathbb{R}_+)$ into $L^q_{\overline{v}}(\mathbb{R}_+)$, where

$$\widetilde{v}(y) = \int_0^\infty v(y,t) \, dt.$$

But

$$\|Hf\|_{L^q_{\widetilde{v}}(\mathbb{R}_+)} = \|Hf\|_{L^q_{v}(\widetilde{\mathbb{R}}^2_+)}.$$

Therefore the condition $A_1 < \infty$ is equivalent to the boundedness of H from $L^p(\mathbb{R}_+)$ into $L^q_v(\mathbb{R}^2_+)$. The constants λ_1 and λ_2 are from [16] (Section 1.3.2) for $q \ge 1$, and from [24] (see Theorem 2.4 and Remark) for 0 < q < 1.

We need the following theorem which can be obtained from Lemma 2 in [11], Chapter XI (see also [13], Chapter 3).

Theorem A. Let $1 < p, q < \infty$, ν be a positive σ -finite separable measure on $\widetilde{\mathbb{R}}^2_+$ (i.e., $L^q_{\nu}(\widetilde{\mathbb{R}}^2_+)$ is separable). If

$$\| \|k(z,\cdot)\|_{L^{p'}(\mathbb{R}_+)}\|_{L^q_{\nu}(\widetilde{\mathbb{R}}^2_+)} < \infty, \quad k \ge 0,$$

then the operator $Kf(z) = \int_0^\infty k(z,y)f(y) \, dy, \ z \in \widetilde{\mathbb{R}}^2_+$, is compact from $L^p(\mathbb{R}_+)$ into $L^q_{\nu}(\widetilde{\mathbb{R}}^2_+)$.

3 Boundedness

In this section, criteria of the boundedness of the operators T_{α} and \widetilde{T}_{α} are established.

Theorem 1. Let $1 , <math>\alpha > 1/p$, ν be a positive σ -finite measure on $\widetilde{\mathbb{R}}^2_+$. Then the following conditions are equivalent:

(i) T_{α} is bounded from $L^{p}(\mathbb{R}_{+})$ into $L^{q}_{\nu}(\widetilde{\mathbb{R}}^{2}_{+})$;

(ii)
$$B \equiv \sup_{r>0} \left(\int_{U_r} (x+t)^{(\alpha-1)q} d\nu(x,t) \right)^{\frac{1}{q}} r^{\frac{1}{p'}} < \infty;$$

(iii)
$$B_1 \equiv \sup_{k \in \mathbb{Z}} \left(\int_{U_{2^k} \setminus U_{2^{k+1}}} (x+t)^{(\alpha-1)q} x^{q/p'} d\nu(x,t) \right)^{\frac{1}{q}} < \infty.$$

Moreover, there exist positive constants b_1 , b_2 , b_3 and b_4 depending only on p, q and α such that

$$b_1 B \le ||T_{\alpha}|| \le b_2 B, \ b_3 B_1 \le ||T_{\alpha}|| \le b_4 B_1.$$

PROOF. First we will show that (ii) implies (i). Let $f \ge 0$. If $\alpha \ge 1$, then using Lemma 1 we obtain

$$\begin{aligned} \|T_{\alpha}f\|_{L^{q}_{\nu}} &\leq 2^{\alpha-1} \bigg(\int_{\widetilde{\mathbb{R}}^{2}_{+}} (x+t)^{(\alpha-1)q} \bigg(\int_{0}^{x} f(y) \, dy \bigg)^{q} d\nu(x,t) \bigg)^{1/q} \\ &\leq 2^{\alpha+1} \|f\|_{L^{p}(\mathbb{R}_{+})}. \end{aligned}$$

Now let $1/p < \alpha < 1$. We have

$$\begin{aligned} \|T_{\alpha}f\|_{L^{q}_{\nu}(\widetilde{\mathbb{R}}^{2}_{+})} &\leq \left(\int_{\widetilde{\mathbb{R}}^{2}_{+}} \left(\int_{0}^{x/2} f(y)(x-y+t)^{\alpha-1} \, dy\right)^{q} d\nu(x,t)\right)^{1/q} \\ &+ \left(\int_{\widetilde{\mathbb{R}}^{2}_{+}} \left(\int_{x/2}^{x} f(y)(x-y+t)^{\alpha-1} \, dy\right)^{q} d\nu(x,t)\right)^{1/q} \\ &\equiv S_{1} + S_{2}. \end{aligned}$$

If y < x/2, then $(x - y + t)^{\alpha - 1} \le 2^{1 - \alpha} (x + t)^{\alpha - 1}$. By Lemma 1 we obtain

$$S_1 \le 2^{1-\alpha} \left(\int_{\widetilde{\mathbb{R}}^2_+} (Hf(x))^q (x+t)^{(\alpha-1)q} \, d\nu(x,t) \right)^{1/q} \le 2^{3-\alpha} B \|f\|_{L^p(\mathbb{R}_+)}$$

A. Meskhi

Using the Hölder's inequality, we find that

$$S_2^q \le \int_{\widetilde{\mathbb{R}}^2_+} \left(\int_{x/2}^x (f(y))^p \, dy \right)^{q/p} (\varphi(x,t))^{q/p'} \, d\nu(x,t),$$

where

$$\varphi(x,t) \equiv \int_{x/2}^{x} (x-y+t)^{(\alpha-1)p'} \, dy.$$

Moreover, $\varphi(x,t) \leq c_1(x+t)^{(\alpha-1)p'}x$, where $c_1 = 2^{(1-\alpha)p'-1}3((\alpha-1)p'+1)^{-1}$. Indeed, if $t \leq x$ then

$$\varphi(x,t) \le ((\alpha-1)p'+1)^{-1}(x/2+t)^{(\alpha-1)p'+1} \le c_2(x+t)^{(\alpha-1)p'}x,$$

where $c_2 = 2^{(1-\alpha)p'-1}3((\alpha-1)p'+1)^{-1}$. Let t > x. Then

$$\varphi(x,t) \le t^{(\alpha-1)p'} x/2 \le 2^{(1-\alpha)p'-1} (x+t)^{(\alpha-1)p'} x.$$

Using the Minkowski's inequality we obtain

$$\begin{split} S_2^q &\leq c_1^{q/p'} \int_{\widetilde{\mathbb{R}}_+^2} \left(\int_{x/2}^x (f(y))^p \, dy \right)^{q/p} (x+t)^{(\alpha-1)q} x^{q/p'} \, d\nu(x,t) \\ &\leq c_1^{q/p'} \left(\int_0^\infty (f(y))^p \left(\int_{U_y \setminus U_{2y}} (x+t)^{(\alpha-1)q} x^{q/p'} \, d\nu(x,t) \right)^{p/q} \, dy \right)^{q/p} \\ &\leq 2^{q/p'} c_1^{q/p'} \left(\int_0^\infty (f(y))^p \left(\int_{U_y} (x+t)^{(\alpha-1)q} \, d\nu(x,t) \right)^{p/q} y^{p/p'} \, dy \right)^{q/p} \\ &\leq (2c_1)^{q/p'} B^q \|f\|_{L^p(\mathbb{R}_+)}^q. \end{split}$$

