D. K. Ganguly, Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata -700019, India.
email: gangulydk@yahoo.co.in
Ranu Mukherjee, Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata -700019, India.

email: ranumukherjee05@yahoo.co.in

THE APPROXIMATE VARIATIONAL INTEGRAL

Abstract

The concept of the GAP-integral was introduced by the authors [7]. In this paper we characterize the Variational integral by the GAP-integral and present some significant convergence theorems for the GAP-integral.

1 Introduction.

The Approximately Continuous Perron integral was introduced by Burkill [1] and its Riemann-type definition was given by Bullen [2] . Schwabik [8] presented a generalized version of the Perron integral leading to the new approach to a generalized ordinary differential equation. The authors [7] introduced the concept of the Generalized Approximately Continuous Perron integral (GAP) and established some fundamental properties of the integral. The Variational integral is a kind of non-absolute integral originally defined by R. Henstock [4]. Kubota [5] has shown some elementary properties of the integral including Cauchy and Harnack extensions. In the present paper, we shall establish a characterization of the Variational integral by the GAP-integral and define the Approximate Variational integral. An attempt has been made to establish some significant convergence theorems of the GAP-integral using the Approximate Variational integral.

Mathematical Reviews subject classification: 26A39

Communicated by: Stefan Schwabik

Key Words: approximate full cover, variational integral, approximate variational integral, density point, Δ -division, GAP-integral, Saks-Henstock lemma

Received by the editors June 1, 2007

2 Preliminaries.

Definition 2.1. A collection Δ of closed subintervals of [a, b] is called an approximate full cover (AFC) if for every $x \in [a, b]$ there exists a measurable set $D_x \subset [a, b]$ such that $x \in D_x$ and D_x has density 1 at x, with $[u, v] \in \Delta$ whenever $u, v \in D_x$ and $u \leq x \leq v$.

For all approximate full covers that occur in this paper the sets $D_x \subset [a, b]$ are the same. Then the relations $\Delta_1 \subseteq \Delta_2$ or $\Delta_1 \cap \Delta_2$ for approximate full covers Δ_1, Δ_2 are clear.

A division of [a, b] obtained by $a = x_0 < x_1 < \cdots < x_n = b$ and $\{\xi_1, \xi_2, \ldots, \xi_n\}$ is called a Δ -division if Δ is an approximate full cover with $[x_{i-1}, x_i]$ coming from Δ or more precisely, if we have $x_{i-1} \leq \xi_i \leq x_i$ and $x_{i-1}, x_i \in D_{\xi_i}$ for all i. We call ξ_i the associated point of $[x_{i-1}, x_i]$ and x_i $(i = 0, 1, \ldots, n)$ the division points.

A division of [a, b] given by $a \leq y_1 \leq \zeta_1 \leq z_1 \leq y_2 \leq \zeta_2 \leq z_2 \leq \cdots \leq y_m \leq \zeta_m \leq z_m \leq b$ is called a Δ -partial division if Δ is an approximate full cover with $([y_i, z_i], \zeta_i) \in \Delta$, for $i = 1, 2, \ldots, m$.

The next Cousin-type lemma from [3] makes it possible to give a Riemann-type definition of the GAP-integral.

Lemma 2.2. If Δ is an approximate full cover of [a, b], then there exists a tagged partition P of [a, b] such that $P \subseteq \Delta$.

In [7], the GAP-integral is defined as follows:

Definition 2.3. A function $U : [a, b] \times [a, b] \rightarrow R$ is said to be Generalized Approximate Perron (GAP)-integrable to a real number A if for every $\epsilon > 0$ there is an AFC Δ of [a, b] such that for every Δ -division $D = ([\alpha, \beta], \tau)$ of [a, b] we have

$$|(D)\sum\{U(\tau,\beta)-U(\tau,\alpha)\}-A|<\epsilon$$

and we write $A = (GAP) \int_a^b U$.

The set of all functions U which are GAP-integrable on [a, b] is denoted by GAP[a, b]. We use the notation

$$S(U,D) = (D) \sum \{ U(\tau,\beta) - U(\tau,\alpha) \}$$

for the Riemann-type sum corresponding to the function U and the Δ -division $D = ([\alpha, \beta], \tau)$ of [a, b]. Note that the integral is uniquely determined.

