Ján Borsík, Mathematical Institute, Slovak Academy of Sciences, Grešákova 6, SK-04001 Košice, Slovakia. email: borsik@saske.sk

POINTS OF CONTINUITY, QUASICONTINUITY, CLIQUISHNESS, AND UPPER AND LOWER QUASICONTINUITY

Abstract

The quadruplet (C(f), Q(f), E(f), A(f)) is characterized, where C(f), Q(f), E(f) and A(f) are the sets of all continuity, quasicontinuity, upper and lower quasicontinuity and cliquishness points of a real function f of real variable, respectively.

Let X be a topological space. For a subset A of X denote by Cl(A) the closure of A. The letters \mathbb{R} , \mathbb{Q} and \mathbb{N} stand for the set of all real, rational and positive integer numbers, respectively. If A is a subset of \mathbb{R} and $x \in \mathbb{R}$, then $dist(x, A) = inf\{|x - a| : a \in A\}$ is the distance of x from A.

A real function $f: X \to \mathbb{R}$ is said to be quasicontinuous (cliquish) at a point $x \in \mathbb{R}$ if for each $\varepsilon > 0$ and for each neighbourhood U of x there is a nonempty open set $G \subset U$ such that $|f(x) - f(y)| < \varepsilon$ for each $y \in G$ $(|f(y) - f(z)| < \varepsilon$ for each $y, z \in G$) [6].

A function $f: X \to \mathbb{R}$ is said to be upper (lower) quasicontinuous at $x \in X$ if for each $\varepsilon > 0$ and for each neighbourhood U of x there is a nonempty open set $G \subset U$ such that $f(y) < f(x) + \varepsilon$ $(f(y) > f(x) - \varepsilon)$ for each $y \in G$ [3].

Denote by C(f) the set of all continuity points of a function $f: X \to \mathbb{R}$, by Q(f) the set of all quasicontinuity points of f, by A(f) the set of all cliquishness points of f and by E(f) the set of all points of both upper and lower quasicontinuity of f. It is well-known that $C(f) \subset Q(f) \subset A(f), C(f)$ is $G_{\delta}, A(f)$ is closed [5], $Q(f) \subset E(f)$ [3] and $A(f) \setminus C(f)$ is of first category [2].

Key Words: continuity, quasicontinuity, cliquishness, upper and lower quasicontinuity Mathematical Reviews subject classification: Primary: 26A15; Secondary: 54C08, 54C30

Received by the editors February 27, 2007

Communicated by: Brian S. Thomson

^{*}This research was supported by Grant VEGA 2/6087/26 and APVT-51-006904.

³³⁹

In the paper [2], the triplet (C(f), Q(f), A(f)) is characterized. In this paper, we will characterize the quadruplet (C(f), Q(f), E(f), A(f)).

In [4] it is shown that if a function $f : X \to \mathbb{R}$ is upper and lower quasicontinuous at each point $x \in X$, then f is cliquish. However, the inclusion $E(f) \subset A(f)$ does not hold. If f(0) = 0, f(x) = 2 for positive rational x, f(x) = 1 for positive irrational x, f(x) = -2 for negative rational x and f(x) = -1 for negative irrational x, then $0 \in E(f) \setminus A(f)$. However, the set $E(f) \setminus A(f)$ is small.

Theorem 1. Let $f : X \to \mathbb{R}$ be a function. Then the set $E(f) \setminus A(f)$ is nowhere dense.

PROOF. Suppose that the set $E(f) \setminus A(f)$ is not nowhere dense. Then there is a nonempty open set K such that $E(f) \setminus A(f)$ is dense in K. Let $L = K \setminus A(f)$. Since A(f) is closed the set L is nonempty open and E(f) is dense in L.

Let $x_0 \in L$. Then there is an $\varepsilon > 0$ and a nonempty open set $M \subset L$ such that the following holds.

If $\emptyset \neq G \subset M$ is open, there are $y, z \in G$ with $|f(y) - f(z)| \geq 8\varepsilon$. (*)

Since E(f) is dense in L there is $x_1 \in E(f) \cap M$. Hence, there is a nonempty open set $U_1 \subset M$ such that $f(y) < f(x_1) + \varepsilon$ for each $y \in U_1$. Further there is $x_2 \in E(f) \cap U_1$ and hence there is a nonempty open set $U_2 \subset U_1$ such that $f(y) > f(x_2) - \varepsilon$ for each $y \in U_2$. Thus for each $y \in U_2$ we have $f(x_2) - \varepsilon < f(y) < f(x_1) + \varepsilon$.