Now we will show that (i) \Rightarrow (iii). Let $k \in \mathbb{Z}$ and $f_k(x) = \chi_{[0,2^{k-1})}(x)$. Then $\|f_k\|_{L^p(\mathbb{R}_+)} = 2^{(k-1)/p}$. On the other hand,

$$\|T_{\alpha}f_{k}\|_{L^{q}_{\nu}(\widetilde{\mathbb{R}}^{2}_{+})} \geq c_{3} \left(\int_{U_{2^{k}} \setminus U_{2^{k+1}}} (x+t)^{(\alpha-1)q} 2^{(k-1)q} \, d\nu(x,t)\right)^{1/q}.$$

Therefore $c_4 B_1 \leq ||T_{\alpha}|| < \infty$, where $c_4 = 3^{\alpha-1} 2^{-2/p'+1-\alpha}$ if $1/p < \alpha < 1$ and $c_4 = 2^{1-\alpha-2/p'}$ if $\alpha \geq 1$.

Analogously we can show that $c_5 B \leq ||T_{\alpha}||$, where $c_5 = 3^{\alpha-1}2^{1/p-\alpha}$ if $1/p < \alpha < 1$ and $c_5 = 2^{1/p-\alpha}$ for $\alpha \geq 1$.

Let now r > 0. Then $r \in [2^m, 2^{m+1})$ for some $m \in \mathbb{Z}$. Therefore

$$\left(\int_{U_r} (x+t)^{(\alpha-1)q} d\nu(x,t) \right) r^{q/p'} \leq 2^{(m+1)q/p'} \int_{U_{2^m}} (x+t)^{(\alpha-1)q} d\nu(x,t)$$

$$= 2^{q/p'} 2^{mq/p'} \sum_{k=m}^{+\infty} \int_{U_{2^k} \setminus U_{2^{k+1}}} (x+t)^{(\alpha-1)q} d\nu(x,t)$$

$$\leq 2^{q/p'} B_1^q 2^{mq/p'} \sum_{k=m}^{+\infty} 2^{-kq/p'} = 2^{q/p'} (1-2^{-q/p'})^{-1} B_1^q.$$

Thus (iii) implies (ii). So that finally (ii) \Rightarrow (i) \Rightarrow (iii) \Rightarrow (iii).

Remark 1. For the constants
$$b_1$$
, b_2 , b_3 and b_4 from Theorem 1 we have: $b_1 = 3^{\alpha-1}2^{1/p-\alpha}$, $b_2 = 2^{3-\alpha} + 3^{1/p'}2^{1-\alpha}((\alpha-1)p'+1)^{-1/p'}$, $b_3 = 3^{\alpha-1}2^{-2/p'+1-\alpha}$ in the case, where $1/p < \alpha < 1$ and $b_1 = 2^{1/p-\alpha}$, $b_2 = 2^{\alpha+1}$, $b_3 = 2^{-2/p'+1-\alpha}$ if $\alpha \ge 1$. $b_4 = 2^{1/p'}(1-2^{-q/p'})^{-1/q}b_2$.

Let us now consider the case q < p.

Theorem 2. Let $0 < q < p < \infty$, p > 1 and $\alpha > 1/p$. Assume that v is an almost everywhere positive Lebesgue-measurable function on $\widetilde{\mathbb{R}}^2_+$. Then the operator T_{α} is bounded from $L^p(\mathbb{R}_+)$ into $L^q_v(\widetilde{\mathbb{R}}^2_+)$ if and only if

$$D \equiv \left(\int_0^\infty \left(\int_{U_x} (y+t)^{(\alpha-1)q} v(y,t) \, dy \, dt\right)^{\frac{p}{p-q}} x^{\frac{(q-1)p}{p-q}} \, dx\right)^{\frac{p-q}{pq}} < \infty.$$

Moreover, there exist positive constants d_1 and d_2 depending only on $p,\,q$ and α such that

$$d_1 D \le \|T_\alpha\| \le d_2 D.$$

PROOF. Let $f \ge 0$ and let $\alpha \ge 1$. Then using Lemma 2 we obtain

$$\begin{aligned} \|T_{\alpha}f\|_{L^{q}_{v}} &\leq 2^{\alpha-1} \bigg(\int_{\widetilde{\mathbb{R}}^{2}_{+}} (x+t)^{(\alpha-1)q} \bigg(\int_{0}^{x} f(y) \, dy \bigg)^{q} v(x,t) \, dx \, dt \bigg)^{1/q} \\ &\leq \lambda_{2} 2^{\alpha-1} D \|f\|_{L^{p}(\mathbb{R}_{+})}, \end{aligned}$$

where λ_2 is from Lemma 2. Now let $1/p < \alpha < 1$. Then as in the proof of

Theorem 1, we have

$$\begin{aligned} \|T_{\alpha}f\|_{L^{q}_{v}(\widetilde{\mathbb{R}}^{2}_{+})} &\leq c_{1} \bigg(\int_{\widetilde{\mathbb{R}}^{2}_{+}}^{x/2} f(y)(x-y+t)^{\alpha-1} \, dy \bigg)^{q} v(x,t) \, dx \, dt \bigg)^{1/q} \\ &+ c_{1} \bigg(\int_{\widetilde{\mathbb{R}}^{2}_{+}}^{x} \bigg(\int_{x/2}^{x} f(y)(x-y+t)^{\alpha-1} \, dy \bigg)^{q} v(x,t) \, dx \, dt \bigg)^{1/q} \\ &\equiv I_{1} + I_{2}, \end{aligned}$$

where $c_1 = 1$ if $q \ge 1$ and $c_1 = 2^{1/q-1}$ if 0 < q < 1. By virtue of Lemma 2, for I_1 we obtain

$$I_{1} \leq 2^{1-\alpha} c_{1} \bigg(\int_{\widetilde{\mathbb{R}}^{2}_{+}} (Hf(x))^{q} (x+t)^{(\alpha-1)q} v(x,t) \, dx \, dt \bigg)^{1/q}$$
$$\leq c_{1} \lambda_{2} 2^{1-\alpha} D \|f\|_{L^{p}(\mathbb{R}_{+})}.$$