Remark 2.4. Setting $U(\tau,t) = f(\tau)t$ where $f : [a,b] \to R$ and $t, \tau \in [a,b]$, we obtain the ap-Henstock integral [3].

With the notion of partial division we have proved the following theorem in [7].

Theorem 2.5. (Saks-Henstock Lemma) Let $U : [a, b] \times [a, b] \rightarrow R$ be GAPintegrable over [a, b]. Then, given $\epsilon > 0$, there is an approximate full cover Δ of [a, b] such that for every Δ -division $D = \{([\alpha_{j-1}, \alpha_j], \tau_j); j = 1, 2, ..., q\}$ of [a, b] we have

$$\left|\sum_{j=1}^{q} \{U(\tau_j, \alpha_j) - U(\tau_j, \alpha_{j-1})\} - (GAP) \int_a^b U\right| < \epsilon.$$

Then, if $\{([\beta_j, \gamma_j], \zeta_j); j = 1, 2, ..., m\}$ represents a Δ -partial division of [a, b], we have

$$\left|\sum_{j=1}^{m} [\{U(\zeta_j, \gamma_j) - U(\zeta_j, \beta_j)\} - (GAP) \int_{\beta_j}^{\gamma_j} U]\right| < \epsilon.$$

In [7], the indefinite GAP-integral is defined as follows:

Definition 2.6. Let $U \in GAP[a,b]$. The function $\phi : [a,b] \to R$ defined by $\phi(s) = (GAP) \int_a^s U, a < s \le b, \ \phi(a) = 0$ is called the indefinite GAP-integral of U.

Given a function $\phi : [a, b] \to R$ then for $[\alpha, \beta] \subset [a, b]$, we put $\phi(\alpha, \beta) = \phi(\beta) - \phi(\alpha)$.

3 The Approximate Variational Integral.

Definition 3.1. An interval function ψ is said to be non-negative if $\psi(x, y) \geq 0$ and superadditive if $\psi(x, y) + \psi(y, z) \leq \psi(x, z)$ when x < y < z. A function $U : [a, b] \times [a, b] \to R$ is said to be approximately variationally integrable on [a, b] with the primitive ϕ if for every $\epsilon > 0$ there is an approximate full cover Δ of [a, b] and a non-negative superadditive interval function ψ with $\psi(a, b) < \epsilon$ such that whenever $([\alpha, \beta], \tau) \in \Delta$ we have

$$|\phi(\alpha,\beta) - \{U(\tau,\beta) - U(\tau,\alpha)\}| \le \psi(\alpha,\beta).$$

Theorem 3.2. A function $U : [a, b] \times [a, b] \rightarrow R$ is approximately variationally integrable on [a, b] if and only if $U \in GAP[a, b]$.

PROOF. Suppose that U is approximately variationally integrable on [a, b] with the primitive ϕ . Then for every $\epsilon > 0$ there is an approximate full cover Δ of [a, b] and a non-negative superadditive interval function ψ with $\psi(a, b) < \epsilon$ such that whenever $([\alpha, \beta], \tau) \in \Delta$ we have

$$|\phi(\alpha,\beta) - \{U(\tau,\beta) - U(\tau,\alpha)\}| \le \psi(\alpha,\beta).$$

Then for any Δ -division $D = ([\alpha, \beta], \tau)$ of [a, b] we have

$$\begin{aligned} |\phi(a,b) - \sum \{U(\tau,\beta) - U(\tau,\alpha)\}| &\leq \sum |\phi(\alpha,\beta) - \{U(\tau,\beta) - U(\tau,\alpha)\}| \\ &\leq \sum \psi(\alpha,\beta) \leq \psi(a,b) < \epsilon. \end{aligned}$$

Hence $U \in GAP[a, b]$. Now we suppose that $U \in GAP[a, b]$. Let $\psi(x, y) = \sup \sum |\{U(\tau, \beta) - U(\tau, \alpha)\} - \phi(\alpha, \beta)|$ where the supremum is over all Δ -division $D = ([\alpha, \beta], \tau)$ of [x, y]. Since $U \in GAP[a, b]$, given $\epsilon > 0$, there is an approximate full cover Δ of [a, b] such that for any Δ -division $D = ([\alpha, \beta], \tau)$ of [a, b] we have

$$\sum |\{U(\tau,\beta) - U(\tau,\alpha)\} - \phi(\alpha,\beta)| < \epsilon.$$

It is clear that $\psi(x,y) \ge 0$, $\psi(x,y) + \psi(y,z) \le \psi(x,z)$ when x < y < z and $\psi(a,b) = \sup \sum |\{U(\tau,\beta) - U(\tau,\alpha)\} - \phi(\alpha,\beta)| < \epsilon$ where the supremum is over all Δ -division $D = ([\alpha,\beta],\tau)$ of [a,b]. Then ψ satisfies the required condition and U is approximately variationally integrable on [a,b].

