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I AND I∗ - CONVERGENCE OF NETS

Abstract

In this paper we consider the idea of I - convergence of nets in a
topological space and derive several basic properties. This idea extends
the concept of I - convergence of sequences considered so far in various
spaces.

1 Introduction.

The concept of convergence of a real sequence has been extended to statistical
convergence by Fast [7] (see also Schoenberg [20]) as follows.

If N denotes the set of natural numbers and K ⊂ N, then Kn denotes the
set {k ∈ K; k ≤ n} and |Kn| stands for the cardinality of the set Kn. The
natural density of the subset K is defined by d(K) = limn→∞

|Kn|
n provided

the limit exists ([8], [16]).
A sequence {xn}n∈N of real numbers is said to be statistically convergent

to l if for arbitrary ε > 0, the set K(ε) = {k ∈ N; |xk − l| ≥ ε} has natural
density zero.

Applications of statistical convergence in mathematical analysis and the
theory of numbers may be seen in [2], [3] and [15].

The concept of I-convergence of a sequence is an extension of statistical
convergence which depends on the structure of ideals of subsets of the set of
natural numbers.
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Definition 1 ([11], p. 34). If P is a non-void set, then a family I ⊂ 2P is
called an ideal if

(i) φ ∈ I and
(ii) A,B ∈ I implies A ∪B ∈ I and

(iii) A ∈ I,B ⊂ A implies B ∈ I.
The ideal I is called non-trivial if I 6= {φ} and P /∈ I.

Definition 2 ([11], p. 34). A non empty family F of subsets of a non-void
set P is a filter if

(i) φ /∈ F and
(ii) A,B ∈ F implies A ∩B ∈ F and

(iii) A ∈ F,A ⊂ B implies B ∈ F .
Clearly I ⊂ 2P is a non-trivial ideal of P if and only if F = F (I) = {A ⊂ P ;
P \ A ∈ I} is a filter on P , called the filter associated with I. A non-trivial
ideal I is called admissible if I contains all the singleton sets.

Several examples of non-trivial admissible ideals have been considered in
[9]. We are now in a position to define I-convergence of a real sequence.

Definition 3 ([1]). A sequence {xn}n∈N is said to converge to x with respect
to an ideal I of the set of natural numbers or I-convergent to x if for any ε > 0,
A(ε) = {n ∈ N; |xn − x| ≥ ε} ∈ I. In this case we write I − limn→∞ xn = x.

I-convergence includes ordinary convergence and statistical convergence
when I is the ideal of all finite subsets of the set of natural numbers and all
subsets of the set of natural numbers of natural density zero respectively.

In recent times several papers on I-convergence including substantial con-
tributions by Šalát et. al. have been published ([1], [4], [6], [9], [10], [12],
[13], [19]). Another concept closely related to that of I-convergence is I∗-
convergence. The concept arises from the following result on statistical con-
vergence [18]: a real sequence {xn}n∈N is statistically convergent to ξ if and
only if there exists a set M = {m1 < m2 < m3 < . . . } ⊂ N such that
d(M) = 1 and limk→∞ xmk

= ξ. In this area also Šalát et. al. [9] made
remarkable contributions.

The concept of I-convergence of sequences has been extended recently from
the real number space to a metric space [9], to a normed linear space [19], to
a finite dimensional space [17], and to a topological space [13]. In this paper
we intend to broaden the idea of I-convergence in a separate direction. We
consider nets in a topological space instead of sequences and examine how far
the concept of I-convergence of nets reasonably ensures all the basic properties.
Similarly we introduce the idea of I∗-convergence of nets and study when I-
convergence and I∗-convergence of nets coincide.
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2 Definitions and Notation.

The following two definitions are widely known.

Definition 4. Let D be a non-void set and let ≥ be a binary relation on D
such that ≥ is reflexive, transitive, and for any two elements m,n ∈ D, there
is an element p ∈ D such that p ≥ m and p ≥ n. The pair (D,≥) is called a
directed set.

Definition 5. Let (D,≥) be a directed set and let X be a non-void set. A
mapping s : D → X is called a net in X denoted by {sn;n ∈ D} or simply by
{sn} when the set D is clear.