Applying the Hölder's inequality twice, we find

$$\begin{split} I_{2}^{q} &\leq c_{2} \int_{\widetilde{\mathbb{R}}^{2}_{+}} \left(\int_{x/2}^{x} (f(y))^{p} \, dy \right)^{q/p} (x+t)^{(\alpha-1)q} x^{q/p'} v(x,t) \, dx \, dt \\ &\leq c_{2} \sum_{k \in \mathbb{Z}} \left(\int_{2^{k-1}}^{2^{k+1}} (f(y))^{p} \, dy \right)^{q/p} \left(\int_{U_{2^{k}} \setminus U_{2^{k+1}}} (x+t)^{(\alpha-1)q} x^{q/p'} v(x,t) \, dx \, dt \right) \\ &\leq c_{2} \left(\sum_{k \in \mathbb{Z}} \int_{2^{k-1}}^{2^{k+1}} (f(y))^{p} \, dy \right)^{q/p} \\ &\qquad \times \left(\sum_{k \in \mathbb{Z}} \left(\int_{U_{2^{k}} \setminus U_{2^{k+1}}} (x+t)^{(\alpha-1)q} x^{q/p'} v(x,t) \, dx \, dt \right)^{\frac{p}{p-q}} \right)^{\frac{p-q}{p}} \\ &\leq 2^{q/p} c_{2} \|f\|_{L^{p}(\mathbb{R}_{+})}^{q} \widetilde{B}_{1}, \end{split}$$

where $c_2 = c_1^q (3 \cdot 2^{(1-\alpha)p'-1}((\alpha-1)p'+1)^{-1})^{q/p'}$ and

$$\widetilde{B}_1 \equiv \left(\sum_{k \in \mathbb{Z}} \left(\int_{U_{2^k} \setminus U_{2^{k+1}}} (x+t)^{(\alpha-1)q} x^{q/p'} v(x,t) \, dx \, dt\right)^{\frac{p}{p-q}}\right)^{\frac{p-q}{p}}$$
$$\equiv \left(\sum_{k \in \mathbb{Z}} \widetilde{B}_{1,k}\right)^{\frac{p-q}{p}}.$$

For $\widetilde{B}_{1,k}$ we have

$$\widetilde{B}_{1,k} \le 2^{\frac{(k+1)q(p-1)}{p-q}} \left(\int_{U_{2^k} \setminus U_{2^{k+1}}} (x+t)^{(\alpha-1)q} v(x,t) \, dx \, dt \right)^{\frac{p}{p-q}} \\ \le c_3 \int_{2^{k-1}}^{2^k} y^{\frac{p(q-1)}{p-q}} \left(\int_{U_y} (x+t)^{(\alpha-1)q} v(x,t) \, dx \, dt \right)^{\frac{p}{p-q}} \, dy,$$

where $c_3 = 4^{\frac{(p-1)q}{p-q}} \frac{q(p-1)}{p-q} \left(2^{\frac{(p-1)q}{p-q}} - 1 \right)^{-1}$. Therefore $\widetilde{B}_1 \le (c_3)^{\frac{p-q}{p}} D^q$. Finally, we obtain $I_2 \le c_4 D \|f\|_{L^p(\mathbb{R}_+)}$, where $c_4 = 2^{1/p} (c_2)^{1/q} (c_3)^{\frac{p-q}{pq}}$.

Now let us prove the necessity. Let T_{α} be bounded from $L^{p}(\mathbb{R}_{+})$ into $L^{q}_{v}(\widetilde{\mathbb{R}}_{+}^{2})$. Then for each $x \in (0, \infty)$ we have

$$\int_{U_x} v(y,t)(y+t)^{(\alpha-1)q} \, dy \, dt < \infty.$$

Let $n \in \mathbb{Z}$ and

$$f_n(x) = \left(\int_x^\infty \overline{v}_n(y) \, dy\right)^{\frac{1}{p-q}} x^{\frac{q-1}{p-q}}$$

where

$$\overline{v}_n(x) = \left(\int_0^\infty v(x,t)(x+t)^{(\alpha-1)q} dt\right) \chi_{(1/n,n)}(x).$$

The boundedness of T_{α} implies that $f_n(x) < \infty$ for each $x \in \mathbb{R}_+$. Applying integration by parts, we obtain

$$\begin{split} \|f_n\|_{L^p(\mathbb{R}_+)} &= \left(\int_0^\infty \left(\int_x^\infty \overline{v}_n(y)\,dy\right)^{\frac{p}{p-q}} x^{\frac{p(q-1)}{p-q}}\,dx\right)^{1/p} \\ &= \left(\frac{p'}{q}\int_0^\infty \left(\int_x^\infty \overline{v}_n(y)\,dy\right)^{\frac{q}{p-q}} \overline{v}_n(x) x^{\frac{q(p-1)}{p-q}}\,dx\right)^{1/p} < \infty. \end{split}$$

On the other hand,

$$\begin{split} \|T_{\alpha}\|_{L^{q}_{v}(\widetilde{\mathbb{R}}^{2}_{+})} &\geq \left(\int_{\widetilde{\mathbb{R}}^{2}_{+}}^{\infty} \left(\int_{0}^{x/2} f_{n}(y)(x-y+t)^{\alpha-1} dy\right)^{q} v(x,t) \, dx \, dt\right)^{1/q} \\ &\geq \left(\int_{\widetilde{\mathbb{R}}^{2}_{+}}^{\infty} \left(\int_{x}^{\infty} \overline{v}_{n}(y) \, dy\right)^{\frac{q}{p-q}} \left(\int_{0}^{x/2} (x-y+t)^{\alpha-1} y^{\frac{q-1}{p-q}} \, dy\right)^{q} v(x,t) \, dx \, dt\right)^{1/q} \\ &\geq c_{5} \left(\int_{\widetilde{\mathbb{R}}^{2}_{+}}^{\infty} v(x,t) \left(\int_{x}^{\infty} \overline{v}_{n}(y) \, dy\right)^{\frac{q}{p-q}} (x+t)^{(\alpha-1)q} x^{\frac{q(p-1)}{p-q}} \, dx \, dt\right)^{1/q} \\ &= c_{5} \left(\int_{0}^{\infty} \left(\int_{0}^{\infty} v(x,t)(x+t)^{(\alpha-1)q} \, dt\right) \left(\int_{x}^{\infty} \overline{v}_{n}(y) \, dy\right)^{\frac{q}{p-q}} x^{\frac{(p-1)q}{p-q}} \, dx\right)^{1/q} \\ &\geq c_{5} \left(\int_{0}^{\infty} \overline{v}_{n}(x) \left(\int_{x}^{\infty} \overline{v}_{n}(y) \, dy\right)^{\frac{q}{p-q}} x^{\frac{(p-1)q}{p-q}} \, dx\right)^{1/q} \\ &= c_{6} \left(\int_{0}^{\infty} \left(\int_{x}^{\infty} \overline{v}_{n}(y) \, dy\right)^{\frac{p}{p-q}} x^{\frac{(q-1)p}{p-q}} \, dx\right)^{1/q}, \end{split}$$

with $c_6 = (q/p')^{1/q} 2^{-\frac{p-1}{p-q}} \frac{p-q}{p-1} c_7$, where $c_7 = (\frac{3}{2})^{\alpha-1}$ if $1/p < \alpha < 1$ and $c_7 = (\frac{1}{2})^{\alpha-1}$ if $\alpha \ge 1$. Therefore

$$c_6 \Big(\int_0^\infty \Big(\int_x^\infty \overline{v}_n(y)\,dy\Big)^{\frac{p}{p-q}} x^{\frac{(q-1)p}{p-q}}\,dx\Big)^{\frac{p-q}{pq}} \le \|T_\alpha\|.$$