Let $v_1, v_2, \ldots, v_m \in \mathbb{R}$ be such that $(f(x_2) - \varepsilon, f(x_1) + \varepsilon) \subset \bigcup_{i=1}^m (v_i - \varepsilon, v_i + \varepsilon)$. Then $U_2 = \bigcup_{i=1}^m U_2 \cap f^{-1}((v_i - \varepsilon, v_i + \varepsilon))$ and hence there is $j \in \mathbb{N}$ such that $U_2 \cap f^{-1}((v_j - \varepsilon, v_j + \varepsilon))$ is not nowhere dense in U_2 .

Therefore there is a nonempty open set $J \subset U_2$ and $v \in \mathbb{R}$ such that $f^{-1}((v - \varepsilon, v + \varepsilon))$ is dense in J.

Put $A = \{y \in J : |f(y) - v| < \varepsilon\}$, $B = \{y \in J : f(y) \ge v + 3\varepsilon\}$ and $C = \{y \in J : f(y) \le v - 3\varepsilon\}$. Then A is dense in J and also $B \cup C$ is dense in J. If namely $B \cup C$ is not dense in J, then there is a nonempty open set $P \subset J$ such that $P \cap (B \cup C) = \emptyset$. Then $f(y) \in (v - 3\varepsilon, v + 3\varepsilon)$ for each $y \in P$ and thus $|f(y) - f(z)| < 6\varepsilon$ for each $y, z \in P$, which contradicts to (*).

This yields that B is not nowhere dense in J or C is not nowhere dense in J. Suppose that B is not nowhere dense in J; the case C is not nowhere dense in J is similar. Then there is a nonempty open set $T \subset J$ such that Bis dense in T. There is a point $z_0 \in E(f) \cap T$. We have two possibilities:

a) If $f(z_0) \leq 2\varepsilon + v$, then every nonempty open set $U \subset T$ contains a point $z \in B$ and hence $f(z) \geq v + 3\varepsilon \geq f(z_0) + \varepsilon$. This yields $z_0 \notin E(f)$, a contradiction.

b) If $f(z_0) > 2\varepsilon + v$, then every nonempty open set $U \subset T$ contains a point $z \in A$ and hence $f(z) < v + \varepsilon < f(z_0) - \varepsilon$. Again, $z_0 \notin E(f)$, a contradiction.

Therefore the set $E(f) \setminus A(f)$ is nowhere dense.

Since A(f) is closed, E(f) = X implies A(f) = X (see [4]).

Lemma 1. ([1],[8]) If $f_1 : X \to \mathbb{R}$ is quasicontinuous (cliquish) [upper and lower quasicontinuous at x and $f_2: X \to \mathbb{R}$ is continuous at x, then $f_1 + f_2$ is quasicontinuous (cliquish) [upper and lower quasicontinuous] at x.

Theorem 2. Let C, Q, E and A be subsets of \mathbb{R} . Then C = C(f), Q = Q(f), E = E(f) and A = A(f) for some $f : \mathbb{R} \to \mathbb{R}$ if and only if $C \subset Q \subset A \cap E$, C is G_{δ} , A is closed, $A \setminus C$ is of first category and $E \setminus A$ is nowhere dense.

PROOF. The sufficiency for this proof follows from our previous remarks and Theorem 1. To prove the necessity, first note that the set $A \setminus C$ is a F_{σ} set of first category, hence by [7] we can write $A \setminus C = \bigcup_{n \in \mathbb{N}} D_n$, where the sets D_n are closed nowhere dense and pairwise disjoint. Since every nowhere dense set $S \subset \mathbb{R}$ can be written as $S = S_1 \cup S_2$, where S_1 is a nowhere dense perfect set, S_2 is countable and S_1 and S_2 are disjoint, we can write $A \setminus C = \bigcup_{i \in \mathbb{N}} (A_i \cup B_i)$, where sets A_i are nowhere dense perfect (maybe empty), B_i are singleton (or empty) and all A_i and B_j are mutually disjoint.