Theorem 3.3. (Generalized Basic Convergence Theorem) Let (i) U_n : $[a,b] \times [a,b] \rightarrow R$ be GAP-integrable on [a,b] with the primitives ϕ_n , $n = 1, 2, \ldots$, (ii) there be an approximate full cover Δ' of [a,b] such that

$$\lim_{n \to \infty} [U_n(\tau, t_2) - U_n(\tau, t_1)] = U(\tau, t_2) - U(\tau, t_1)$$

for each $\tau \in [a, b]$ and every interval-point pair $([t_1, t_2], \tau) \in \Delta'$, (iii) ϕ_n converge point-wise to a limit function ϕ . Then $U \in GAP[a, b]$ with the primitive ϕ if and only if for every $\epsilon > 0$ there exists a function $M(\tau)$ defined on [a, b] taking integer values such that for infinitely many $m(\tau) \geq M(\tau)$ there is an approximate full cover Δ and a non-negative superadditive interval function ψ with $\psi(a, b) < \epsilon$ such that whenever $([\alpha, \beta], \tau) \in \Delta$ we have

$$|\phi_{m(\tau)}(\alpha,\beta) - \phi(\alpha,\beta)| \le \psi(\alpha,\beta).$$

PROOF. Suppose that $U \in GAP[a, b]$ with the primitive ϕ . Then U is also approximately variationally integrable on [a, b]; i.e. there is an approximate full cover Δ_0 of [a, b] and a non-negative superadditive interval function ψ_0 with $\psi_0(a, b) < \epsilon$ such that for any Δ_0 -division $D = ([\alpha, \beta], \tau)$ of [a, b] we have

$$|\phi(\alpha,\beta) - \{U(\tau,\beta) - U(\tau,\alpha)\}| \le \psi_0(\alpha,\beta).$$

Again, since each U_n is also approximately variationally integrable on [a, b], there is an approximate full cover Δ_n of [a, b] and a non-negative superadditive interval function ψ_n with $\psi_n(a, b) < \epsilon \ 2^{-n}$ such that for any Δ_n -division $D = ([\alpha, \beta], \tau)$ of [a, b] we have $|\phi_n(\alpha, \beta) - \{U_n(\tau, \beta) - U_n(\tau, \alpha)\}| \le \psi_n(\alpha, \beta)$. Given $\epsilon > 0$, for every fixed Δ' -division $D = ([\alpha, \beta], \tau)$ of [a, b], there exists an integer $M(\tau)$ such that whenever $m(\tau) \ge M(\tau)$ we have

$$|\{U_{m(\tau)}(\tau,\beta) - U_{m(\tau)}(\tau,\alpha)\} - \{U(\tau,\beta) - U(\tau,\alpha)\}| < \epsilon \quad for \ every \ \tau \in [a,b].$$

Without any loss of generality, we may assume that $\Delta' = \Delta_1 \cap \Delta_2 \cap \cdots \cap \Delta_{m(\tau)}$. For each $\tau \in [a, b]$, we choose any integer $m(\tau) \geq M(\tau)$ and we take $\Delta = \Delta' \cap \Delta_0$. Also let $\psi(x, y) = \psi_0(x, y) + \sum_{n=1}^{\infty} \psi_n(x, y)$. Then for any Δ -division $D = ([\alpha, \beta], \tau)$ of [a, b], we have

$$\begin{aligned} |\phi_{m(\tau)}(\alpha,\beta) - \phi(\alpha,\beta)| &\leq |\phi_{m(\tau)}(\alpha,\beta) - \{U_{m(\tau)}(\tau,\beta) - U_{m(\tau)}(\tau,\alpha)\}| \\ &+ |\{U_{m(\tau)}(\tau,\beta) - U_{m(\tau)}(\tau,\alpha)\} - \{U(\tau,\beta) - U(\tau,\alpha)\}| \\ &+ |\{U(\tau,\beta) - U(\tau,\alpha)\} - \phi(\alpha,\beta)| \\ &\leq \psi_{m(\tau)}(\alpha,\beta) + \epsilon + \psi_0(\alpha,\beta) \leq \psi(\alpha,\beta) + \epsilon. \end{aligned}$$