By virtue of Fatou's lemma we finally conclude that $c_6 D \leq ||T_{\alpha}|| < \infty$. \Box

Remark 2. It follows from the proof of Theorem 2 that for the constants d_1 and d_2 we have: $d_1 = \left(\frac{q}{p'}\right)^{1/q} 2^{\frac{1-p}{p-q}} \frac{p-q}{p-1} \gamma_1(\alpha)$, where $\gamma_1(\alpha) = (3/2)^{\alpha-1}$ if $1/p < \alpha < 1$ and $\gamma_1(\alpha) = (1/2)^{\alpha-1}$ if $\alpha \ge 1$, $d_2 = \lambda_2 2^{\alpha-1}$ for $\alpha \ge 1$, and if $1/p < \alpha < 1$, then

$$d_{2} = \lambda_{2} \gamma_{2}(q) 2^{1-\alpha} + 2^{2/p-\alpha} 3^{1/p'} ((\alpha-1)p'+1)^{-1/p'} 4^{1/p'} \\ \times \left(\frac{q(p-1)}{p-q}\right)^{\frac{p-q}{pq}} \left(2^{\frac{(p-1)q}{p-q}} - 1\right)^{-\frac{p-q}{pq}} \gamma_{2}(q),$$

where $\gamma_2(q) = 1$ for $q \ge 1$, $\gamma_2(q) = 2^{1/q-1}$ for 0 < q < 1.

Using dual arguments, we readily obtain the following theorems:

Theorem 3. Let $1 , <math>\alpha > (q-1)/q$. Then the following conditions are equivalent:

(i) \widetilde{T}_{α} is bounded from $L^p_{\nu}(\widetilde{\mathbb{R}}^2_+)$ into $L^q(\mathbb{R}_+)$;

(ii)
$$\widetilde{B} \equiv \sup_{r>0} \left(\int_{U_r} (x+t)^{(\alpha-1)p'} d\nu(x,t) \right)^{\frac{1}{p'}} r^{\frac{1}{q}} < \infty;$$

(iii)
$$\widetilde{B}_1 \equiv \sup_{k \in \mathbb{Z}} \left(\int_{U_{2^k} \setminus U_{2^{k+1}}} (x+t)^{(\alpha-1)p'} x^{p'/q} d\nu(x,t) \right)^{\frac{1}{p'}} < \infty.$$

Moreover, there exist positive constants \tilde{b}_1 , \tilde{b}_2 , \tilde{b}_3 and \tilde{b}_4 depending only on p, q and α such that

$$\widetilde{b}_1 \widetilde{B} \le \|\widetilde{T}_{\alpha}\| \le \widetilde{b}_2 \widetilde{B}, \ \widetilde{b}_3 \widetilde{B}_1 \le \|\widetilde{T}_{\alpha}\| \le \widetilde{b}_4 \widetilde{B}_1$$

Theorem 4. Let $1 < q < p < \infty$ and $\alpha > (q-1)/q$. Let ν be absolutely continuous, i.e. $d\nu(x,y) = w(x,t) dx dt$. Then \widetilde{R}_{α} is bounded from $L^p_w(\widetilde{\mathbb{R}}^2_+)$ into $L^q(\mathbb{R}_+)$ if and only if

$$\widetilde{D} \equiv \left(\int_0^\infty \left(\int_{U_x} (y+t)^{(\alpha-1)p'} w(y,t) \, dy dt\right)^{\frac{q(p-1)}{p-q}} x^{\frac{q}{p-q}} \, dx\right)^{\frac{p-q}{pq}} < \infty.$$

Moreover, $\tilde{d}_1 \tilde{D} \leq ||\tilde{T}_{\alpha}|| \leq \tilde{d}_2 \tilde{D}$, where the positive constants \tilde{d}_1 and \tilde{d}_2 depend only on p, q and α .

4 Compactness

In this section, criteria for the compactness of the operators T_{α} and \tilde{T}_{α} are established. First we will prove

Lemma 3. Let $1 , <math>\alpha > 1/p$ and let ν be separable measure. If

- (i) $B < \infty$;
- (ii) $\lim_{a \to 0} B^{(a)} = \lim_{b \to +\infty} B^{(b)} = 0$, where

$$B^{(a)} \equiv \sup_{0 < r < a} \left(\int_{U_r \setminus U_a} (x+t)^{(\alpha-1)q} \, d\nu(x,t) \right)^{1/q} r^{1/p'},$$
$$B^{(b)} \equiv \sup_{r > b} \left(\int_{U_r} (x+t)^{(\alpha-1)q} \, d\nu(x,t) \right)^{1/q} r^{1/p'},$$

then T_{α} is compact from $L^{p}(\mathbb{R}_{+})$ into $L^{q}_{\nu}(\widetilde{\mathbb{R}}^{2}_{+})$.

PROOF. Let us represent T_{α} as

$$T_{\alpha}f = \chi_{V_{a}}T_{\alpha}(\chi_{[0,a)}f) + \chi_{V_{b}\setminus V_{a}}T_{\alpha}(\chi_{(0,b)}f) + \chi_{U_{b}}T_{\alpha}(\chi_{(0,b/2]}f) + \chi_{U_{b}}T_{\alpha}(\chi_{(b/2,\infty)}f) \equiv P_{1}f + P_{2}f + P_{3}f + P_{4}f,$$

where $V_r \equiv [0, r) \times \mathbb{R}_+$. (It is obvious that $[a, b) \times \mathbb{R}_+ = V_b \setminus V_a$.) For P_2 we have

$$P_2f(x,t) = \int_0^\infty \overline{k}(x,t,y)f(y)\,dy$$

where $\overline{k}(x,t,y) = \chi_{V_b \setminus V_a}(x,t)\chi_{(0,x)}(y)(x-y+t)^{\alpha-1}$. Moreover, using the inequality

$$\int_0^x (x - y + t)^{(\alpha - 1)p'} \, dy \le b(x + t)^{(\alpha - 1)p'} x,$$

where the constant b > 0 is independent of x and t, we get

$$\begin{split} \|\|\overline{k}(x,t,y)\|_{L^{p'}(\mathbb{R}_+)}\|_{L^q_{\nu}(\widetilde{\mathbb{R}}^2_+)} &= \Big(\int_{V_b \setminus V_a} \Big(\int_0^x (x-y+t)^{(\alpha-1)p'} \, dy\Big)^{q/p'} d\nu(x,t)\Big)^{1/q} \\ &\leq c_1 \Big(\int_{V_b \setminus V_a} (x+t)^{(\alpha-1)q} x^{q/p'} \, d\nu(x,t)\Big)^{1/q} < \infty. \end{split}$$

