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Abstract
The concept of the GAP-integral was introduced by the authors
[7]. In this paper we characterize the Variational integral by the GAP-
integral and present some significant convergence theorems for the GAP-
integral.

1 Introduction.

The Approximately Continuous Perron integral was introduced by Burkill [1]
and its Riemann-type definition was given by Bullen [2] . Schwabik [8] pre-
sented a generalized version of the Perron integral leading to the new approach
to a generalized ordinary differential equation. The authors [7] introduced the
concept of the Generalized Approximately Continuous Perron integral (GAP)
and established some fundamental properties of the integral. The Variational
integral is a kind of non-absolute integral originally defined by R. Henstock
[4]. Kubota [5] has shown some elementary properties of the integral includ-
ing Cauchy and Harnack extensions. In the present paper, we shall establish
a characterization of the Variational integral by the GAP-integral and define
the Approximate Variational integral. An attempt has been made to establish
some significant convergence theorems of the GAP-integral using the Approx-
imate Variational integral.
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2 Preliminaries.

Definition 2.1. A collection A of closed subintervals of [a,b] is called an
approzimate full cover (AFC) if for every x € [a,b] there exists a measurable
set D, C [a,b] such that x € D, and D, has density 1 at x, with [u,v] € A
whenever u,v € D, and u < x < v.

For all approximate full covers that occur in this paper the sets D, C [a,b]
are the same. Then the relations A; C Ay or Ay N Ay for approximate full
covers A1, Ay are clear.

A division of [a, b] obtained by a = xg < &1 < -+- <z, = band {£1,&,...,&}
is called a A-division if A is an approximate full cover with [x;_1, ;] coming
from A or more precisely, if we have x;_1 < & < x; and 2;_1,2; € Dg, for
all i. We call & the associated point of [x;_1,2;] and 2; (i = 0,1,...,n) the
division points.

A division of [a,b] given by a <y < <21 <y <L <2 <o <y, <
Cm < zpm < b is called a A-partial division if A is an approximate full cover
with ([y;, 2], &) € A, for i =1,2,...,m.

The next Cousin-type lemma from [3] makes it possible to give a Riemann-type
definition of the GAP-integral.

Lemma 2.2. If A is an approzimate full cover of |a,b], then there exists a
tagged partition P of |a,b] such that P C A.

In [7], the GAP-integral is defined as follows:

Definition 2.3. A4 function U : [a,b] X [a,b] — R is said to be Generalized
Approzimate Perron (GAP)-integrable to a real number A if for every ¢ > 0
there is an AFC A of [a,b] such that for every A-division D = ([a, 8], 7) of
[a,b] we have

(D) _{U(r.8) —U(r.a)} — A < e
and we write A = (GAP) ff U.

The set of all functions U which are GAP-integrable on [a, b] is denoted by
GAPJa,b]. We use the notation

S(U’ D) = (D) Z{U(Ta ﬂ) - U(Tv a)}

for the Riemann-type sum corresponding to the function U and the A-division
D = (o, 8], 7) of [a,b]. Note that the integral is uniquely determined.

Remark 2.4. Setting U(7,t) = f(7)t where f : [a,b] — R and t,7 € [a,b], we
obtain the ap-Henstock integral [3] .
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With the notion of partial division we have proved the following theorem in
[7].

Theorem 2.5. (Saks-Henstock Lemma) Let U : [a, b] x[a,b] — R be GAP-
integrable over [a,b]. Then, given € > 0, there is an approzimate full cover A
of [a,b] such that for every A-division D = {([aj—1,;],75);5 = 1,2,...,q} of
[a,b] we have

q b
|Z{U(ij%‘)*U(ij%‘—l)}*(GAP)/ Ul <e.

Then, if {([8j,v;],¢);d =1,2,...,m} represents a A-partial division of [a,b),

we have
m

SCUUGy) — UG5} — @AP) [ U] <

j=1 Bi

In [7], the indefinite GAP-integral is defined as follows:

Definition 2.6. Let U € GAPla,b]. The function ¢ : [a,b] — R defined by
¢(s) = (GAP) [T U,a < s < b, ¢(a) = 0 is called the indefinite GAP-integral
of U.