If A_i is nonempty nowhere dense perfect we can write $\mathbb{R} \setminus A_i = \bigcup_{i \in \mathbb{N}} I_i^i$, where $I_i^i = (a_i^i, b_i^i)$ are pairwise disjoint intervals. We can assume that $A_i \subset$ $\begin{array}{l} \operatorname{Cl}(\bigcup_{j\in\mathbb{N}}I_{2j}^{i})\cap\operatorname{Cl}(\bigcup_{j\in\mathbb{N}}I_{2j-1}^{i}).\\ \text{If }A_{i}=\emptyset \text{ put }s_{i}(x)=0 \text{ for each } x\in\mathbb{R}. \text{ If }A_{i}\neq\emptyset \text{ define }s_{i}:\mathbb{R}\to\mathbb{R} \text{ by} \end{array}$

$$s_i(x) = \begin{cases} -4^{-i}, & \text{if } x \in I_{2j}^i \text{ for some } j \in \mathbb{N} \\ 0, & \text{if } x \in A_i \cap (E \setminus Q), \\ 2^{-i}, & \text{if } x \in A_i \cap (A \setminus E), \\ 4^{-i}, & \text{otherwise} \end{cases}$$

and put $s = \sum_{i=1}^{\infty} s_i$.

If $x \notin A_i$, then $x \in C(s_i)$. Since the series $\sum_{i=1}^{\infty} s_i(x)$ converges uniformly we obtain

$$\mathbb{R} \setminus \bigcup_{i \in \mathbb{N}} A_i \subset C(s).$$
(1)

Now, let $x \in A_i$. Then $x \notin \bigcup_{j \neq i} A_j$ and hence $x \in C(s_j)$ for each $j \neq i$ and

$$A_i \subset C\Big(\sum_{j \neq i} s_j\Big). \tag{2}$$

Let $x \in A_i \cap (A \setminus E)$. Then $s_i(x) = 2^{-i}$. Let U be an open neighbourhood of x. Then there is $j \in \mathbb{N}$ such that $U \cap I_j^i \neq \emptyset$. The set $G = U \cap I_j^i$ is a nonempty open subset of U and $s_i(y) = s_i(z)$ for each $y, z \in G$, i.e.

$$A_i \cap (A \setminus E) \subset A(s_i). \tag{3}$$

Let H be an arbitrary open nonempty subset of U and let c be such that $4^{-i} < c < 2^{-i}$. Since A_i is nowhere dense there is $z \in H \setminus A_i$ and $s_i(z) \le 4^{-i} < c < 2^{-i} = s_i(x)$. Therefore s_i is not lower quasicontinuous at x and

$$A_i \cap (A \setminus E) \subset \mathbb{R} \setminus E(s_i). \tag{4}$$

Let $x \in A_i \cap (E \setminus Q)$. Then $s_i(x) = 0$. Let U be an open neighbourhood of x. Then there is $j \in \mathbb{N}$ such that $H = U \cap I_{2j}^i \neq \emptyset$. For each $y, z \in H$ we have $s_i(y) = s_i(z)$ and hence,

$$A_i \cap (E \setminus Q) \subset A_i. \tag{5}$$

Moreover, for each $y \in H$ we have $s_i(y) = -4^{-i} < 0 = s_i(x)$, thus s_i is upper quasicontinuous at x. Further, there is $k \in \mathbb{N}$ such that $U \cap I_{2k-1}^i \neq \emptyset$ and for each $y \in U \cap I_{2k-1}^i$ we have $s_i(y) = 4^{-i} > 0 = s_i(x)$, thus s_i is lower quasicontinuous at x. Therefore we have

$$A_i \cap (E \setminus Q) \subset E(s_i). \tag{6}$$

Now, let G be an arbitrary open set. There is $z \in G \setminus A_i$ and $|s_i(z)| = 4^{-i}$, hence we have $|s_i(z) - s_i(x)| = 4^{-i}$. This yields

$$A_i \cap (E \setminus Q) \subset \mathbb{R} \setminus Q(s_i).$$
⁽⁷⁾

Now, let $x \in A_i \cap (Q \setminus C)$. Then $s_i(x) = 4^{-i}$. Let U be an open neighbourhood of x. Then there is $j \in \mathbb{N}$ such that $H = U \cap I_{2j}^i \neq \emptyset$. For each $y \in H$ we have $s_i(y) = 4^{-i} = s_i(x)$ and

$$A_i \cap (Q \setminus C) \subset Q(s_i). \tag{8}$$

Since $\liminf_{y \to x} s_i(y) = -4^{-i}$ and $\limsup_{y \to x} s_i(y) = 4^i$ we have

$$A_i \cap (Q \setminus C) \subset \mathbb{R} \setminus C(s_i).$$
(9)