Throughout the paper (X, τ) will denote a topological space (which will
be written sometimes simply as X) and I will denote a non-trivial ideal of a
directed set D. Also the symbol N is reserved for the set of natural numbers.

For n ∈ D let Mn = {k ∈ D; k ≥ n}. Then the collection F0 = {A ⊂
D;A ⊃ Mn for some n} forms a filter in D. Let I0 = {A ⊂ D;D \ A ∈ F0}.
Then I0 is also a non-trivial ideal in D.

Definition 6. A non-trivial ideal I of D will be called D-admissible if Mn ∈
F (I) for all n ∈ D.

We now define the I-convergence of a net where I is an ideal of D.

Definition 7. A net {sn} in X is said to be I-convergent to x0 ∈ X if for
any open set U containing x0, {n ∈ D; sn /∈ U} ∈ I.

Symbolically we write I − lim sn = x0 and we say that x0 is the I-limit of
the net {sn}.

Example 1. Let X = {a, b, c, d} and τ = {φ,X, {a}, {a, b}, {a, c}, {a, b, c}}.
Let D = Ua = {{a}, {a, b}, {a, c}, {a, b, c}, X} with the binary relation ’≥’
defined by U ≥ V if U ⊂ V for any U, V ∈ D. Then D is a directed set. Take
I = {{{a}, {a, c}}, {{a}}, {{a, c}}, φ}. Clearly I is a non-trivial ideal of D.

Define a net s : D → X by sU =

{
d if U = {a} or {a, c}
a otherwise.

Then for any open set Q containing a, {U ∈ D; sU /∈ Q} is either the void
set φ or {{a}, {a, c}}. But both belong to I and so {sU} is I-convergent to a.
But {sU} is not convergent to a because for any open set Q containing a, there
does not exist a U ∈ D such that sV ∈ Q for all V ∈ D such that V ≥ U .
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Note 1. If I is D-admissible, then net convergence in the topology τ implies
I-convergence and the converse holds if I = I0. In other words, I0-convergence
implies net convergence, which fact will be used several times in the paper.
Also if D = N with the natural ordering, then the concepts of D-admissibility
and admissibility coincide and in this case I0 is the ideal of all finite subsets
of N.

From this stage onwards we shall assume that the ideals are always non-
trivial and that all ideals are from some directed set, which will be evident
from the context. For convenience, an ideal I of D will be written sometimes
as ID to indicate the directed set D of which I is an ideal.

3 Basic Properties.

Theorem 1. If X is Hausdorff, then an I-convergent net has a unique I-limit.

Proof. If possible, suppose that an I-convergent net {sn} has two distinct
I-limits, say x0 and y0. Because X is Hausdorff, there exist U, V ∈ τ such that
x0 ∈ U , y0 ∈ V and U ∩V = φ. Because {k; sk /∈ U} ∈ I and {k; sk /∈ V } ∈ I,
we have {k; sk ∈ (U ∪ V )c} ⊂ {k; sk ∈ U c} ∪ {k; sk ∈ V c} ∈ I where c stands
for the complement in X. Since I is non-trivial, there exists k0 ∈ D with
k0 /∈ {k; sk ∈ (U ∩ V )c}. This implies sk0 ∈ U ∩ V , a contradiction.

A sort of converse of Theorem 1 is given below.

Theorem 2. If every I-convergent net in X has a unique I-limit for every
D-admissible ideal I, then X is Hausdorff.

Proof. If possible let X be not Hausdorff. Then there exist at least two
points x, y ∈ X, x 6= y such that whenever x ∈ U , y ∈ V , U, V ∈ τ we have
U ∩ V 6= φ. Let Ux and Uy be the families of all neighborhoods of x and
y respectively. Let D = Ux × Uy with the binary relation ’≥’ defined by
(U, V ) ≥ (U1, V1) if U ⊂ U1 and V ⊂ V1. Then D is a directed set. Let I
be any D-admissible ideal. For any U ∈ Ux and V ∈ Uy there exists a point
z(U,V ) ∈ U∩V . We now consider the net s : D → X defined by s(U,V ) = z(U,V ).
Then it is easy to check that the net converges to both x and y and since I is
D-admissible, the net is I-convergent to both x and y, a contradiction.