Since $\epsilon > 0$ is arbitrary, it follows that $|\phi_{m(\tau)}(\alpha,\beta) - \phi(\alpha,\beta)| \leq \psi(\alpha,\beta)$. Conversely, suppose that the condition is satisfied. Then for every $\epsilon > 0$ there is a function $M(\tau)$ defined on [a, b] taking integer values such that for infinitely many $m(\tau) \geq M(\tau)$ there is an approximate full cover Δ_0 of [a, b] and a nonnegative superadditive interval function ψ with $\psi(a, b) < \epsilon$ such that for any Δ_0 -division $D = ([\alpha, \beta], \tau)$ of [a, b] we have $|\phi_{m(\tau)}(\alpha, \beta) - \phi(\alpha, \beta)| \leq \psi(\alpha, \beta)$. Also for every fixed Δ' -division $D = ([\alpha, \beta], \tau)$ of [a, b] we can find $m(\tau) \geq$ $M(\tau)$ such that $|\{U_{m(\tau)}(\tau, \beta) - U_{m(\tau)}(\tau, \alpha)\} - \{U(\tau, \beta) - U(\tau, \alpha)\}| < \epsilon$ for every $\tau \in [a, b]$. Using the same notations as in the first part, we choose $\Delta = \Delta' \cap \Delta_0, \ \tau \in [a, b]$. Then for any Δ -division $D = ([\alpha, \beta], \tau)$ of [a, b], we have

$$\begin{aligned} |\phi(\alpha,\beta) - \{U(\tau,\beta) - U(\tau,\alpha)\}| \\ \leq |\phi(\alpha,\beta) - \phi_{m(\tau)}(\alpha,\beta)| + |\phi_{m(\tau)}(\alpha,\beta) - \{U_{m(\tau)}(\tau,\beta) - U_{m(\tau)}(\tau,\alpha)\}| \\ + |\{U_{m(\tau)}(\tau,\beta) - U_{m(\tau)}(\tau,\alpha)\} - \{U(\tau,\beta) - U(\tau,\alpha)\}| \\ \leq \psi(\alpha,\beta) + \psi_{m(\tau)}(\alpha,\beta) + \epsilon. \end{aligned}$$

Therefore, by definition, U is approximately variationally integrable on [a, b] with the required interval function provided by the right hand side of the above inequality. Hence $U \in GAP[a, b]$ with the primitive ϕ .

In [6] we have proved the Basic Convergence theorem for the GAP-integral which is stated as follows:

Theorem 3.4. (Basic Convergence Theorem) Let (i) $U_n : [a, b] \times [a, b] \rightarrow R$ be GAP-integrable on [a, b] with the primitives ϕ_n , n = 1, 2, ..., (ii) there be an approximate full cover Δ' of [a, b] such that

$$\lim_{n \to \infty} [U_n(\tau, t_2) - U_n(\tau, t_1)] = U(\tau, t_2) - U(\tau, t_1)$$

for each $\tau \in [a, b]$ and every interval-point pair $([t_1, t_2], \tau) \in \Delta'$, (iii) ϕ_n converge point-wise to a limit function ϕ . Then $U \in GAP[a, b]$ with the primitive ϕ if and only if for every $\epsilon > 0$ there is a function $M(\tau)$ defined on [a, b] taking integer values such that for infinitely many $m(\tau) \geq M(\tau)$ there is an approximate full cover Δ such that for any Δ -division $D = ([\alpha, \beta], \tau)$ of [a, b] we have

$$\left|\sum\{\phi_{m(\tau)}(\alpha,\beta)-\phi(\alpha,\beta)\}\right|<\epsilon.$$

Remark 3.5. Theorem 3.4 immediately follows from Theorem 3.3.