Given a function ¢ : [a,b] — R then for [, 3] C [a,b], we put ¢(a,3) =
o(B) — ¢(a).

3 The Approximate Variational Integral.

Definition 3.1. An interval function v is said to be non-negative if (x,y) >
0 and superadditive if ¥ (x,y) + ¥(y, z) < Y(x,2z) when z <y < z.

A function U : [a,b] X [a,b] — R is said to be approzimately variationally inte-
grable on [a,b] with the primitive ¢ if for every e > 0 there is an approzimate
full cover A of [a,b] and a non-negative superadditive interval function ¥ with
¥(a,b) < € such that whenever ([o, 8], 7) € A we have

|(,Z§(O[,ﬂ) - {U(Ta 5) - U(T7 a)}| < ’l,[)(Oé,ﬁ)

Theorem 3.2. A function U : [a,b] x [a,b] — R is approximately variationally
integrable on [a,b] if and only if U € GAP][a,b].



460 D. K. GANGULY AND RANU MUKHERJEE

PROOF. Suppose that U is approximately variationally integrable on [a, b] with
the primitive ¢. Then for every e > 0 there is an approximate full cover A
of [a,b] and a non-negative superadditive interval function ¢ with ¥ (a,b) < €
such that whenever ([, 3],7) € A we have

|¢(aaﬂ) - {U(Ta /8) - U(Tv Oé)}| < ¢(aaﬂ)

Then for any A-division D = ([a, 8], T) of [a, b] we have

[$(ab) =Y {U(T,0) = Ulr,a)}| < Y |é(a. B) = {U(7, ) = U(r, @)}
<Y (e, B) < Pla,b) < e.

Hence U € GAPJa,b]. Now we suppose that U € GAP[a,b]. Let ¢(z,y) =
sup > {U(7, B)=U(r,a)}—p(a, B)| where the supremum is over all A-division
D = ([, 8], 7) of [x,y]. Since U € GAPJa,b], given € > 0, there is an approx-
imate full cover A of [a, b] such that for any A-division D = ([a, 8], 7) of [a, ]
we have

STHUB) ~ U(r, )} — la, )] < e.

It is clear that ¢¥(z,y) > 0, ¥(x,y) + ¥(y,2) < ¥(x,z) when z < y < z and
P(a,b) =sup Y [{U(r,B)=U(7, &)} — (e, B)| < € where the supremum is over
all A-division D = ([« 5], 7) of [a,b]. Then v satisfies the required condition
and U is approximately variationally integrable on [a, b]. O

Theorem 3.3. (Generalized Basic Convergence Theorem) Let (i) U, :
[a,b] X [a,b] — R be GAP-integrable on [a,b] with the primitives ¢,, n =
1,2,... , (it) there be an approzimate full cover A’ of [a,b] such that

lim [Un(T, tg) - Un(’T, tl)] = Uv(’l'7 tg) — U(’T, tl)
for each T € [a,b] and every interval-point pair ([t1,t2],7) € A, (i) ¢y con-
verge point-wise to a limit function ¢. Then U € GAPJa,b] with the primitive
¢ if and only if for every e > 0 there exists a function M(7) defined on [a, b]
taking integer values such that for infinitely many m(7) > M(T) there is an

approzimate full cover A and a non-negative superadditive interval function
with ¥(a,b) < € such that whenever ([o, 8], 7) € A we have

|¢m(r)(aaﬁ) - (b(aaﬂ)l < 1/)(047@
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PROOF. Suppose that U € GAPla,b] with the primitive ¢. Then U is also
approximately variationally integrable on [a,b]; i.e. there is an approximate
full cover Ay of [a,b] and a non-negative superadditive interval function g
with 1o (a,b) < € such that for any Ag-division D = ([a, (], 7) of [a, b] we have

|¢(O‘7ﬁ) - {U(Tv 5) - U(T,Oé)}l < ’(/}O(avﬁ)'

Again, since each U, is also approximately variationally integrable on [a, b],
there is an approximate full cover A,, of [a, b] and a non-negative superadditive
interval function v, with v, (a,b) < € 27" such that for any A,-division
D = (lo, 8], 7) of [a,b] we have |¢y, (e, B) — {Un (7, 8) — Upn(7, @) }| < (e, B).
Given € > 0, for every fixed A’-division D = ([a, 8], 7) of [a, b], there exists an
integer M (7) such that whenever m(7) > M (1) we have

{Umn(r) (73 8) = Umry (1, @)} = {U(7, B) = U(7, )} < € for every 7 € [a,b].

