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THE APPROXIMATE VARIATIONAL
INTEGRAL

Abstract

The concept of the GAP-integral was introduced by the authors
[7]. In this paper we characterize the Variational integral by the GAP-
integral and present some significant convergence theorems for the GAP-
integral.

1 Introduction.

The Approximately Continuous Perron integral was introduced by Burkill [1]
and its Riemann-type definition was given by Bullen [2] . Schwabik [8] pre-
sented a generalized version of the Perron integral leading to the new approach
to a generalized ordinary differential equation. The authors [7] introduced the
concept of the Generalized Approximately Continuous Perron integral (GAP )
and established some fundamental properties of the integral. The Variational
integral is a kind of non-absolute integral originally defined by R. Henstock
[4]. Kubota [5] has shown some elementary properties of the integral includ-
ing Cauchy and Harnack extensions. In the present paper, we shall establish
a characterization of the Variational integral by the GAP-integral and define
the Approximate Variational integral. An attempt has been made to establish
some significant convergence theorems of the GAP-integral using the Approx-
imate Variational integral.
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2 Preliminaries.

Definition 2.1. A collection ∆ of closed subintervals of [a, b] is called an
approximate full cover (AFC) if for every x ∈ [a, b] there exists a measurable
set Dx ⊂ [a, b] such that x ∈ Dx and Dx has density 1 at x, with [u, v] ∈ ∆
whenever u, v ∈ Dx and u ≤ x ≤ v.

For all approximate full covers that occur in this paper the sets Dx ⊂ [a, b]
are the same. Then the relations ∆1 ⊆ ∆2 or ∆1 ∩ ∆2 for approximate full
covers ∆1,∆2 are clear.
A division of [a, b] obtained by a = x0 < x1 < · · · < xn = b and {ξ1, ξ2, . . . , ξn}
is called a ∆-division if ∆ is an approximate full cover with [xi−1, xi] coming
from ∆ or more precisely, if we have xi−1 ≤ ξi ≤ xi and xi−1, xi ∈ Dξi

for
all i. We call ξi the associated point of [xi−1, xi] and xi (i = 0, 1, . . . , n) the
division points.
A division of [a, b] given by a ≤ y1 ≤ ζ1 ≤ z1 ≤ y2 ≤ ζ2 ≤ z2 ≤ · · · ≤ ym ≤
ζm ≤ zm ≤ b is called a ∆-partial division if ∆ is an approximate full cover
with ([yi, zi], ζi) ∈ ∆, for i = 1, 2, . . . ,m.
The next Cousin-type lemma from [3] makes it possible to give a Riemann-type
definition of the GAP-integral.

Lemma 2.2. If ∆ is an approximate full cover of [a, b], then there exists a
tagged partition P of [a, b] such that P ⊆ ∆.

In [7], the GAP-integral is defined as follows:

Definition 2.3. A function U : [a, b] × [a, b] → R is said to be Generalized
Approximate Perron (GAP )-integrable to a real number A if for every ε > 0
there is an AFC ∆ of [a, b] such that for every ∆-division D = ([α, β], τ) of
[a, b] we have

|(D)
∑
{U(τ, β)− U(τ, α)} −A| < ε

and we write A = (GAP )
∫ b
a
U .

The set of all functions U which are GAP-integrable on [a, b] is denoted by
GAP[a, b]. We use the notation

S(U,D) = (D)
∑
{U(τ, β)− U(τ, α)}

for the Riemann-type sum corresponding to the function U and the ∆-division
D = ([α, β], τ) of [a, b]. Note that the integral is uniquely determined.

Remark 2.4. Setting U(τ, t) = f(τ)t where f : [a, b]→ R and t, τ ∈ [a, b], we
obtain the ap-Henstock integral [3] .
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With the notion of partial division we have proved the following theorem in
[7].

Theorem 2.5. (Saks-Henstock Lemma) Let U : [a, b]×[a, b]→ R be GAP-
integrable over [a, b]. Then, given ε > 0, there is an approximate full cover ∆
of [a, b] such that for every ∆-division D = {([αj−1, αj ], τj); j = 1, 2, . . . , q} of
[a, b] we have

|
q∑
j=1

{U(τj , αj)− U(τj , αj−1)} − (GAP )
∫ b

a

U | < ε.

Then, if {([βj , γj ], ζj); j = 1, 2, . . . ,m} represents a ∆-partial division of [a, b],
we have

|
m∑
j=1

[{U(ζj , γj)− U(ζj , βj)} − (GAP )
∫ γj

βj

U ]| < ε.