In the following theorem we examine the relation between a limit point of
a set (in the usual topology of X) and I-limit of a certain net.
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Theorem 3. Let A ⊂ X and x0 ∈ X. If there is a net in A \ {x0} which is
I-convergent to x0, then x0 is a limit point of A (in the usual topology of X).
Conversely if x0 is a limit point of A, then there is a net in A \ {x0} which is
I-convergent to x0 for some D-admissible ideal I.

Proof. Suppose that there is a net {sn} in A \ {x0} which is I-convergent
to x0. Let U be any arbitrary open set containing x0. Since I − lim sn = x0,
{n; sn /∈ U} ∈ I and so {n; sn ∈ U} /∈ I (since I is non-trivial). Hence
{n; sn ∈ U} 6= φ. Let n0 ∈ {n; sn ∈ U}. Then sn0 ∈ U ∩ (A \ {x0}). Thus x0

is a limit point of A.
Conversely if x0 is a limit point of A, then for arbitrary neighborhood U of

x0, U ∩ (A \ {x0}) 6= φ. Then taking the directed set D as Ux0 as the family
of all neighborhoods U of x0 with U1 ≥ U if U1 ⊂ U and defining the net
s : D → X by sU ∈ U ∩ (A \ {x0}) for any U ∈ Ux0 , we see that the net {sU}
converges to x0 and so is I-convergent to x0 if I is D-admissible. This proves
the theorem.

We observe in the following theorem that a continuous mapping may be
characterized through I-convergence of nets.

Theorem 4. A continuous mapping g : X → X preserves I-convergence of
a net. Conversely if g : X → X preserves I-convergence of nets for any
D-admissible ideal I, then g is continuous.

Proof. Let I − lim sn = x. Let V be any open set containing g(x). There
exists an open set U containing x such that g(U) ⊂ V . Since

{n; g(sn) /∈ V } ⊂ {n; sn /∈ U}

and {n; sn /∈ U} ∈ I, we have {n; g(sn) /∈ V } ∈ I. This shows that I −
lim g(sn) = g(x).

Conversely, suppose g is not continuous at x ∈ X. Then there is an
open set V containing g(x) such that for any open neighborhood U of x,
g(U) * V . Then there is an sU ∈ U such that g(sU ) /∈ V . Consider the net
{sU ;U ∈ D = Ux} where Ux is the family of all neighborhoods of x and D is
directed as in Theorem 3. Then {sU} is convergent to x and so is I-convergent
to x for any D-admissible ideal I. But since {U ; g(sU ) /∈ V } = D /∈ I (since I
is non-trivial), {g(sU )} is not I-convergent to g(x). This contradiction shows
that g is continuous.
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4 I-Cluster Points.

We recall the following known definition of a subnet.

Definition 8. A net {tα;α ∈ E}, where E is a directed set, is said to be a
subnet of the net {sn;n ∈ D} if there is a mapping i;E → D such that

(i.) t = s ◦ i and
(ii.) for any m in D there is an element α0 ∈ E with the property that

i(α) ≥ m for all α in E with α ≥ α0.

Note 2. Let {tα;α ∈ E} be a subnet of {sn;n ∈ D}. We consider the
collection {A ⊂ D; i−1(A) ∈ IE}. Then this collection is an ideal of D which
will be denoted by IE(i). So IE(i) = {A ⊂ D; i−1(A) ∈ IE}. Let IE be
E-admissible and n ∈ D. Let Mn = {k ∈ D; k ≥ n} as before. From above
(ii.) it follows that corresponding to n ∈ D there is α0 ∈ E such that i(α) ≥ n
for all α ∈ E, α ≥ α0. Thus i(Mα0) ⊂ Mn where Mα0 = {α ∈ E;α ≥ α0}.
Hence Mα0 ⊂ i−1(Mn). Since IE is E-admissible, Mα0 ∈ F (IE) and so
i−1(Mn) ∈ F (IE) which in turn implies Mn ∈ F (IE(i)). this shows that IE(i)
is D-admissible.