Without any loss of generality, we may assume that A" = AjNAxN---NA, (7).
For each 7 € [a,b], we choose any integer m(7) > M(7) and we take A =
oo

AN Ap. Also let ¥(x,y) = Yoz, y) + Z Yn(x,y). Then for any A-division
n=1

D = (o, 8], 7) of [a,b], we have

|G (r) (@, B) = @, B)| < [Pm(r) (@, B) = {Unm(z) (T, B) = Unn(z) (T, @) }|
+{Unn(r) (7, 8) = Unn(ry (1, 0) } = {U(7, B) = U(7, ) }|
+{U(7,8) = U(r,0)} = ¢(av, B)]
< Yy (@, B) + e +1ho(a, B) < Yo, B) + e

Since € > 0 is arbitrary, it follows that |¢,,-)(c, B) — ¢(, B)] < ¥(a, B).
Conversely, suppose that the condition is satisfied. Then for every ¢ > 0 there
is a function M (7) defined on [a, b] taking integer values such that for infinitely
many m(7) > M(7) there is an approximate full cover Aq of [a,b] and a non-
negative superadditive interval function ¥ with ¥ (a,b) < € such that for any
Ao-division D = ([avﬂ}’,r) of [a” b] we have |¢m(7‘) (Oé,ﬁ) - d)(avﬂ)‘ < 7/)(0%5)
Also for every fixed A’-division D = (o, 8], 7) of [a,b] we can find m(r) >
M () such that {Uy,r)(7,8) = Un(r)(T, )} = {U(7,8) = U(7,)}| < € for
every 7 € [a,b]. Using the same notations as in the first part, we choose
A=A NAy, 7€ [a,b]. Then for any A-division D = ([«, 5], 7) of [a,b], we
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have

[p(ev, B) = {U(7,B) = U(7, ) }|
<o(a, B) = m(r) (0, B)| + [@m(r) (@, B) = {Un(r) (75 B) = Upnry (T, @) }|
+H{Unn(r) (7, 8) = Unn(ry (1, )} = {U(7, B) = U(7, ) }|
<P, B) + Ymry (@, B) + €.

Therefore, by definition, U is approximately variationally integrable on [a, ]
with the required interval function provided by the right hand side of the above
inequality. Hence U € GAPla,b] with the primitive ¢. O

In [6] we have proved the Basic Convergence theorem for the GAP-integral
which is stated as follows:

Theorem 3.4. (Basic Convergence Theorem) Let (i) Uy, : [a,b] X [a, b] —
R be GAP-integrable on [a,b] with the primitives ¢,, n=1,2,... , (ii) there
be an approzimate full cover A" of [a,b] such that

nh—>rnoo[Un(T, tg) — Un(T, tl)] = U(T7 tg) — Uv(T7 tl)
for each T € [a,b] and every interval-point pair ([t1,t2],7) € A/, (iii) ¢» con-
verge point-wise to a limit function ¢. Then U € GAPla,b] with the primitive
¢ if and only if for every € > 0 there is a function M(7) defined on [a,]
taking integer values such that for infinitely many m(7) > M(7) there is an
approximate full cover A such that for any A-division D = ([a, 8], 7) of [a,b]
we have

1> {Smiry (@, 8) — dla, B)}] < e.

Remark 3.5. Theorem 3.4 immediately follows from Theorem 3.3.