For P_3 we obtain $P_3f(x,t) = \int_0^\infty \widetilde{k}(x,t,y)f(y)\,dy$, where

$$\widetilde{k}(x,t,y) = \chi_{U_b}(x,t)\chi_{(0,b/2]}(y)(x-y+t)^{\alpha-1}.$$

It can be easily verified that $\|\|\widetilde{k}(x,t,y)\|_{L^{p'}(\mathbb{R}_+)}\|_{L^{q}(\widetilde{\mathbb{R}}^2_+)} < \infty$. Using Theorem A we conclude that P_2 and P_3 are compact operators.

By Theorem 1 we have

$$||P_1|| \le b_2 B^{(a)} < \infty \quad and \quad ||P_4|| \le b_2 B^{(b/2)} < \infty,$$
 (1)

where b_2 is from Theorem 1. Hence we obtain

$$||T_{\alpha} - P_2 - P_3|| \le ||P_1|| + ||P_4|| \to 0$$
(2)

as $a \to 0$ and $b \to +\infty$. Therefore T_{α} is compact as a limit of the sequence of compact operators.

Theorem 5. Let p, q, α and ν satisfy the conditions of Lemma 3. Then the following conditions are equivalent:

- (i) T_{α} is compact from $L^{p}(\mathbb{R}_{+})$ to $L^{q}_{\nu}(\mathbb{R}_{+}^{2})$;
- (ii) $B < \infty$ and $\lim_{a \to 0} B^{(a)} = \lim_{b \to +\infty} B^{(b)} = 0;$
- (iii) $B < \infty$ and $\lim_{r \to 0} B(r) = \lim_{r \to +\infty} B(r) = 0$, where

$$B(r) \equiv \left(\int_{U_r} (x+t)^{(\alpha-1)q} d\nu(x,t)\right)^{\frac{1}{q}} r^{\frac{1}{p'}};$$

(iv) $B_1 < \infty$ and $\lim_{k \to -\infty} B_1(k) = \lim_{k \to +\infty} B_1(k) = 0$, where

$$B_1(k) \equiv \left(\int_{U_{2^k} \setminus U_{2^{k+1}}} (x+t)^{(\alpha-1)q} x^{q/p'} \, d\nu(x,t)\right)^{\frac{1}{q}}.$$

PROOF. By Lemma 3 we have (ii) \Rightarrow (i). Now let us show that (iii) \Rightarrow (ii). Since

$$B^{(a)} \le \sup_{0 < r < a} B(r)$$
 and $B^{(b)} = \sup_{r > b} B(r)$,

we obtain $B^{(a)} \to 0$ as $a \to 0$ and $B^{(b)} \to +\infty$ as $b \to \infty$. Therefore (iii) \Rightarrow (ii). Let now T_{α} be compact from $L^{p}(\mathbb{R}_{+})$ into $L^{q}_{\nu}(\widetilde{\mathbb{R}}_{+}^{2})$. Let r > 0 and $f_{r}(x) = \chi_{(0,r/2)}(x)r^{-1/p}$. Now it can be easily verified that f_{r} weakly converges to 0 if $r \to 0$. On the other hand, $\|T_{\alpha}f_{r}\|_{L^{q}_{\nu}(\widetilde{\mathbb{R}}_{+}^{2})} \geq c_{1}B(r) \to 0$ as $r \to 0$, since $T_{\alpha}f_{r}$ strongly converges to 0. Now, if we take

$$g_r(x,t) = \chi_{U_r}(x,t)(x+t)^{(\alpha-1)(q-1)} \Big(\int_{U_r} (y+t)^{(\alpha-1)q} \, d\nu(y,t)\Big)^{-1/q'}$$

then we readily find that g_r weakly converges to 0 as $r \to +\infty$. Since \widetilde{T}_{α} is compact from $L^{q'}_{\nu}(\widetilde{\mathbb{R}}^2_+)$ into $L^{p'}(\mathbb{R}_+)$ and $\|\widetilde{T}_{\alpha}g_r\|_{L^{p'}(\mathbb{R}_+)} \ge c_2 B(r)$, we obtain $\lim_{r\to+\infty} B(r) = 0$. Therefore (i) \Rightarrow (iii).

Now we will prove that (ii) follows from (iv). Using Theorem 1, we establish the fact that $B \leq b_1 B_1$. Let a > 0. Then $a \in [2^m, 2^{m+1})$ for some $m \in \mathbb{Z}$. Therefore $B^{(a)} \leq \sup_{0 < r < 2^m} B_{2^m, r} \equiv B^{(2^m)}$, where

$$B_{2^m,r} \equiv \left(\int_{U_r \setminus U_{2^m}} (x+t)^{(\alpha-1)q} d\nu(x,t) \right)^{\frac{1}{q}} r^{\frac{1}{p'}}.$$

If $r \in [0, 2^m)$, then $r \in [2^{j-1}, 2^j)$ for some $j \in \mathbb{Z}, j \leq m$. Furthermore,

$$B_{2^m,r}^q \le 2^{\frac{jq}{p'}} \sum_{k=j}^m \int_{U_{2^{k-1}} \setminus U_{2^k}} (x+t)^{(\alpha-1)q} d\nu(x,t) \le c_3 \Big(\sup_{k \le m} B_1(k-1)\Big)^q.$$

Hence we have $B^{(2^m)} \leq c_4 B_1^{(m)}$, where $B_1^{(m)} \equiv \sup_{k \leq m} B_1(k-1)$. If $a \to 0$, then $m \to -\infty$ and $B_1^{(m)} \to 0$. Therefore $\lim_{a \to 0} B^{(a)} = 0$. Let now $\tau > 0$. Then $\tau \in [2^m, 2^{m+1})$ and we have

$$B^{q}(\tau) \leq c_{5}B^{q}(2^{m}) = c_{5}2^{\frac{mq}{p'}} \sum_{k=m}^{+\infty} \int_{U_{2^{k}} \setminus U_{2^{k+1}}} (x+t)^{(\alpha-1)q} d\nu(x,t)$$
$$\leq c_{6}(\sup_{k \geq m} B_{1}(k))^{q}.$$