If $B_i = \emptyset$ put $t_i(x) = 0$. If $B_i = \{b_i\}$ define a function $t_i : \mathbb{R} \to \mathbb{R}$ by

$$t_i(x) = \begin{cases} 4^{-i}, & \text{if } x > b_i \text{ or } x = b_i \text{ and } b_i \in Q \setminus C, \\ 0, & \text{if } x = b_i \text{ and } b_i \in E \setminus Q, \\ 2^{-i}, & \text{if } x = b_i \text{ and } b_i \in A \setminus E, \\ -4^{-i}, & \text{if } x < b_i. \end{cases}$$

and put $t = \sum_{i=1}^{\infty} t_i$.

If $x \neq b_i$, then $x \in C(t_i)$ and since the series $\sum_{i=1}^{\infty} t_i$ converges uniformly we obtain

$$\mathbb{R} \setminus \bigcup_{i \in \mathbb{N}} B_i \subset C(t).$$
(10)

Now, let $x = b_i$. Since B_j are pairwise disjoint we have $x \in C(t_j)$ for each $j \neq i$ and

$$B_i \subset C\Big(\sum_{j \neq i} t_j\Big). \tag{11}$$

It is easy to see that

$$B_i \cap (A \setminus E) \subset A(t_i) \setminus E(t_i), \tag{12}$$

$$B_i \cap (E \setminus Q) \subset E(t_i) \cap A(t_i) \setminus Q(t_i), \tag{13}$$

$$B_i \cap (Q \setminus C) \subset Q(t_i) \setminus C(t_i).$$
(14)

If $A = \mathbb{R}$ we put u(x) = 0. Now, let $A \neq \mathbb{R}$. Then $A \cup \operatorname{Cl}(E)$ is a closed set and hence $\mathbb{R} \setminus (A \cup \operatorname{Cl}(E)) = \bigcup_{i \in M} (a_i, b_i)$, where $M \subset \mathbb{N}$ and all intervals (a_i, b_i) are pairwise disjoint. Since $A \neq \mathbb{R}$ and the set $E \setminus A$ is nowhere dense the set M is nonempty.

For each $i \in M$ let c_j^i, d_j^i be such that for each $j \in \mathbb{N}$ $a_i < c_{j+1}^i < d_j^i < c_j^i < c_1^i = b_i$ and $\lim_{j \to \infty} c_j^i = a_i$. Define a function $u : \mathbb{R} \to \mathbb{R}$ by

$$u(x) = \begin{cases} \min\{1, \operatorname{dist}(x, A)\}, & \text{if } x \in (d_{2j}^i, c_{2j}^i) \setminus \mathbb{Q} \\ & \text{for some } i \in M \text{ and } j \in \mathbb{N}, \\ \min\{2, 2\operatorname{dist}(x, A)\}, & \text{if } x \in (d_{2j}^i, c_{2j}^i) \cap \mathbb{Q} \\ & \text{for some } i \in M \text{ and } j \in \mathbb{N}, \\ \min\{3, 3\operatorname{dist}(x, A)\}, & \text{if } x \in ([c_{j+1}^i, d_j^i] \cup (\operatorname{Cl}(E \setminus A) \setminus E)) \cap \mathbb{Q} \\ & \text{for some } i \in M \text{ and } j \in \mathbb{N}, \\ 0, & \text{if } x \in A \cup E, \\ \max\{-1, -\operatorname{dist}(x, A)\}, & \text{if } x \in (d_{2j-1}^i, c_{2j-1}^i) \setminus \mathbb{Q} \\ & \text{for some } i \in M \text{ and } j \in \mathbb{N}, \\ \max\{-2, -2\operatorname{dist}(x, A)\}, & \text{if } x \in (d_{2j-1}^i, c_{2j-1}^i) \cap \mathbb{Q} \\ & \text{for some } i \in M \text{ and } j \in \mathbb{N}, \\ \max\{-3, -3\operatorname{dist}(x, A)\}, & \text{if } x \in ([c_{j+1}^i, d_j^i] \cup (\operatorname{Cl}(E \setminus A) \setminus E)) \setminus \mathbb{Q} \\ & \text{for some } i \in M \text{ and } j \in \mathbb{N}. \end{cases}$$