Definition 3.6. A sequence of functions {¢n} is said to be oscillation con-
vergent to ¢ on [a,b] if [a,b] is the union of a sequence of closed sets X,
1=1,2,... and for every i and € > 0 there is an integer N and a non-negative
superadditive interval function v with ¥ (a,b) < e such that for infinitely many
n > N there is an approzimate full cover A,, of |a,b] such that for any A, -
division D = ([a, B],7) of [a,b] tagged in X, for each i, we have

‘¢n(a7ﬁ) - ¢(aaﬁ)| S ¢(0475)
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Theorem 3.7. (Oscillation Convergence Theorem) Let (i) U, : [a,b] X
[a,b] — R be GAP-integrable on [a,b] with the primitives ¢n, n=1,2,... ,
(13) there be an approzimate full cover A" of [a,b] such that

nli_r)noo[Un(T, to) — Upn(7,t1)] = U(7,t2) — U(T,t1)

for each T € [a,b] and every interval-point pair ([t1,t2],7) € A/, (ii) the
primitives ¢, be oscillation convergent to ¢ on [a,b], (iv) the primitives ¢,
converge uniformly to ¢ on [a,b]. Then U € GAP[a,b] with the primitive ¢
and

lim (GAP) /a b U, = (GAP) /a ’ U.

n——oo

PROOF. Let € > 0 be given. In view of (iii) above, for every i and j there
exists an integer N (i,7) such that for infinitely many n > N (i, j) there is an
approximate full cover A;; of [a,b] and a non-negative superadditive interval
function ¢;; with t;;(a,b) < € 2777 such that for any A;;-division D =
([, B], 7) of [a,b] with 7 € X; we have

‘¢n(a76) - ¢(O‘)ﬁ)| < wij(avﬁ)'

Take n = n(i,j) so that the above inequality holds. We may assume that for
each i, {¢n(; )} is a subsequence of {¢y;—1,;)}. Now consider ¢, ;) = én(j 5
in place of ¢, and write Y7 = X; and ¥V; = X; — (X1 UXo U - U X;_4)
for i = 2,3,.... Put M(7) = n(i) when 7 € Y;. We note that there are
infinitely many m(7) > M(7), namely all n(j) > n(i). If m(7) takes values in
{n(j) : j =i} when m(r) > M(7) = n(i), we put A = A,,(;) and define

Pla, B) =D i, B).
.7j
Obviously, v is non-negative, superadditive and

U(a,b) = thijla,b) <Y e27 <e.
2] 2]

Then for any A-division D = ([a, 8], 7) of [a,b] with 7 € Y;, for some i, we
have

|¢m(7’)(aa6) - (]S(O@ﬂ)‘ < djlj(aaﬂ) < 1,[}(0[,6)
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Hence the condition of Generalized Basic Convergence theorem is satisfied.
Therefore U € GAPJa, b] with the primitive ¢ and

b

lim (GAP) /a b U, = (GAP) / U.

—
n (o9} a

O

In [6] we have proved the Mean Convergence theorem for the GAP-integral
which is stated as follows:

Theorem 3.8. (Mean Convergence Theorem) Let (i) U, : [a,b] X [a,b] —
R be GAP-integrable on [a,b] with the primitives ¢, n=1,2,... , (i) there
be an approzimate full cover A" of [a,b] such that

lim [Un(T, tg) — Un(T, tl)] = U(T7 tg) - Uv(T7 tl)

n——00

for each T € [a,b] and every interval-point pair ([t1,t2],7) € A/, (iit) [a,b]
be the union of a sequence of closed sets X;, 1 = 1,2,... and for every i and
e > 0 there exist an integer N and an approzimate full cover A of [a,b] such
that for any A-division D = ([o, 8], 7) of [a,b] tagged in X;, for each i, we

have
|Z{¢n(0‘aﬂ) - ¢(O‘aﬂ)}| < €,

for some function ¢, whenever n > N, (iv) the primitives ¢, converge uni-
formly to ¢ on [a,b]. Then U € GAP[a,b] with the primitive ¢ and

n——oo

lim (GAP) /a b U, = (GAP) /a v

Remark 3.9. Theorem 3.8 immediately follows from Theorem 3.7.
In [6] , we have proved the following lemma.