Definition 3.6. A sequence of functions $\{\phi_n\}$ is said to be oscillation convergent to ϕ on [a,b] if [a,b] is the union of a sequence of closed sets X_i , $i = 1, 2, \ldots$ and for every i and $\epsilon > 0$ there is an integer N and a non-negative superadditive interval function ψ with $\psi(a,b) < \epsilon$ such that for infinitely many $n \ge N$ there is an approximate full cover Δ_n of [a,b] such that for any Δ_n -division $D = ([\alpha, \beta], \tau)$ of [a, b] tagged in X_i , for each i, we have

$$|\phi_n(\alpha,\beta) - \phi(\alpha,\beta)| \le \psi(\alpha,\beta).$$

462

Theorem 3.7. (Oscillation Convergence Theorem) Let (i) $U_n : [a,b] \times [a,b] \to R$ be GAP-integrable on [a,b] with the primitives ϕ_n , n = 1, 2, ..., (ii) there be an approximate full cover Δ' of [a,b] such that

$$\lim_{n \to \infty} [U_n(\tau, t_2) - U_n(\tau, t_1)] = U(\tau, t_2) - U(\tau, t_1)$$

for each $\tau \in [a, b]$ and every interval-point pair $([t_1, t_2], \tau) \in \Delta'$, (iii) the primitives ϕ_n be oscillation convergent to ϕ on [a, b], (iv) the primitives ϕ_n converge uniformly to ϕ on [a, b]. Then $U \in GAP[a, b]$ with the primitive ϕ and

$$\lim_{n \to \infty} (GAP) \int_a^b U_n = (GAP) \int_a^b U.$$

PROOF. Let $\epsilon > 0$ be given. In view of (iii) above, for every i and j there exists an integer N(i, j) such that for infinitely many $n \ge N(i, j)$ there is an approximate full cover Δ_{ij} of [a, b] and a non-negative superadditive interval function ψ_{ij} with $\psi_{ij}(a, b) < \epsilon \ 2^{-i-j}$ such that for any Δ_{ij} -division $D = ([\alpha, \beta], \tau)$ of [a, b] with $\tau \in X_i$ we have

$$|\phi_n(\alpha,\beta) - \phi(\alpha,\beta)| \le \psi_{ij}(\alpha,\beta).$$

Take n = n(i, j) so that the above inequality holds. We may assume that for each i, $\{\phi_{n(i,j)}\}$ is a subsequence of $\{\phi_{n(i-1,j)}\}$. Now consider $\phi_{n(j)} = \phi_{n(j,j)}$ in place of ϕ_n and write $Y_1 = X_1$ and $Y_i = X_i - (X_1 \cup X_2 \cup \cdots \cup X_{i-1})$ for $i = 2, 3, \ldots$ Put $M(\tau) = n(i)$ when $\tau \in Y_i$. We note that there are infinitely many $m(\tau) \ge M(\tau)$, namely all $n(j) \ge n(i)$. If $m(\tau)$ takes values in $\{n(j) : j \ge i\}$ when $m(\tau) \ge M(\tau) = n(i)$, we put $\Delta = \Delta_{m(\tau)}$ and define

$$\psi(\alpha,\beta) = \sum_{i,j} \psi_{ij}(\alpha,\beta).$$

Obviously, ψ is non-negative, superadditive and

$$\psi(a,b) = \sum_{i,j} \psi_{ij}(a,b) < \sum_{i,j} \epsilon \ 2^{-i-j} \le \epsilon.$$

Then for any Δ -division $D = ([\alpha, \beta], \tau)$ of [a, b] with $\tau \in Y_i$, for some i, we have

$$|\phi_{m(\tau)}(\alpha,\beta) - \phi(\alpha,\beta)| \le \psi_{ij}(\alpha,\beta) \le \psi(\alpha,\beta).$$

Hence the condition of Generalized Basic Convergence theorem is satisfied. Therefore $U \in GAP[a, b]$ with the primitive ϕ and

$$\lim_{n \to \infty} (GAP) \int_{a}^{b} U_{n} = (GAP) \int_{a}^{b} U.$$

In [6] we have proved the Mean Convergence theorem for the GAP-integral which is stated as follows:

Theorem 3.8. (Mean Convergence Theorem) Let (i) $U_n : [a,b] \times [a,b] \rightarrow R$ be GAP-integrable on [a,b] with the primitives ϕ_n , n = 1, 2, ..., (ii) there be an approximate full cover Δ' of [a,b] such that

$$\lim_{n \to \infty} [U_n(\tau, t_2) - U_n(\tau, t_1)] = U(\tau, t_2) - U(\tau, t_1)$$

for each $\tau \in [a, b]$ and every interval-point pair $([t_1, t_2], \tau) \in \Delta'$, (iii) [a, b]be the union of a sequence of closed sets X_i , i = 1, 2, ... and for every *i* and $\epsilon > 0$ there exist an integer N and an approximate full cover Δ of [a, b] such that for any Δ -division $D = ([\alpha, \beta], \tau)$ of [a, b] tagged in X_i , for each *i*, we have

$$\left|\sum\{\phi_n(\alpha,\beta)-\phi(\alpha,\beta)\}\right|<\epsilon,$$

for some function ϕ , whenever $n \geq N$, (iv) the primitives ϕ_n converge uniformly to ϕ on [a,b]. Then $U \in GAP[a,b]$ with the primitive ϕ and

$$\lim_{n \to \infty} (GAP) \int_{a}^{b} U_{n} = (GAP) \int_{a}^{b} U.$$

Remark 3.9. Theorem 3.8 immediately follows from Theorem 3.7.

In [6], we have proved the following lemma.

Lemma 3.10. Let $U, V : [a, b] \times [a, b] \rightarrow R$ be such that $U, V \in GAP[a, b]$ and if there be an approximate full cover Δ_0 of [a, b] such that

$$U(\tau, t) - U(\tau, \tau) \le V(\tau, t) - V(\tau, \tau)$$

for every interval-point pair $([\tau, t], \tau) \in \Delta_0$ where $\tau < t$ and

$$U(\tau,\tau) - U(\tau,t) \le V(\tau,\tau) - V(\tau,t)$$

for every interval-point pair $([t, \tau], \tau) \in \Delta_0$ where $t < \tau$, then

$$(GAP)\int_{a}^{b}U \le (GAP)\int_{a}^{b}V$$

holds.

We have proved the Monotone Convergence theorem for the GAP-integral in [6]. We now give an alternative proof of the same theorem using the approximate variational integral.

Theorem 3.11. (Monotone Convergence Theorem) Let $(i) U, U_n : [a, b] \times [a, b] \to R, n = 1, 2, ...$ be such that $U_n \in GAP[a, b]$ for all n = 1, 2, ... with sup $(GAP) \int_a^b U_n < \infty$, (ii) there be an approximate full cover Δ_0 of [a, b] such that $U_n(\tau, t) - U_n(\tau, \tau) \leq U_{n+1}(\tau, t) - U_{n+1}(\tau, \tau)$ for every interval-point pair $([\tau, t], \tau) \in \Delta_0$ where $\tau < t$ and $U_n(\tau, \tau) - U_n(\tau, t) \leq U_{n+1}(\tau, \tau) - U_{n+1}(\tau, t)$ for every interval-point pair $([\tau, t], \tau) \in \Delta_0$ where $\tau < t$ and $U_n(\tau, \tau) - U_n(\tau, t) \leq U_{n+1}(\tau, \tau) - U_{n+1}(\tau, t)$ for every interval-point pair $([t, \tau], \tau) \in \Delta_0$ where $t < \tau$, (n = 1, 2, ...), (iii) there be an approximate full cover Δ' of [a, b] such that $\lim_{n \to \infty} [U_n(\tau, t_2) - U_n(\tau, t_1)] = U(\tau, t_2) - U(\tau, t_1)$ for each $\tau \in [a, b]$ and every interval-point pair $([t_1, t_2], \tau) \in \Delta'$. Then $U \in GAP[a, b]$ and $\lim_{n \to \infty} (GAP) \int_a^b U_n = (GAP) \int_a^b U_n$

PROOF. Let $\epsilon > 0$ be arbitrary. Let each $U_n \in GAP[a, b]$ with the primitive ϕ_n for each positive integer n. Then since each U_n is also approximately variationally integrable on [a, b], there is an approximate full cover Δ_n of [a, b] and a non-negative superadditive interval function ψ_n with $\psi_n(a, b) < \epsilon 2^{-n}$ such that for any Δ_n -division $D = ([\alpha, \beta], \tau)$ of [a, b] we have

$$|\phi_n(\alpha,\beta) - \{U_n(\tau,\beta) - U_n(\tau,\alpha)\}| \le \psi_n(\alpha,\beta).$$