Hence it readily follows that $\lim_{\tau \to +\infty} B(\tau) \leq c_7 \lim_{m \to +\infty} \sup_{k \geq m} B_1(k) = 0$ and $\lim_{b \to +\infty} B^{(b)} = 0$. Thus (iv) \Rightarrow (ii). Let now T_{α} is compact from $L^p(\mathbb{R}_+)$ into $L^q_{\nu}(\widetilde{\mathbb{R}}^2_+)$, $k \in \mathbb{Z}$ and $f_k(x) = \chi_{[2^{k-2}, 2^{k-1})}(x)2^{-k/p}$. Then the sequence f_k weakly converges to 0 as $k \to -\infty$ or $k \to +\infty$. Moreover, it is easy to show that $||T_{\alpha}f_k||_{L^q_{\nu}(\widetilde{\mathbb{R}^2_+})} \ge c_8 B_1(k)$. Therefore (iv) is valid. Finally, we obtain (i)

 \Leftrightarrow (iii), (iv) \Rightarrow (ii) \Rightarrow (i) \Rightarrow (iv).

Our next theorem is proved in a similar manner. It is also a corollary of the well-known Ando's theorem (see, e.g., [2] and [14], §5).

Theorem 6. Let p, q, α and v satisfy the condition of Theorem 2. Then T_{α} is compact from $L^p(\mathbb{R}_+)$ into $L^q_v(\mathbb{R}^2_+)$ if and only if $D < \infty$.

By dual arguments we obtain the following theorems.

Theorem 7. Let $1 , <math>\alpha > \frac{q-1}{q}$. It is assumed that ν is a positive σ -finite measure such that the space $L^p_{\nu}(\widetilde{\mathbb{R}}^2_+)$ is separable. Then the following conditions are equivalent:

- (i) \widetilde{T}_{α} is compact from $L^p_{\nu}(\widetilde{\mathbb{R}}^2_+)$ into $L^q(\mathbb{R}_+)$;
- (ii) $\widetilde{B} < \infty$ and $\lim_{a \to 0} \widetilde{B}^{(a)} = \lim_{b \to +\infty} \widetilde{B}^{(b)} = 0$, where

$$\widetilde{B}^{(a)} \equiv \sup_{0 < r < a} \left(\int_{U_r \setminus U_a} (x+t)^{(\alpha-1)p'} d\nu(x,t) \right)^{1/p'} r^{1/q},$$
$$\widetilde{B}^{(b)} \equiv \sup_{r>b} \widetilde{B}(r) \equiv \sup_{r>b} \left(\int_{U_r} (x+t)^{(\alpha-1)p'} d\nu(x,t) \right)^{1/p'} r^{1/q};$$

(iii) $\widetilde{B} < \infty$ and $\lim_{r \to 0} \widetilde{B}(r) = \lim_{r \to +\infty} \widetilde{B}(r) = 0;$

(iv)
$$\widetilde{B}_1 < \infty$$
 and $\lim_{k \to -\infty} \widetilde{B}_1(k) = \lim_{k \to +\infty} \widetilde{B}_1(k) = 0$, where

$$\widetilde{B}_{1}(k) \equiv \left(\int_{U_{2^{k}} \setminus U_{2^{k+1}}} (x+t)^{(\alpha-1)p'} x^{p'/q} \, d\nu(x,t)\right)^{\frac{1}{q}}.$$

Theorem 8. Let $1 < q < p < \infty$ and $\alpha > \frac{q-1}{q}$. Suppose that $d\nu(x,t) = w(x,t) dx dt$, where w is a measurable a.e. positive function on $\widetilde{\mathbb{R}}^2_+$. Then \widetilde{T}_{α} is compact from $L^p_w(\widetilde{\mathbb{R}}^2_+)$ into $L^q(\mathbb{R}_+)$ if and only if $\widetilde{D} < \infty$.

5 Measure of Non-Compactness

In this section, the distance of the operator T_{α} from a space of compact operators is estimated.

Let X and Y be Banach spaces. Denote by $\mathbb{B}(X, Y)$ a space of bounded operators from X into Y. Let $\mathbb{K}(X, Y)$ be a class of all compact operators from X into Y, $\mathbb{F}_r(X, Y)$ be a space of operators of finite rank.

It is assumed that v is a Lebesgue-measurable almost everywhere positive function on $\widetilde{\mathbb{R}}^2_+$.

We need the following lemmas.

Lemma 4. [[4], Chapter V, Corollary 5.4]. Let $1 \le q < \infty$ and $P \in \mathbb{B}(X, Y)$, where $Y = L^q(\mathbb{R}^2_+)$. Then

$$\operatorname{dist}(P, \mathbb{K}(X, Y)) = \operatorname{dist}(P, \mathbb{F}_r(X, Y)).$$

Our next lemma is proved like Lemma V.5.6 in [4] (see also [21], Lemma 2.2).

Lemma 5. Let $1 \leq q < \infty$ and $Y = L^q(\widetilde{\mathbb{R}}^2_+)$. It is assumed that $P \in \mathbb{F}_r(X, Y)$ and $\epsilon > 0$. Then there exist $T \in \mathbb{F}_r(X, Y)$ and $[\alpha, \beta] \subset (0, \infty)$ such that $\|P - T\| < \epsilon$ and $suppTf \subset [\alpha, \beta] \times \mathbb{R}_+$ for any $f \in X$.

Let $T'_{\alpha}(0 < \alpha < 1)$ be an operator of the form $T'_{\alpha}f(x,t) = v^{1/q}(x,t)T_{\alpha}f(x,t)$. We denote

$$\widetilde{I} \equiv \operatorname{dist}(T_{\alpha}, \mathbb{K}(X, L^q_v(\widetilde{\mathbb{R}}^2_+))), \text{ and } \overline{I} \equiv \operatorname{dist}(T'_{\alpha}, \mathbb{K}(X, L^q(\widetilde{\mathbb{R}}^2_+))).$$

Lemma 6. Let $1 \leq q < \infty$. Then $\tilde{I} = \overline{I}$.