Lemma 3.10. Let U,V : [a,b] x [a,b] — R be such that U,V € GAP[a,b] and
if there be an approximate full cover Ay of [a,b] such that

U(T7 t) - U(T7 T) < V(T7 t) - V(Ta T)
for every interval-point pair ([7,t],7) € Ay where 7 <t and

U(r,7) = U(r,t) <V(r,7) = V(7,1)
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for every interval-point pair ([t,7],7) € Ag where t < T, then

(GAP) /

b b
U< (GAP)/ 1%

holds.

We have proved the Monotone Convergence theorem for the GAP-integral
in [6]. We now give an alternative proof of the same theorem using the ap-
proximate variational integral.

Theorem 3.11. (Monotone Convergence Theorem) Let (i) U, U, : [a, b] x
[a,b] — R, n = 1,2,... be such that U, € GAP[a,b] for alln = 1,2,...
with sup (GAP) f; U, < oo, (ii) there be an approzimate full cover Ag
of la,b] such that Uy(7,t) — Up(7,7) < Upy1(7,t) — Upi1(7,7) for every
interval-point pair ([7,t],7) € Ag where 7 < t and Uy (7,7) — Un(7,t) <
Uni1(7,7) — Upy1(7,t) for every interval-point pair ([t,7],7) € Ag where t <
7, (n = 1,2,...), (iit) there be an approzimate full cover A’ of [a,b] such
that lim,, o [Un(7,t2) — U, (1,t1)] = U(7,t2) — U(7,t1) for each T € [a,]
and every interval-point pair ([t1,t2],7) € A'. Then U € GAPla,b] and
lim, .. (GAP) [*U, = (GAP) [*U.

PROOF. Let € > 0 be arbitrary. Let each U,, € GAPJa,b] with the primitive
¢y for each positive integer n. Then since each U, is also approximately
variationally integrable on [a, b], there is an approximate full cover A,, of [a, ]
and a non-negative superadditive interval function ,, with v, (a,b) < e 27"
such that for any A,,-division D = ([«, 8], 7) of [a,b] we have

|¢n(047ﬂ) - {Un(Ta ﬂ) - Un(T7 Ol)}| < qun(aaﬂ)

By (4ii), given € > 0, for every fixed A’-division D = ([«, 5], 7) of [a, ], there
exists an integer M (7) such that whenever m(7) is an integer with m(7) >
M (7) we have

|{Um(7)(7—a ﬂ) - Um(T)(T7 Oé)} - {U(T7 ﬂ) - U(T’ a)}‘ <e€

for every T € [a, b]. Since {(GAP) f; Uy} is non-decreasing and bounded above

by Lemma [3.10], {(GAP) | f U,} is also non-decreasing and bounded above
[7], where [a, 8] C [a,b]; i.e. {¢n(c,5)} is non-decreasing and bounded above,
therefore, lim ¢, («, () exists. Let lim ¢, (o, 8) = ¢(«, 3). Then for every

e > 0 and for every 7 € [a,b] there exists a function M (7) defined on [a, b]
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taking integer values such that whenever m(r) > M(7) we have |¢,, () (a, §) —
B

¢(a, B)| < €. Define ¥ (e, B) = ¢(a, B) — drr(r)(, B). Then ¥ is non—negative
superadditive and ¢ (a,b) = ¢(a,b) — dpr()(a,b) < €. For each 7 € [a,b], w
choose any integer m(7) > M(r ) and we take A = A"NAgN A, ;). Then for
any A-division D = ([a, 8], 7) of [a, b], we have

[¢(c, B) = {U(7,B) = U(7, ) }|
< o, B) = i) (@, B)| + |Pm(r) (@, B) = {Un(r) (T, B) = Upn(r) (15 ) }|
"H{Um(T) (Tv ) m(‘r) (T a)} {U( ) U(T’ a)}|
<A{o(a, B) = dri(r) (@, B)} + Yy (@, B) + € < Y, B) + Y(r) (@, B) + €.

Therefore, by definition, U is approximately variationally integrable on [a, b]
with the required interval function provided by the right hand side of the above
inequality. Hence U € GAP[a,b] and lim,, _..,(GAP) f: U, = (GAP) fab U.

O
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