We now introduce the following definitions, where Definition 9 is needed to
show that an I-cluster point of a net is necessarily an I-limit of the net under
certain restrictions on the net.

Definition 9. y ∈ X is called I-cluster point of a net {sn} if for every open
set U containing y, {n; sn ∈ U} /∈ I.

Definition 10. A net {sn} is called I-maximal if for any set A ⊂ X, either
{n; sn /∈ A} ∈ I or {n; sn /∈ X \A} ∈ I.

Theorem 5. Let the net {sn} be I-maximal. If x0 ∈ X is an I-cluster point
of {sn}, then {sn} is I-convergent to x0.

Proof. Let U be any open set containing x0. Since {sn} is I-maximal,
{n; sn /∈ U} ∈ I or {n; sn /∈ X \ U} ∈ I. If possible, let {n; sn /∈ X \ U} ∈ I.
Then {n; sn ∈ U} ∈ I. But as x0 is an I-cluster point of {sn}, {n; sn ∈ U} /∈ I,
a contradiction. Hence {n; sn /∈ U} ∈ I and this proves the theorem.

Theorem 6. Let {sn;n ∈ D} be a net. If x0 is an ID-cluster point of {sn}
for some D-admissible ideal ID, then there is a subnet {tα;α ∈ E} of {sn}
which is IE-convergent to x0 provided the ideal IE is E-admissible.
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Proof. Let Ux0 denote the family of all open neighborhoods of x0. Let E =
{(U, n);U ∈ Ux0 , n ∈ D}. For (U, n) and (V, p) in E, define (U, n) ≥ (V, p) if
U ⊂ V and n ≥ p. Then E is a directed set.

Let (U,m) ∈ E. Since x0 is an ID-cluster point of {sn}, {n; sn ∈ U} /∈ ID.
Then {n; sn ∈ X \U} /∈ F (ID). Since ID is D-admissible, Mm = {k ∈ D; k ≥
m} ∈ F (ID) for each m ∈ D. So Mm * {n; sn ∈ X \ U}. Then there exists a
p ∈ Mm (and so p ≥ m) such that sp /∈ X \ U i.e. sp ∈ U . Write p = p(U,m).
Now define i : E → D by i(U,m) = p(U,m) and t : E → X by t(U,m) = sp(U,m) .
Then it is easy to check that the subnet {tα;α ∈ E} is convergent to x0 and
so is IE-convergent to x0 because the ideal IE is E-admissible. This proves
the theorem.

The following theorem represents something similar to the converse of The-
orem 6.

Theorem 7. If a subnet {tα;α ∈ E} of a net {sn;n ∈ D} is IE-convergent
to x0 for some ideal IE, then x0 is an ID-cluster point of {sn} for some ideal
ID.

Proof. Since {tα;α ∈ E} is a subnet of the net {sn;n ∈ D}, there is a
mapping i : E → D with t = s ◦ i. Let ID = IE(i) (see Note 2). We will show
that x0 is an ID-cluster point of {sn}. Let U be an open set containing x0. If
possible, let {n ∈ D; sn ∈ U} ∈ ID. Then let B = i−1({n ∈ D; sn ∈ U}) ∈ IE .
Now since {tα} is IE-convergent to x0, {α ∈ E; tα /∈ U} ∈ IE . Then let
A = {α ∈ E; tα ∈ U} ∈ F (IE). But α ∈ A =⇒ tα ∈ U =⇒ (s ◦ i)(α) ∈
U =⇒ si(α) ∈ U =⇒ i(α) ∈ {n ∈ D; sn ∈ U} =⇒ α ∈ B. Thus A ⊂ B
and so B = i−1({n ∈ D; sn ∈ U}) ∈ F (IE), which contradicts the fact that
B ∈ IE (since IE is non-trivial). Hence {n ∈ D; sn ∈ U} /∈ ID and so x0 is an
ID-cluster point of {sn}. This proves the theorem.