PROOF. Let $E \equiv \{f : ||f||_X \leq 1\}$ and $P \in \mathbb{K}(X, L^q_v(\widetilde{\mathbb{R}}^2_+))$. Then

$$\begin{aligned} |T_{\alpha} - P|| &= \sup_{E} \|(T_{\alpha} - P)f\|_{L^{q}_{v}(\widetilde{\mathbb{R}}^{2}_{+})} \\ &= \sup_{E} \|T'_{\alpha}f - v^{1/q}Pf\|_{L^{q}(\widetilde{\mathbb{R}}^{2}_{+})} = \|T'_{\alpha} - \overline{P}\|, \end{aligned}$$

where $\overline{P} = v^{1/q} P$. But $\overline{P} \in \mathbb{K}(X, L^q(\mathbb{R}^2_+))$. Therefore $\overline{I} \leq \widetilde{I}$. Similarly, we obtain $\widetilde{I} \leq \overline{I}$.

Theorem 9. Let $1 , <math>\alpha > 1/p$ and let $X = L^p(\mathbb{R}_+)$, $Y = L^q_v(\mathbb{R}^2_+)$. Assume that $B < \infty$ for $d\nu(x,t) = \nu(x,t) dx dt$. Then there exist positive constants ϵ_1 and ϵ_2 depending only on p, q and α such that

$$\epsilon_1 J \leq dist(T_\alpha, \mathbb{K}(X, Y)) \leq \epsilon_2 J_2$$

where $J = \lim_{a \to 0} J^{(a)} + \lim_{d \to +\infty} J^{(d)}$,

$$J^{(a)} \equiv \sup_{0 < r < a} \left(\int_{U_r \setminus U_a} v(x, t) (x+t)^{(\alpha-1)q} \, dx \, dt \right)^{1/q} r^{1/p'},$$
$$J^{(d)} \equiv \sup_{r > d} \left(\int_{U_r} v(x, t) (x+t)^{(\alpha-1)q} \, dx \, dt \right)^{1/q} r^{1/p'}.$$

PROOF. By the inequalities (1) and (2) from the proof of Lemma 3, we obtain $\widetilde{I} \equiv \operatorname{dist}(T_{\alpha}, \mathbb{K}(X, Y)) \leq b_2 J$, where b_2 is from Theorem 1. Let $\lambda > \widetilde{I}$. By Lemma 6 we have $\widetilde{I} = \overline{I}$. Using Lemma 4, we find that there exists an operator of finite rank $P: X \to L^q(\widetilde{\mathbb{R}}^2_+)$ such that $||T'_{\alpha} - P|| < \lambda$. From Lemma 5 it follows that for $\epsilon = (\lambda - ||T'_{\alpha} - P||)/2$ there are $T \in \mathbb{F}_r(X, L^q(\widetilde{\mathbb{R}}^2_+))$ and $[\alpha, \beta] \subset (0, \infty)$ such that $||P - T|| < \epsilon$ and $\operatorname{supp} Tf \subset [\alpha, \beta] \times \mathbb{R}_+$. Therefore for all $f \in X$ we have $||T'_{\alpha}f - Tf||_{L^q(\widetilde{\mathbb{R}}^2_+)} \leq \lambda ||f||_X$. Moreover,

$$\int_{[0,\alpha]\times\mathbb{R}_{+}} |T'_{\alpha}f(x,t)|^{q} \, dx \, dt + \int_{[\beta,\infty)\times\mathbb{R}_{+}} |T'_{\alpha}f(x,t)|^{q} \, dx \, dt \le \lambda^{q} ||f||_{L^{p}(\mathbb{R}_{+})}^{q}.$$
 (3)

Let now $d > \beta$ and $r \in (d, \infty)$. Assume that $f_r(y) = \chi_{0,r/2}(y)$. Then $\|f_r\|_{L^p(\mathbb{R}_+)}^q = 2^{-q/p} r^{q/p}$. On the other hand,

$$\begin{split} \int_{U_r} |T'_{\alpha} f_r(x,t)|^q j \, dt &\geq \int_{U_r} \Big(\int_0^{r/2} (x-y+t)^{\alpha-1} \, dy \Big)^q v(x,t) \, dx \, dt \\ &\geq c_1 \Big(\int_{U_r} v(x,t) (x+t)^{(\alpha-1)q} \, dx \, dt \Big) r^q, \end{split}$$

where $c_1 = 3^{(\alpha-1)q} 2^{-\alpha q}$ if $1/p < \alpha < 1$ and $c_1 = 2^{-\alpha q}$ for $\alpha \ge 1$. Therefore

$$\lambda \ge c_1^{1/q} 2^{1/p} \Big(\int_{U_r} v(x,t) (x+t)^{(\alpha-1)q} \, dx \, dt \Big)^{1/q} r^{1/p'}.$$

for all r > d. Hence we have $c_2 J^{(d)} \leq \lambda$ for any $d > \beta$ and, finally, we obtain $c_2 \lim_{d \to +\infty} J^{(d)} \leq \lambda$. Since λ is arbitrarily close to \widetilde{I} , we conclude that $c_2 \lim_{d \to +\infty} J^{(d)} \leq \widetilde{I}$, where $c_2 = c_1^{1/q} 2^{1/p}$. Let us choose $n \in \mathbb{Z}$ such that $2^n < \alpha$. Assume that $j \in \mathbb{Z}, j \leq n-1$ and

 $f_j(y) = \chi_{(0,2^{j-1})}(y)$. Then we obtain

$$\int_{U_{2^j} \setminus U_{2^{j+1}}} |T'_{\alpha} f(x,t)|^q \, dx \, dt \ge \int_{U_{2^j} \setminus U_{2^{j+1}}} v(x,y) \bigg(\int_0^{2^{j-1}} (x-y+t)^{\alpha-1} \, dy \bigg)^q \, dx \, dt$$
$$\ge c_3 \int_{U_{2^j} \setminus U_{2^{j+1}}} v(x,y) (x+t)^{(\alpha-1)q} 2^{(j-1)q} \, dx \, dt,$$

where $c_3 = (3/2)^{(\alpha-1)q}$ in the case, where $1/p < \alpha < 1$ and $c_3 = (1/2)^{(\alpha-1)q}$ for $\alpha \geq 1$. On the other hand, $||f_j||_X^q = 2^{(j-1)q/p}$. By (3) we find that

$$c_3^{1/q} 4^{-1/p'} \overline{B}_1(j) \le \lambda$$

for every integer $j, j \leq n-1$, where

$$\overline{B}(j) \equiv \left(\int_{U_{2^j} \setminus U_{2^{j+1}}} v(x,t)(x+t)^{(\alpha-1)q} x^{q/p'} \, dx \, dt\right)^{1/q}$$

Consequently $c_3^{1/q} 4^{-1/p'} \sup_{j \le n} \overline{B}_1(j) \le \lambda$ for every integer n with the condition $2^n < \alpha$. Let $a < 2^n < \alpha$. Then $a \in [2^m, 2^{m+1})$ for some $m, m \le n-1$. As in the proof of Theorem 5 we have that

$$B^{(a)} \le B^{(2^m)} \le 2^{1/p'} (1 - 2^{-q/p'})^{-1/q} \sup_{j \le m} \overline{B}_1(j),$$

where

$$B^{(2^m)} \equiv \sup_{0 < r < 2^m} \left(\int_{U_r \setminus U_{2^m}} v(x,t)(x+t)^{(\alpha-1)q} \, dx \, dt \right)^{1/q} r^{1/p'}.$$

Therefore $c_4 \lim_{a \to 0} B^{(a)} \leq \lambda$ with $c_4 = 2^{-3/p'} c_3^{1/q} (1 - 2^{-q/p'})^{1/q}$. Finally we obtain $c_5 J \leq \widetilde{I}$, where $c_5 = 1/2 \min\{c_2, c_4\}$.