In [7], the indefinite GAP-integral is defined as follows:

Definition 2.6. Let U ∈ GAP [a, b]. The function φ : [a, b] → R defined by
φ(s) = (GAP )

∫ s
a
U, a < s ≤ b, φ(a) = 0 is called the indefinite GAP-integral

of U.

Given a function φ : [a, b] → R then for [α, β] ⊂ [a, b], we put φ(α, β) =
φ(β)− φ(α).

3 The Approximate Variational Integral.

Definition 3.1. An interval function ψ is said to be non-negative if ψ(x, y) ≥
0 and superadditive if ψ(x, y) + ψ(y, z) ≤ ψ(x, z) when x < y < z.
A function U : [a, b]× [a, b]→ R is said to be approximately variationally inte-
grable on [a, b] with the primitive φ if for every ε > 0 there is an approximate
full cover ∆ of [a, b] and a non-negative superadditive interval function ψ with
ψ(a, b) < ε such that whenever ([α, β], τ) ∈ ∆ we have

|φ(α, β)− {U(τ, β)− U(τ, α)}| ≤ ψ(α, β).

Theorem 3.2. A function U : [a, b]×[a, b]→ R is approximately variationally
integrable on [a, b] if and only if U ∈ GAP [a, b].
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Proof. Suppose that U is approximately variationally integrable on [a, b] with
the primitive φ. Then for every ε > 0 there is an approximate full cover ∆
of [a, b] and a non-negative superadditive interval function ψ with ψ(a, b) < ε
such that whenever ([α, β], τ) ∈ ∆ we have

|φ(α, β)− {U(τ, β)− U(τ, α)}| ≤ ψ(α, β).

Then for any ∆-division D = ([α, β], τ) of [a, b] we have

|φ(a, b)−
∑
{U(τ, β)− U(τ, α)}| ≤

∑
|φ(α, β)− {U(τ, β)− U(τ, α)}|

≤
∑

ψ(α, β) ≤ ψ(a, b) < ε.

Hence U ∈ GAP [a, b]. Now we suppose that U ∈ GAP [a, b]. Let ψ(x, y) =
sup

∑
|{U(τ, β)−U(τ, α)}−φ(α, β)| where the supremum is over all ∆-division

D = ([α, β], τ) of [x, y]. Since U ∈ GAP [a, b], given ε > 0, there is an approx-
imate full cover ∆ of [a, b] such that for any ∆-division D = ([α, β], τ) of [a, b]
we have ∑

|{U(τ, β)− U(τ, α)} − φ(α, β)| < ε.

It is clear that ψ(x, y) ≥ 0, ψ(x, y) + ψ(y, z) ≤ ψ(x, z) when x < y < z and
ψ(a, b) = sup

∑
|{U(τ, β)−U(τ, α)}−φ(α, β)| < ε where the supremum is over

all ∆-division D = ([α, β], τ) of [a, b]. Then ψ satisfies the required condition
and U is approximately variationally integrable on [a, b].

Theorem 3.3. (Generalized Basic Convergence Theorem) Let (i) Un :
[a, b] × [a, b] → R be GAP-integrable on [a, b] with the primitives φn, n =
1, 2, . . . , (ii) there be an approximate full cover ∆′ of [a, b] such that

lim
n−→∞

[Un(τ, t2)− Un(τ, t1)] = U(τ, t2)− U(τ, t1)

for each τ ∈ [a, b] and every interval-point pair ([t1, t2], τ) ∈ ∆′, (iii) φn con-
verge point-wise to a limit function φ. Then U ∈ GAP [a, b] with the primitive
φ if and only if for every ε > 0 there exists a function M(τ) defined on [a, b]
taking integer values such that for infinitely many m(τ) ≥ M(τ) there is an
approximate full cover ∆ and a non-negative superadditive interval function ψ
with ψ(a, b) < ε such that whenever ([α, β], τ) ∈ ∆ we have

|φm(τ)(α, β)− φ(α, β)| ≤ ψ(α, β).
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Proof. Suppose that U ∈ GAP [a, b] with the primitive φ. Then U is also
approximately variationally integrable on [a, b]; i.e. there is an approximate
full cover ∆0 of [a, b] and a non-negative superadditive interval function ψ0

with ψ0(a, b) < ε such that for any ∆0-division D = ([α, β], τ) of [a, b] we have

|φ(α, β)− {U(τ, β)− U(τ, α)}| ≤ ψ0(α, β).