By (*iii*), given $\epsilon > 0$, for every fixed Δ' -division $D = ([\alpha, \beta], \tau)$ of [a, b], there exists an integer $M(\tau)$ such that whenever $m(\tau)$ is an integer with $m(\tau) \ge M(\tau)$ we have

$$|\{U_{m(\tau)}(\tau,\beta) - U_{m(\tau)}(\tau,\alpha)\} - \{U(\tau,\beta) - U(\tau,\alpha)\}| < \epsilon$$

for every $\tau \in [a, b]$. Since $\{(GAP) \int_a^b U_n\}$ is non-decreasing and bounded above by Lemma [3.10], $\{(GAP) \int_{\alpha}^{\beta} U_n\}$ is also non-decreasing and bounded above [7], where $[\alpha, \beta] \subset [a, b]$; i.e. $\{\phi_n(\alpha, \beta)\}$ is non-decreasing and bounded above, therefore, $\lim_{n \to \infty} \phi_n(\alpha, \beta)$ exists. Let $\lim_{n \to \infty} \phi_n(\alpha, \beta) = \phi(\alpha, \beta)$. Then for every $\epsilon > 0$ and for every $\tau \in [a, b]$ there exists a function $M(\tau)$ defined on [a, b] taking integer values such that whenever $m(\tau) \geq M(\tau)$ we have $|\phi_{m(\tau)}(\alpha,\beta) - \phi(\alpha,\beta)| < \epsilon$. Define $\psi(\alpha,\beta) = \phi(\alpha,\beta) - \phi_{M(\tau)}(\alpha,\beta)$. Then ψ is non-negative, superadditive and $\psi(a,b) = \phi(a,b) - \phi_{M(\tau)}(a,b) < \epsilon$. For each $\tau \in [a,b]$, we choose any integer $m(\tau) \geq M(\tau)$ and we take $\Delta = \Delta' \cap \Delta_0 \cap \Delta_{m(\tau)}$. Then for any Δ -division $D = ([\alpha,\beta],\tau)$ of [a,b], we have

$$\begin{aligned} |\phi(\alpha,\beta) - \{U(\tau,\beta) - U(\tau,\alpha)\}| \\ &\leq |\phi(\alpha,\beta) - \phi_{m(\tau)}(\alpha,\beta)| + |\phi_{m(\tau)}(\alpha,\beta) - \{U_{m(\tau)}(\tau,\beta) - U_{m(\tau)}(\tau,\alpha)\}| \\ &+ |\{U_{m(\tau)}(\tau,\beta) - U_{m(\tau)}(\tau,\alpha)\} - \{U(\tau,\beta) - U(\tau,\alpha)\}| \\ &\leq \{\phi(\alpha,\beta) - \phi_{M(\tau)}(\alpha,\beta)\} + \psi_{m(\tau)}(\alpha,\beta) + \epsilon \leq \psi(\alpha,\beta) + \psi_{m(\tau)}(\alpha,\beta) + \epsilon. \end{aligned}$$

Therefore, by definition, U is approximately variationally integrable on [a, b] with the required interval function provided by the right hand side of the above inequality. Hence $U \in GAP[a, b]$ and $\lim_{n \longrightarrow \infty} (GAP) \int_a^b U_n = (GAP) \int_a^b U$.

References

- J. C. Burkill, The approximately continuous Perron integral, Math. Zeit., 34 (1931), 270-278.
- [2] P. S. Bullen, The Burkill approximately continuous integral, J. Australian, Math. Soc. Ser. A., 35 (1983), 236-253.
- [3] R. A. Gordon, The Integrals of Lebesgue, Denjoy, Perron and Henstock, 4, Amer. Math. Soc., (1994).
- [4] R. Henstock, *Linear Analysis*, Butterworths, London, (1983).
- [5] Y. Kubota, An elementary theory of the special Denjoy integral, Math. Japonica 24 (1980), 507-520.
- [6] D. K. Ganguly, Ranu Mukherjee, On convergence of the GAP-integral, Real Anal. Exch., 31(2) (2005/2006), 373-384.
- [7] D. K. Ganguly, Ranu Mukherjee, The generalized approximate Perron integral, Math. Slovaca, 58(1) (2008), 31-42.
- [8] S. Schwabik, Generalized Ordinary Differential Equations, World Scientific, Singapore, (1992).