An analogous theorem for the classical Riemann-Liouville operator R_{α} is proved for $\alpha > 1/p$ in [19]. Estimates of the distance of R_{α} from the class of compact operators in the case of two weights for $\alpha > 1$ are obtained in [6], [21] (for the case $\alpha = 1$ see [5]).

Remark 3. For the constants ϵ_1 and ϵ_2 from Theorem 9 we have: $\epsilon_2 = b_2$, $\epsilon_1 = 1/2 \min\{\beta_1, \beta_2\}$, where $\beta_1 = 2^{1/p}\gamma_3$, $\beta_2 = 2^{-3/p'}(1 - 2^{-q/p'})^{1/q}\gamma_4$ with $\gamma_3 = 3^{\alpha-1}2^{-\alpha}$ for $1/p < \alpha < 1$, $\gamma_3 = 2^{-\alpha}$ for $\alpha \ge 1$ and $\gamma_4 = (3/2)^{\alpha-1}$ for $1/p < \alpha < 1$, $\gamma_4 = (1/2)^{\alpha-1}$ if $\alpha \ge 1$.

Acknowledgements. I express my gratitude to Prof. V. Kokilashvili for drawing my attention to the above-considered problems and for his helpful remarks and to the referee for useful comments.

References

- D. R. Adams, A trace inequality for generalized potentials, Studia Math. 48 (1973), 99–105.
- T. Ando, On the compactness of integral operators, Indag. Math. (N.S.) 24 (1962), 235–239.
- [3] J. S. Bradley, Hardy inequality with mixed norms, Canad. Math. Bull. 21 (1978), 405–408.
- [4] D. E. Edmunds and W.D. Evans, Spectral theory and differential operators, Oxford Univ. Press, Oxford, 1987.
- [5] D. E. Edmunds, W. D. Evans and D. J. Harris, Approximation numbers of certain Volterra integral operators, J. London Math. Soc. 37 (1988), No. 2, 471–489.
- [6] D. E. Edmunds and V. D. Stepanov, The measure of non-compactness and approximation numbers of certain Volterra integral operators, Math. Ann. 298 (1994), 41–66.
- M. Gabidzashvili, I. Genebashvili and V. Kokilashvili, Two-weight inequalities for generalized potentials. (Russian) Trudy Mat. Inst. Steklov 194(1992), 89–96. English transl. Proc. Steklov Inst. Math. 94 (1993), Issue 4, 91–99.
- [8] I. Genebashvili, Carleson measures and potentials defined on the spaces of homogeneous type. Bull. Georgian Acad. Sci. 135(1989), No. 3, 505–508.

- [9] I. Genebashvili, A. Gogatishvili and V. Kokilashvili, Solution of twoweight problems for integral transforms with positive kernels, Georgian math. J. 3 (1996), No. 1, 319–342.
- [10] I. Genebashvili, A. Gogatishvili, V. Kokilashvili and M. Krbec, Weight theory for integral transforms on spaces of homogeneous type, Pitman Monographs and Surveys in Pure and Applied Mathematics, 92, Longman, Harlow, 1998.
- [11] L. P. Kantorovich and G. P. Akilov, *Functional Analysis*, Pergamon, Oxford, 1982.
- [12] V. M. Kokilashvili, On Hardy's inequalities in weighted spaces. (Russian) Soobsch. Akad. Nauk Gruz. SSR 96 (1979), 37–40.
- [13] H. König, Eigenvalue distribution of comapct operators. Birkäuser, Boston, 1986.
- [14] M. A. Kransnoselskii, P. P. Zabreiko, E. I. Pustilnik and P.E. Sobolevskii, *Integral operators in spaces of summable functions.* (Russian) Nauka, Moscow, 1966, English transl. Noordhoft International Publishing, Leiden, 1976.
- [15] Martin-Reyes and E. Sawyer, Weighted inequalities for Riemann-Liouville fractional integrals of order one and greater, Proc. Amer. Math. Soc. 106 (1989), 727–733.
- [16] V. G. Mazya, Sobolev spaces, Springer, Berlin, 1985.
- [17] A. Meskhi, Solution of some weight problems for the Riemann-Liouville and Weyl operator, Georgian math. J. 5 (1998), No. 6, 565–574.
- [18] A. Meskhi, Boundedness and compactness weighted criteria for Riemann-Liouville and one-sided maximal operators, Proc. A.Razmadze Math. Inst. 117 (1998), 126–128.
- [19] A. Meskhi, Criteria for the boundedness and compactness of integral transforms with positive kernels, Proc. Edinburgh Math. Soc. (to appear).
- [20] A. Meskhi, Boundedness and compactness criteria for the generalized Riemann-Liouville operator, Proc. A. Razmadze Math. Inst. 121 (1999), 161–162.
- [21] B. Opic, On the distance of the Riemann-Liouville operators from compact operators, Proc. Amer. Math. Soc. 122 (1994), No. 2, 495–501.

- [22] S. D. Riemenschneider, Compactness of a class of Volterra operators. Tôhoku Math. J. (2) 26 (1974), 285–387.
- [23] E. T. Sawyer, R. L. Wheeden and S. Zhao, Weighted norm inequalities for operators of potential type and fractional maximal functions, Potential Analysis, 5 (1996), 523–580.
- [24] G. Sinnamon and V. D. Stepanov, The weighted Hardy inequality: new proofs and the case p = 1, J. London Math. Soc. **54** (1996), 89–101.
- [25] V. D. Stepanov, Two-weighted estimates for Riemann-Liouville integrals. Report No. 39, Math. Inst. Czechoslovak Acad. Sci., 1988, p. 28.
- [26] V. D. Stepanov, Weigted inequalities of Hardy type for higher derivatives, and their applications. (Russian) Soviet Math. Dokl., 38 (1989), 389–393.
- [27] R. L. Wheeden and J. M. Wilson, Weighted norm estimates for gradients of half-space extensions, Indiana Univ. Math. J. 44 (1995), No. 3, 917– 969.