Again, since each Un is also approximately variationally integrable on [a, b],
there is an approximate full cover ∆n of [a, b] and a non-negative superadditive
interval function ψn with ψn(a, b) < ε 2−n such that for any ∆n-division
D = ([α, β], τ) of [a, b] we have |φn(α, β)− {Un(τ, β)− Un(τ, α)}| ≤ ψn(α, β).
Given ε > 0, for every fixed ∆′-division D = ([α, β], τ) of [a, b], there exists an
integer M(τ) such that whenever m(τ) ≥M(τ) we have

|{Um(τ)(τ, β)− Um(τ)(τ, α)} − {U(τ, β)− U(τ, α)}| < ε for every τ ∈ [a, b].

Without any loss of generality, we may assume that ∆′ = ∆1∩∆2∩· · ·∩∆m(τ).
For each τ ∈ [a, b], we choose any integer m(τ) ≥ M(τ) and we take ∆ =

∆′ ∩∆0. Also let ψ(x, y) = ψ0(x, y) +
∞∑
n=1

ψn(x, y). Then for any ∆-division

D = ([α, β], τ) of [a, b], we have

|φm(τ)(α, β)− φ(α, β)| ≤ |φm(τ)(α, β)− {Um(τ)(τ, β)− Um(τ)(τ, α)}|
+|{Um(τ)(τ, β)− Um(τ)(τ, α)} − {U(τ, β)− U(τ, α)}|

+|{U(τ, β)− U(τ, α)} − φ(α, β)|
≤ ψm(τ)(α, β) + ε+ ψ0(α, β) ≤ ψ(α, β) + ε.

Since ε > 0 is arbitrary, it follows that |φm(τ)(α, β) − φ(α, β)| ≤ ψ(α, β).
Conversely, suppose that the condition is satisfied. Then for every ε > 0 there
is a function M(τ) defined on [a, b] taking integer values such that for infinitely
many m(τ) ≥M(τ) there is an approximate full cover ∆0 of [a, b] and a non-
negative superadditive interval function ψ with ψ(a, b) < ε such that for any
∆0-division D = ([α, β], τ) of [a, b] we have |φm(τ)(α, β)− φ(α, β)| ≤ ψ(α, β).
Also for every fixed ∆′-division D = ([α, β], τ) of [a, b] we can find m(τ) ≥
M(τ) such that |{Um(τ)(τ, β) − Um(τ)(τ, α)} − {U(τ, β) − U(τ, α)}| < ε for
every τ ∈ [a, b]. Using the same notations as in the first part, we choose
∆ = ∆′ ∩∆0, τ ∈ [a, b]. Then for any ∆-division D = ([α, β], τ) of [a, b], we
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have

|φ(α, β)− {U(τ, β)− U(τ, α)}|
≤ |φ(α, β)− φm(τ)(α, β)|+ |φm(τ)(α, β)− {Um(τ)(τ, β)− Um(τ)(τ, α)}|

+|{Um(τ)(τ, β)− Um(τ)(τ, α)} − {U(τ, β)− U(τ, α)}|
≤ ψ(α, β) + ψm(τ)(α, β) + ε.

Therefore, by definition, U is approximately variationally integrable on [a, b]
with the required interval function provided by the right hand side of the above
inequality. Hence U ∈ GAP [a, b] with the primitive φ.

In [6] we have proved the Basic Convergence theorem for the GAP-integral
which is stated as follows:

Theorem 3.4. (Basic Convergence Theorem) Let (i) Un : [a, b]× [a, b]→
R be GAP-integrable on [a, b] with the primitives φn, n = 1, 2, . . . , (ii) there
be an approximate full cover ∆′ of [a, b] such that

lim
n−→∞

[Un(τ, t2)− Un(τ, t1)] = U(τ, t2)− U(τ, t1)

for each τ ∈ [a, b] and every interval-point pair ([t1, t2], τ) ∈ ∆′, (iii) φn con-
verge point-wise to a limit function φ. Then U ∈ GAP [a, b] with the primitive
φ if and only if for every ε > 0 there is a function M(τ) defined on [a, b]
taking integer values such that for infinitely many m(τ) ≥ M(τ) there is an
approximate full cover ∆ such that for any ∆-division D = ([α, β], τ) of [a, b]
we have

|
∑
{φm(τ)(α, β)− φ(α, β)}| < ε.

Remark 3.5. Theorem 3.4 immediately follows from Theorem 3.3.