We characterize I-cluster points through the following theorem in terms of
a certain subset of X.

Theorem 8. Let {sn;n ∈ D} be a net in X. Then x0 ∈ X is an I-cluster point
of {sn} if and only if x0 ∈ AT for every T ∈ F (I) where AT = {x ∈ X;x = st
for t ∈ T}. Here bar denotes the closure in X.

Proof. First suppose that x0 is an I-cluster point of {sn}. Let U be an open
set containing x0. Then {n; sn ∈ U} /∈ I. Hence {n; sn ∈ X \ U} /∈ F (I).
Let T ∈ F (I). Clearly T * {n; sn ∈ X \ U} and so there is a t ∈ T such
that t /∈ {n; sn ∈ X \ U}. But then st /∈ X \ U and so st ∈ U . Therefore
U ∩AT 6= φ. Since this is true for any open set U containing x0, x0 ∈ AT .
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Conversely, let x0 ∈ AT for every T ∈ F (I). Let U be an open set contain-
ing x0. If possible, let {n; sn ∈ U} ∈ I. Then let T0 = {n; sn ∈ X \U} ∈ F (I).
But then AT0 ∩ U = φ which contradicts the fact that x0 ∈ AT0 . This shows
that {n; sn ∈ U} /∈ I and the proof is complete.

Let I(Cs) denote the collection of all I-cluster points of a net s = {sn}.
The following theorem gives a set-theoretic character of the set I(Cs).

Theorem 9. (i.) I(Cs) is closed for any net s = {sn;n ∈ D} and any ideal
I of D.

(ii.) Suppose X is completely separable and let I be a given ideal of a directed
set D. Let there exist a pairwise disjoint sequence {Rp} of sets such that
Rp ⊂ D, Rp /∈ I for all p. Then for any non-void closed set F ⊂ X,
there is a net s = {sn;n ∈ D} in X such that F = I(Cs).

Proof. The proof of (i.) is omitted as being similar to that of Theorem 10 (i)
in [13]. For (ii.), since X is completely separable, F is separable and so let A =
{a1, a2, . . . } ⊂ F be a countable set with A = F . For n ∈ Ri, let sn = ai. For
n ∈ D such that n /∈ Ri for any i (if there is any), we take sn = a, a fixed
element from F for any such n. Let s = {sn;n ∈ D} and y ∈ I(Cs). If y = a
or ai for some i, then y ∈ F . So let y 6= a or ai for any i.

Let U be any open set containing y. Then from definition, {n; sn ∈ U} /∈ I
and so {n; sn ∈ U} 6= φ. This implies either a ∈ U or ai ∈ U for some i and
so U ∩ F 6= φ. Thus y is a limit point of F and so y ∈ F . So I(Cs) ⊂ F .

To prove the reverse inclusion, let z ∈ F and let U be any open set con-
taining z. Then there is ai ∈ A such that ai ∈ U . Thus {n; sn ∈ U} ⊃ Ri and
so {n; sn ∈ U} /∈ I. This implies z ∈ I(Cs).

5 I∗-Convergence and the Condition (DP).

In this section we introduce the concept of I∗-convergence of a net and examine
its equality with I-convergence. One may be referred to ([9], [13]) which deal
with this concept for sequences.

Definition 11. A net {sn;n ∈ D} is said to be I∗-convergent to x ∈ X if there
exists a set M ∈ F (I) (i.e. D \M ∈ I) such that M itself is a directed set and
the net {sn;n ∈M} is convergent to x. In this case we write I∗ − lim sn = x
and x is called the I∗-limit of {sn}.
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Example 2. We consider Example 1 with the same D, I and binary relation.
Since M = D \ {{a}, {a, c}} = {{a, b}, {a, b, c}, X} ∈ F (I) which is clearly
a directed set as per the binary relation of Ex. 1, the net of Ex. 1 is I∗-
convergent to a. However if we define a net s : D → X by

sU =

{
d if U = {a} or {a, c} or {a, b, c}
a otherwise.

then the net {sU ;U ∈ D} is still I∗-convergent to a but is neither I-convergent
to a nor convergent to a in the usual sense. Note that I is not D-admissible.