Let $x \in A$ and let $\varepsilon > 0$. Then u(x) = 0. Since $\operatorname{dist}(x, A)$ is continuous there is a neighbourhood U of x such that $|\operatorname{dist}(y, A)| = |\operatorname{dist}(x, A) - \operatorname{dist}(y, A)| < \varepsilon/3$ for each $y \in U$. Hence for each $y \in U$ we have $|u(x) - u(y)| = |u(y)| \le 3 \operatorname{dist}(x, A) < \varepsilon$. Therefore we get

$$A \subset C(u). \tag{15}$$

Now, let $x \notin A$. Let $a = \operatorname{dist}(x, A)$ if $A \neq \emptyset$ and a = 2 if $A = \emptyset$. Then U = (x - a/4, x + a/4) is a neighbourhood of x. Let $G \subset U$ be an arbitrary nonempty open set and let $b = \min\{1, \frac{1}{8}a\} > 0$.

Let $z \in G$ and $A \neq \emptyset$. Then $|x-z| < \frac{a}{4}$. Let $w \in A$. Then $a = \operatorname{dist}(x, A) \leq |x-w| \leq |x-z| + |z-w| < \frac{a}{4} + |z-w|$. Therefore for each $w \in A$ we have $|z-w| > \frac{3}{4}a$ and hence $\operatorname{dist}(z, A) \geq \frac{3}{4}a$. On the other hand, there is $v \in A$ such that $|v-x| < \frac{9}{8}a$ and hence $\operatorname{dist}(z, A) \leq |v-z| \leq |z-x| + |x-v| < \frac{a}{4} + \frac{9}{8}a = \frac{11}{8}a$. Therefore, if $G \subset U$ is a nonempty open set and $A \neq \emptyset$ we have

$$\frac{3}{4}a < \operatorname{dist}(z, A) < \frac{11}{8}a. \tag{16}$$

There are three possibilities:

a) $P = (G \setminus \operatorname{Cl}(E \setminus A)) \cap (d_{2j}^i, c_{2j}^i) \neq \emptyset$ for some $i \in M$ and $j \in \mathbb{N}$. Then there are points $z_1 \in P \cap \mathbb{Q}$ and $z_2 \in P \setminus \mathbb{Q}$. According to (16) we have $u(z_1) = \min\{2, 2 \operatorname{dist}(z_1, A)\} \ge \min\{2, \frac{3}{2}a\}$ and $u(z_2) = \min\{1, \operatorname{dist}(z_2, A) \le \min\{1, \frac{11}{8}a\}$. We obtain

$$|u(z_1) - u(z_2)| \ge \min\{2, \frac{3}{2}a\} - \min\{1, \frac{11}{8}a\} \ge \min\{1, \frac{1}{8}a\} = b.$$

b) $P = (G \setminus \operatorname{Cl}(E \setminus A)) \cap (d_{2j-1}^i, c_{2j-1}^i) \neq \emptyset$ for some $i \in M$ and $j \in \mathbb{N}$. Then for $z_1 \in P \cap \mathbb{Q}$ and $z_2 \in P \setminus \mathbb{Q}$ we have

$$|u(z_1) - u(z_2)| \ge \max\{-1, -\frac{11}{8}a\} - \max\{-2, -\frac{3}{2}a\} \ge \min\{1, \frac{1}{8}a\} = b.$$

c) $(G \setminus \operatorname{Cl}(E \setminus A)) \cap (\bigcup_{i \in M} \bigcup_{j \in \mathbb{N}} (d_j^i, c_j^i)) = \emptyset$. Since $E \setminus A$ is nowhere dense there are $z_1 \in (G \setminus \operatorname{Cl}(E \setminus A)) \cap \mathbb{Q}$ and $z_2 \in (G \setminus \operatorname{Cl}(E \setminus A)) \setminus \mathbb{Q}$. We have $u(z_1) = \min\{3, 3\operatorname{dist}(z_1, A)\} \ge \min\{3, \frac{9}{4}a\}$ and $u(z_2) = \max\{-3, -3\operatorname{dist}(z_2, A)\} \le -\min\{3, \frac{9}{4}a\}$ and hence