Definition 3.6. A sequence of functions {φn} is said to be oscillation con-
vergent to φ on [a, b] if [a, b] is the union of a sequence of closed sets Xi,
i = 1, 2, . . . and for every i and ε > 0 there is an integer N and a non-negative
superadditive interval function ψ with ψ(a, b) < ε such that for infinitely many
n ≥ N there is an approximate full cover ∆n of [a, b] such that for any ∆n-
division D = ([α, β], τ) of [a, b] tagged in Xi, for each i, we have

|φn(α, β)− φ(α, β)| ≤ ψ(α, β).
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Theorem 3.7. (Oscillation Convergence Theorem) Let (i) Un : [a, b]×
[a, b] → R be GAP-integrable on [a, b] with the primitives φn, n = 1, 2, . . . ,
(ii) there be an approximate full cover ∆′ of [a, b] such that

lim
n−→∞

[Un(τ, t2)− Un(τ, t1)] = U(τ, t2)− U(τ, t1)

for each τ ∈ [a, b] and every interval-point pair ([t1, t2], τ) ∈ ∆′, (iii) the
primitives φn be oscillation convergent to φ on [a, b], (iv) the primitives φn
converge uniformly to φ on [a, b]. Then U ∈ GAP [a, b] with the primitive φ
and

lim
n−→∞

(GAP )
∫ b

a

Un = (GAP )
∫ b

a

U.

Proof. Let ε > 0 be given. In view of (iii) above, for every i and j there
exists an integer N(i, j) such that for infinitely many n ≥ N(i, j) there is an
approximate full cover ∆ij of [a, b] and a non-negative superadditive interval
function ψij with ψij(a, b) < ε 2−i−j such that for any ∆ij-division D =
([α, β], τ) of [a, b] with τ ∈ Xi we have

|φn(α, β)− φ(α, β)| ≤ ψij(α, β).

Take n = n(i, j) so that the above inequality holds. We may assume that for
each i, {φn(i,j)} is a subsequence of {φn(i−1,j)}. Now consider φn(j) = φn(j,j)

in place of φn and write Y1 = X1 and Yi = Xi − (X1 ∪ X2 ∪ · · · ∪ Xi−1)
for i = 2, 3, . . . . Put M(τ) = n(i) when τ ∈ Yi. We note that there are
infinitely many m(τ) ≥M(τ), namely all n(j) ≥ n(i). If m(τ) takes values in
{n(j) : j ≥ i} when m(τ) ≥M(τ) = n(i), we put ∆ = ∆m(τ) and define

ψ(α, β) =
∑
i,j

ψij(α, β).

Obviously, ψ is non-negative, superadditive and

ψ(a, b) =
∑
i,j

ψij(a, b) <
∑
i,j

ε 2−i−j ≤ ε.

Then for any ∆-division D = ([α, β], τ) of [a, b] with τ ∈ Yi, for some i, we
have

|φm(τ)(α, β)− φ(α, β)| ≤ ψij(α, β) ≤ ψ(α, β).



464 D. K. Ganguly and Ranu Mukherjee

Hence the condition of Generalized Basic Convergence theorem is satisfied.
Therefore U ∈ GAP [a, b] with the primitive φ and

lim
n−→∞

(GAP )
∫ b

a

Un = (GAP )
∫ b

a

U.

In [6] we have proved the Mean Convergence theorem for the GAP-integral
which is stated as follows:

Theorem 3.8. (Mean Convergence Theorem) Let (i) Un : [a, b]× [a, b]→
R be GAP-integrable on [a, b] with the primitives φn, n = 1, 2, . . . , (ii) there
be an approximate full cover ∆′ of [a, b] such that

lim
n−→∞

[Un(τ, t2)− Un(τ, t1)] = U(τ, t2)− U(τ, t1)

for each τ ∈ [a, b] and every interval-point pair ([t1, t2], τ) ∈ ∆′, (iii) [a, b]
be the union of a sequence of closed sets Xi, i = 1, 2, . . . and for every i and
ε > 0 there exist an integer N and an approximate full cover ∆ of [a, b] such
that for any ∆-division D = ([α, β], τ) of [a, b] tagged in Xi, for each i, we
have

|
∑
{φn(α, β)− φ(α, β)}| < ε,

for some function φ, whenever n ≥ N, (iv) the primitives φn converge uni-
formly to φ on [a, b]. Then U ∈ GAP [a, b] with the primitive φ and

lim
n−→∞

(GAP )
∫ b

a

Un = (GAP )
∫ b

a

U.

Remark 3.9. Theorem 3.8 immediately follows from Theorem 3.7.

In [6] , we have proved the following lemma.