Theorem 10. If I is D-admissible, then I∗− lim sn = x implies I − lim sn =
x. If, in addition, X is Hausdorff, then I∗ − lim sn is unique irrespective of
M ∈ F (I).

Proof. There exists a set M ∈ F (I) such that {sn;n ∈ M} converges to x.
Then for any open set U containing x, there is a p ∈M such that sn ∈ U for
all n ∈ M , n ≥ p. Thus sn ∈ U for all n ∈ M ∩Mp ∈ F (I) where, as defined
earlier, Mp = {k ∈ D; k ≥ p}. Clearly {n ∈ D; sn /∈ U} ⊂ D \ (M ∩Mp) ∈ I
and so I − lim sn = x. This proves the theorem, in light of Theorem 1.

The following theorem may act as a converse.

Theorem 11. If X has no limit point, then I and I∗ convergence coincides
for every D-admissible ideal I.

Proof. Let I − lim sn = x0. We should show that I∗ − lim sn = x0. Since
X has no limit point, U = {x0} is open. So {n; sn /∈ U} ∈ I. Hence {n; sn ∈
U} = {n; sn = x0} = M (say) ∈ F (I). The proof will be complete if we
show that M is directed with respect to the binary relation induced from
(D,≥). It is obvious that ≥ is reflexive and transitive in M . Let n1, n2 ∈M .
Then there is a p ∈ D such that p ≥ n1, n2. Now since I is D-admissible,
Mp = {k ∈ D; k ≥ p} ∈ F (I). Then M ∩Mp ∈ F (I) and so M ∩Mp 6= φ.
Thus there exists a k ∈ M such that k ≥ p ≥ n1, n2. Clearly {sn;n ∈ M}
converges to x0 and this proves the theorem.

Note 3. In [13] we observed that if a first axiom Hausdorff space X has a limit
point x, then there exists an admissible ideal I of the set of natural numbers
and a sequence {yn} in X such that I − lim yn = x but I∗ − lim yn does not
exist. Here we may also infer that under the same conditions I-convergence
of a net may not imply its I∗-convergence even if I is D-admissible. However
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it is known (Theorem 10) that I∗-convergence always implies I-convergence
for any D-admissible ideal I. In the following we study the converse part
under some condition which becomes necessary as well as sufficient on certain
restrictions of the space. A similar condition has been widely used in the cited
papers on various situations by considering sequences of elements.

Definition 12 (cf. [4], [7], [9], [13]). A D-admissible ideal I is said to sat-
isfy the condition (DP) if for every countable family of mutually disjoint sets
{A1, A2, . . . } belonging to I there exists a countable family of sets {B1, B2, . . . }
from D such that for each j, Aj4Bj ⊂ D \ Mpj

for some pj ∈ D and
B =

⋃
Bj ∈ I.

Note that Bj ∈ I for all j ∈ N. Here4 stands for the symmetric difference.

Theorem 12. Let I be a D-admissible ideal of a directed set (D,≥).
(i.) If I satisfies the condition (DP) and (X, τ) is a first axiom space, then

for any net {sn;n ∈ D} in X, I − lim sn = x implies I∗ − lim sn = x.
(ii.) Conversely if (X, τ) is a first axiom Hausdorff space containing at least

one limit point and for each x ∈ X and any net {sn;n ∈ D}, I−lim sn =
x implies I∗ − lim sn = x, then I satisfies the condition (DP).

Proof. The proof of the theorem is patterned after Theorem 8 of [13] with
necessary modifications.

(i.) Let I−lim sn = x. Then for any open set U containing x, {n; sn /∈ U} ∈
I. Let Br(x) be a monotonically decreasing local base at x. Let A1 = {n ∈
D; sn /∈ B1(x)} and for m ≥ 2, Am = {n; sn /∈ Bm(x) but sn ∈ Bm−1(x)}.
Then {A1, A2, . . . } is a sequence of sets in I with Ai∩Aj = φ for i 6= j. By the
condition (DP) there exists a countable family of sets {B1, B2, . . . } in I such
that Aj4Bj ⊂ D \Mpj

for some pj ∈ D and B = ∪Bj ∈ I. Let M = D \ B.
Then M ∈ F (I) and so is itself directed with respect to the relation ≥ (see
Theorem 11). We will show that {sn;n ∈M} converges to x.