$$|u(z_1) - u(z_2)| \ge 2\min\{3, \frac{9}{4}a\} > b.$$

Therefore u is not cliquish in x and

$$\mathbb{R} \setminus A \subset \mathbb{R} \setminus A(u). \tag{17}$$

Now, let $x \in E \setminus A$ and let $U = (x - \delta, x + \delta), \delta > 0$, be a neighbourhood of x. Then u(x) = 0 and there is $0 < \delta_1 < \delta$ such that $(x - \delta_1, x + \delta_1) \cap A = \emptyset$. Since $E \setminus A$ is nowhere dense there is an interval $(c, d) \subset (x, x + \delta_1)$ such that $(c, d) \cap \operatorname{Cl}(E \setminus A) = \emptyset$. This yields $(c, d) \subset \bigcup_{i \in M} (a_i, b_i)$ and since (a_i, b_i) are disjoint there is $i \in M$ such that $(c, d) \subset (a_i, b_i)$. Since $x \notin (a_i, b_i)$ we have $x \leq a_i \leq c < x + \delta_1$. Since $\lim_{j \to \infty} c_j^i = a_i$ there is $j \in \mathbb{N}$ such that $a_i < c_j^i < x + \delta_1$.

For each $y \in (d_{2j}^i, c_{2j}^i) \subset U$ we have y(y) > 0 = u(x), i.e. u is lower quasicontinuous at x. Similarly, for each $y \in (d_{2j-1}^i, c_{2j-1}^i) \subset U$ we have u(y) < 0 = u(x), i.e. u is upper quasicontinuous at x. Thus

$$E \setminus A \subset E(u). \tag{18}$$

Finally, let $x \notin (E \cup A)$. Let a = dist(x, A) if $A \neq \emptyset$ and a = 3 if $A = \emptyset$. We have three possibilities: a) $x \in (d_{2j}^i, c_{2j}^i)$ for some $i \in M$ and $j \in \mathbb{N}$. Then $U = (x - a/4, x + a/4) \cap (d_{2j}^i, c_{2j}^i)$ is a neighbourhood of x. Let G be an open nonempty open subset of U.

If $x \in \mathbb{Q}$, then $u(x) = \min\{2, 2\operatorname{dist}(x, A)\}$ and $b = \min\{1, \frac{11}{8}a\} < u(x)$. There is a point $z \in G \setminus \mathbb{Q}$ and according to (16) we have $\frac{3}{4}a < \operatorname{dist}(z, A) < \frac{11}{8}a$ for $A \neq \emptyset$. Therefore $u(z) = \min\{1, \operatorname{dist}(z, A)\} \leq \min\{1, \frac{11}{8}a\} = b < u(x)$, i.e. u is not lower quasicontinuous at x.

If $x \notin \mathbb{Q}$, then $u(x) = \min\{1, \operatorname{dist}(x, A)\}$ and $b = \{2, \frac{3}{2}a\} > u(x)$. There is a point $z \in G \cap \mathbb{Q}$ and $u(z) = \min\{2, 2\operatorname{dist}(x, A)\} \ge \min\{2, \frac{3}{2}a\} = b > u(x)$, i.e. u is not upper quasicontinuous at x.

- b) $x \in (d_{2j-1}^i, c_{2j-1}^i)$ for some $i \in M$ and $j \in \mathbb{N}$. Then similarly as in a) we can show that $x \notin E(u)$.
- c) $x \notin \bigcup_{i \in M} \bigcup_{j \in \mathbb{N}} (d_j^i, c_j^i)$. Let G be an open nonempty subset of (x a/4, x + a/4).

If $x \in \mathbb{Q}$, then $u(x) = \min\{3, 3\operatorname{dist}(x, A)\}$. For each $y \in G \setminus \mathbb{Q}$ we have $u(y) \leq \min\{2, 2\operatorname{dist}(y, A)\} \leq \min\{2, \frac{11}{4}a\} = b < u(x)$ and u is not lower quasicontinuous at x.