Lemma 3.10. Let U, V : [a, b]× [a, b]→ R be such that U, V ∈ GAP [a, b] and
if there be an approximate full cover ∆0 of [a, b] such that

U(τ, t)− U(τ, τ) ≤ V (τ, t)− V (τ, τ)

for every interval-point pair ([τ, t], τ) ∈ ∆0 where τ < t and

U(τ, τ)− U(τ, t) ≤ V (τ, τ)− V (τ, t)
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for every interval-point pair ([t, τ ], τ) ∈ ∆0 where t < τ, then

(GAP )
∫ b

a

U ≤ (GAP )
∫ b

a

V

holds.

We have proved the Monotone Convergence theorem for the GAP-integral
in [6]. We now give an alternative proof of the same theorem using the ap-
proximate variational integral.

Theorem 3.11. (Monotone Convergence Theorem) Let (i) U,Un : [a, b]×
[a, b] → R, n = 1, 2, . . . be such that Un ∈ GAP [a, b] for all n = 1, 2, . . .
with sup (GAP )

∫ b
a
Un < ∞, (ii) there be an approximate full cover ∆0

of [a, b] such that Un(τ, t) − Un(τ, τ) ≤ Un+1(τ, t) − Un+1(τ, τ) for every
interval-point pair ([τ, t], τ) ∈ ∆0 where τ < t and Un(τ, τ) − Un(τ, t) ≤
Un+1(τ, τ)−Un+1(τ, t) for every interval-point pair ([t, τ ], τ) ∈ ∆0 where t <
τ, (n = 1, 2, . . . ), (iii) there be an approximate full cover ∆′ of [a, b] such
that limn−→∞[Un(τ, t2) − Un(τ, t1)] = U(τ, t2) − U(τ, t1) for each τ ∈ [a, b]
and every interval-point pair ([t1, t2], τ) ∈ ∆′. Then U ∈ GAP [a, b] and
limn−→∞(GAP )

∫ b
a
Un = (GAP )

∫ b
a
U.

Proof. Let ε > 0 be arbitrary. Let each Un ∈ GAP [a, b] with the primitive
φn for each positive integer n. Then since each Un is also approximately
variationally integrable on [a, b], there is an approximate full cover ∆n of [a, b]
and a non-negative superadditive interval function ψn with ψn(a, b) < ε 2−n

such that for any ∆n-division D = ([α, β], τ) of [a, b] we have

|φn(α, β)− {Un(τ, β)− Un(τ, α)}| ≤ ψn(α, β).

By (iii), given ε > 0, for every fixed ∆′-division D = ([α, β], τ) of [a, b], there
exists an integer M(τ) such that whenever m(τ) is an integer with m(τ) ≥
M(τ) we have

|{Um(τ)(τ, β)− Um(τ)(τ, α)} − {U(τ, β)− U(τ, α)}| < ε

for every τ ∈ [a, b]. Since {(GAP )
∫ b
a
Un} is non-decreasing and bounded above

by Lemma [3.10], {(GAP )
∫ β
α
Un} is also non-decreasing and bounded above

[7], where [α, β] ⊂ [a, b]; i.e. {φn(α, β)} is non-decreasing and bounded above,
therefore, lim

n−→∞
φn(α, β) exists. Let lim

n−→∞
φn(α, β) = φ(α, β). Then for every

ε > 0 and for every τ ∈ [a, b] there exists a function M(τ) defined on [a, b]
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taking integer values such that whenever m(τ) ≥M(τ) we have |φm(τ)(α, β)−
φ(α, β)| < ε. Define ψ(α, β) = φ(α, β)− φM(τ)(α, β). Then ψ is non-negative,
superadditive and ψ(a, b) = φ(a, b) − φM(τ)(a, b) < ε. For each τ ∈ [a, b], we
choose any integer m(τ) ≥M(τ) and we take ∆ = ∆′ ∩∆0 ∩∆m(τ). Then for
any ∆-division D = ([α, β], τ) of [a, b], we have

|φ(α, β)− {U(τ, β)− U(τ, α)}|
≤ |φ(α, β)− φm(τ)(α, β)|+ |φm(τ)(α, β)− {Um(τ)(τ, β)− Um(τ)(τ, α)}|

+|{Um(τ)(τ, β)− Um(τ)(τ, α)} − {U(τ, β)− U(τ, α)}|
≤ {φ(α, β)− φM(τ)(α, β)}+ ψm(τ)(α, β) + ε ≤ ψ(α, β) + ψm(τ)(α, β) + ε.

Therefore, by definition, U is approximately variationally integrable on [a, b]
with the required interval function provided by the right hand side of the above
inequality. Hence U ∈ GAP [a, b] and limn−→∞(GAP )

∫ b
a
Un = (GAP )

∫ b
a
U.
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