For this, let U be any open set containing x. Then there is l ∈ N such that
Br(x) ⊂ U for all r ≥ l. Now {n; sn /∈ U} ⊂ ∪lj=1Aj . Also Aj4Bj ⊂ D \Mpj

for some pj ∈ D for j = 1, 2, . . . l. Choose n0 ∈ D such that n0 ≥ p1, p2, . . . pl.
Then

l⋃
j=1

Bj ∩Mn0 =
l⋃

j=1

Aj ∩Mn0 .

Since I is D-admissible, Mn0 ∈ F (I) and so M ∩Mn0 ∈ F (I). This implies
M ∩Mn0 6= φ. So there is a p ∈ M such that p ≥ n0. Now for q ∈ M , q ≥ p
gives q /∈ B and this implies from the above relation that q /∈ ∪lj=1Aj (since
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q ≥ p ≥ n0). So sq ∈ Bl(x) ⊂ U . This shows that {sn;n ∈M} converges to x
and so I∗ − lim sn = x.

(ii.) Suppose that x ∈ X is a limit point of X. Let Br(x) be a mono-
tonically decreasing open base at x. We can find a sequence {xr} of distinct
elements in X such that xr ∈ Br(x) \ Br+1(x), xr 6= x for all r, and xr → x.
Let {Aj} be a mutually disjoint countable family of non-void sets from I. De-
fine a net {sn} by sn = xj if n ∈ Aj and sn = x if n /∈ Aj for any j. Let U be
any open set containing x. Then there is a m ∈ N such that Br(x) ⊂ U for
all r ≥ m. Now

{n ∈ D; sn /∈ U} ⊂ A1 ∪A2 ∪ · · · ∪Am−1

and so belongs to I and thus I−lim sn = x. By our assumption I∗−lim sn = x.
Hence there exists a set H ∈ I such that M = D \H ∈ F (I) and {sn;n ∈M}
converges to x. Let Bj = Aj ∩ H for all j ∈ N . Then Bj ∈ I for all j ∈ N
and also ∪Bj ⊂ H ∈ I and thus ∪Bj ∈ I. Take j ∈ N . Now there must
exist a p ∈ D such that Aj is disjoint from M ∩Mp. For otherwise, for any
n ∈ M choose n1 ≥ n. Now M ∩Mn1 ∈ F (I) and so is non-void and also
Aj ∩ (M ∩Mn1) 6= φ. This implies that there exists a q ∈ Aj ∩ (M ∩Mn1)
which implies q ∈ M , q ≥ n1 ≥ n and sq = xj . Since xj 6= x, there exists
an open set V containing x such that xj /∈ V (since X is Hausdorff) and it
follows from above that there does not exist any n ∈ M such that m ≥ n,
m ∈M =⇒ sm ∈ V . This contradicts the fact that {sn;n ∈M} converges to
x. Thus we have Aj ⊂ Bj ∪ (M \Mp). Then Aj4Bj = Aj \Bj ⊂M \Mp ⊂
D \Mp. Since this is true for all j ∈ N , I satisfies the condition (DP). This
proves the theorem.
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[10] P. Kostyrko, M. Mačaj, T. Šalát, M. Sleziak, I-convergence and extremal
I-limit points, Math. Slovaca, 55(4) (2005), 443–464.

[11] K. Kuratowski, Topologie I, PWN, Warszawa, 1961.

[12] B. K. Lahiri, Pratulananda Das, Further remarks on I-limit superior and
I-limit inferior, Mathematical Communications, 8 (2003), 151–156.

[13] B. K. Lahiri, Pratulananda Das, I and I∗-convergence in topological
spaces, Math. Bohemica, 130(2) (2005), 153–160.
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