If $x \notin \mathbb{Q}$, then $u(x) = \max\{-3, -3\operatorname{dist}(x, A)\}$ and for each $y \in G \cap \mathbb{Q}$ we have $u(y) \leq \max\{-2, -2\operatorname{dist}(y, A)\} \geq \max\{-2, -\frac{11}{4}a\} > u(x)$, i.e. u is not upper quasicontinuous at x.

Therefore we have

$$\mathbb{R} \setminus (E \cup A) \subset \mathbb{R} \setminus E(u).$$
⁽¹⁹⁾

Define $f : \mathbb{R} \to \mathbb{R}$ by f = s + t + u. We will show that f is the desired function.

1. Let $x \in C$. Then according to (1), (10) and (15) we have $x \in C(s) \cap C(t) \cap C(u)$ and hence $x \in C(f)$,

$$C \subset C(f). \tag{20}$$

2. Let $x \in Q \setminus C$. If $x \in A_i$ for some $i \in M$, then according to (10), (15) and (2) we obtain $x \in C(t) \cap C(u) \cap C(\sum_{j \neq i} s_j)$, according to (8) we have $x \in Q(s_i)$ and by (9) $x \notin C(s_i)$. Therefore by Lemma 1 we have $x \in Q(f) \setminus C(f)$.

If $x = b_i$ for some $i \in M$, then by (1), (15) and (11) we have $x \in C(s) \cap C(u) \cap C(\sum_{j \neq i} t_j)$ and by (14) $x \in Q(t_i) \setminus C(t_i)$. Hence, by Lemma 1 again $x \in Q(f) \setminus C(f)$ and

$$Q \setminus C \subset Q(f) \setminus C(f). \tag{21}$$

3. Let $x \in A \cap E \setminus Q$. If $x \in A_i$, then by (10), (15) and (2) we have $x \in C(t) \cap C(u) \cap C(\sum_{j \neq i} s_j)$. Further, $x \in A(s_i)$ by (5), $x \in E(s_i)$ by (6) and $x \notin Q(s_i)$ by (7), therefore $x \in A(f) \cap E(f) \setminus Q(f)$.

If $x = b_i$, then (1), (15) and (11) imply $x \in C(s) \cap C(u) \cap C(\sum_{j \neq i} t_j)$ and (13) yields $x \in A(t_i) \cap E(t_i) \setminus Q(t_i)$. Hence $x \in A(f) \cap E(f) \setminus Q(f)$. Therefore

$$A \cap E \setminus Q \subset A(f) \cap E(f) \setminus Q(f).$$
⁽²²⁾

4. Let $x \in A \setminus E$. If $x \in A_i$, then by (10), (15) and (2) we have $x \in C(t) \cap C(u) \cap C(\sum_{j \neq i} s_j)$, by (3) $x \in A(s_i)$ and by (4) $x \notin E(s_i)$, therefore $x \in A(f) \setminus E(f)$.

If $x = b_i$, then by (1), (15) and (11) we have $x \in C(s) \cap C(u) \cap C(\sum_{j \neq i} t_j)$ and by (12) $x \in A(t_i) \setminus E(t_i)$ and hence $x \in A(f) \setminus E(f)$ and

$$A \setminus E \subset A(f) \setminus E(f).$$
(23)

5. Let $x \in E \setminus A$. Then according to (1) and (10) we have $x \in C(s) \cap C(t)$, by (18) we have $x \in E(u)$ and by (16) $x \notin A(u)$. Lemma 1 implies $x \in E(f) \setminus A(f)$ and

$$E \setminus A \subset E(f) \setminus A(f).$$
(24)

6. Let $x \in R \setminus (A \cup E)$. Then (1) and (10) imply $x \in C(s) \cap C(t)$, (19) yields $x \notin E(u)$ and (17) implies $x \notin A(u)$. From Lemma 1 we deduce

$$\mathbb{R} \setminus (A \cup E) \subset \mathbb{R} \setminus (A(f) \cup E(f)).$$
(25)

Finally, from (20), (21), (22), (23), (24) and (25) we conclude that C = C(f), Q = Q(f), E = E(f) and A = A(f).

Remark 1. Theorem 2 is not true for functions $f : \mathbb{R}^2 \to \mathbb{R}$. If $C = Q = \mathbb{R}^2 \setminus \{(0,0)\}$ and $A = E = \mathbb{R}^2$, then all the assumptions of Theorem 1 are satisfied, however there is no function $f : \mathbb{R}^2 \to \mathbb{R}$ with C = C(f), Q = Q(f), E = E(f) and A = A(f).

PROOF. Assume that there is a function $f : \mathbb{R}^2 \to \mathbb{R}$ such that $C = C(f), \mathbb{R}^2 = A(f) = E(f)$. We will show that under this assumption, $(0,0) \in Q(f)$, which is a contradiction.

Let U be a neighbourhood of (0,0) and let $\varepsilon > 0$. Let $\delta > 0$ be such that $T = \{(x,y) \in \mathbb{R}^2 : \sqrt{x^2 + y^2} < \delta\} \subset U$ and let $W = T \setminus \{(0,0)\}$ and a = f(0,0). Since $(0,0) \in E(f)$ there are nonempty open sets $G_1, G_2 \subset T$ such that $f(G_1) \subset (a - \varepsilon/2, \infty)$ and $f(G_2) \subset (-\infty, a + \varepsilon/2)$. Therefore there are $(y_1, z_1), (y_2, z_2) \in W$ such that $f(y_1, z_1) > a - \varepsilon/2$ and $f(y_2, z_2) < a + \varepsilon/2$.

If $f(y_1, z_1) \leq a$, then $|f(y_1, z_1) - a| < \varepsilon/2$ and there is an open neighbourhood $G \subset W \subset U$ of (y_1, z_1) such that $|f(y, z) - f(y_1, z_1)| < \varepsilon/2$ for each $(y, z) \in G$. Therefore for each $(y, z) \in G$ we obtain $|f(y, z) - f(0, 0)| \leq |f(y, z) - f(y_1, z_1)| + |f(y_1, z_1) - a| < \varepsilon/2 + \varepsilon/2 = \varepsilon$, i.e $(0, 0) \in Q(f)$. If $f(y_2, z_2) \geq a$, then similarly we can show $(0, 0) \in Q(f)$.

Finally, let $f(y_2, z_2) < a < f(y_1, z_1)$. The set W is connected and the function $f \upharpoonright W$ is continuous, hence the set $f \upharpoonright W(W) = f(W)$ is connected. Since $f(y_2, z_2), f(y_1, z_1) \in f(W)$ there is $(y_3, z_3) \in W$ such that $f(y_3, z_3) = a$. Since $(y_3, z_3) \in C(f)$ there is an open neighbourhood $G \subset U$ of (y_3, z_3) such that $|f(y_3, z_3) - f(y, z)| < \varepsilon$ for each $(y, z) \in G$. Therefore for each $(y, z) \in G$ we have $|f(y, z) - f(0, 0)| \leq |f(y, z) - f(y_3, z_3)| + |f(y_3, z_3) - a| < \varepsilon$ and $(0, 0) \in Q(f)$.

Problem 1. Characterize the quadruplet (C(f), Q(f), E(f), A(f)) for real functions defined on a metric space, or at least for \mathbb{R}^2 .

References

- J. Borsík, On the points of bilateral quasicontinuity, Real Anal. Exchange 19 (2) (1993/94), 529–536.
- [2] J. Ewert, J. S. Lipiński, On the points of continuity, quasicontinuity and cliquishness, Real Anal. Exchange 8(2) (1982/83), 473–478.
- [3] J. Ewert, T. Lipski, Lower and upper quasicontinuous functions, Demonstratio Math. 16 (1983), 85–93.

- [4] Z. Grande, Quasicontinuity, cliquishness and the Baire property of functions of two variables, Tatra Mt. Math. Publ. 24 (2002), 29–35.
- [5] J. S. Lipiński, T. Šalát, On the points of quasicontinuity and cliquishness of functions, Czechoslovak Math. J. 21 (1971), 484–489.
- [6] T. Neubrunn, *Quasi-continuity*, Real Anal. Exchange 14(2) (1988/89), 259–308.
- [7] W. Sierpiński, Sur une propriété des ensembles F_{σ} lineáires, Fund. Math. 14 (1929), 216–226.
- [8] E. Strońska, Maximal families for the class of upper and lower semiquasicontinuous functions, Real Anal. Exchange 27(2) (2001/2002), 599– 608.

Ján Borsík

350