POINTS OF CONTINUITY, QUASICONTINUITY, CLIQUISHNESS, AND UPPER AND LOWER QUASICONTINUITY

Abstract

The quadruplet $(C(f), Q(f), E(f), A(f))$ is characterized, where $C(f)$, $Q(f), E(f)$ and $A(f)$ are the sets of all continuity, quasicontinuity, upper and lower quasicontinuity and cliquishness points of a real function f of real variable, respectively.

Let X be a topological space. For a subset A of X denote by $\mathrm{Cl}(A)$ the closure of A. The letters \mathbb{R}, \mathbb{Q} and \mathbb{N} stand for the set of all real, rational and positive integer numbers, respectively. If A is a subset of \mathbb{R} and $x \in \mathbb{R}$, then $\operatorname{dist}(x, A)=\inf \{|x-a|: a \in A\}$ is the distance of x from A.

A real function $f: X \rightarrow \mathbb{R}$ is said to be quasicontinuous (cliquish) at a point $x \in \mathbb{R}$ if for each $\varepsilon>0$ and for each neighbourhood U of x there is a nonempty open set $G \subset U$ such that $|f(x)-f(y)|<\varepsilon$ for each $y \in G$ $(|f(y)-f(z)|<\varepsilon$ for each $y, z \in G)[6]$.

A function $f: X \rightarrow \mathbb{R}$ is said to be upper (lower) quasicontinuous at $x \in X$ if for each $\varepsilon>0$ and for each neighbourhood U of x there is a nonempty open set $G \subset U$ such that $f(y)<f(x)+\varepsilon \quad(f(y)>f(x)-\varepsilon)$ for each $y \in G$ [3].

Denote by $C(f)$ the set of all continuity points of a function $f: X \rightarrow \mathbb{R}$, by $Q(f)$ the set of all quasicontinuity points of f, by $A(f)$ the set of all cliquishness points of f and by $E(f)$ the set of all points of both upper and lower quasicontinuity of f. It is well-known that $C(f) \subset Q(f) \subset A(f), C(f)$ is $G_{\delta}, A(f)$ is closed [5], $Q(f) \subset E(f)[3]$ and $A(f) \backslash C(f)$ is of first category [2].

[^0]In the paper [2], the triplet $(C(f), Q(f), A(f))$ is characterized. In this paper, we will characterize the quadruplet $(C(f), Q(f), E(f), A(f))$.

In [4] it is shown that if a function $f: X \rightarrow \mathbb{R}$ is upper and lower quasicontinuous at each point $x \in X$, then f is cliquish. However, the inclusion $E(f) \subset A(f)$ does not hold. If $f(0)=0, f(x)=2$ for positive rational x, $f(x)=1$ for positive irrational $x, f(x)=-2$ for negative rational x and $f(x)=-1$ for negative irrational x, then $0 \in E(f) \backslash A(f)$. However, the set $E(f) \backslash A(f)$ is small.
Theorem 1. Let $f: X \rightarrow \mathbb{R}$ be a function. Then the set $E(f) \backslash A(f)$ is nowhere dense.

Proof. Suppose that the set $E(f) \backslash A(f)$ is not nowhere dense. Then there is a nonempty open set K such that $E(f) \backslash A(f)$ is dense in K. Let $L=K \backslash A(f)$. Since $A(f)$ is closed the set L is nonempty open and $E(f)$ is dense in L.

Let $x_{0} \in L$. Then there is an $\varepsilon>0$ and a nonempty open set $M \subset L$ such that the following holds.

$$
\begin{equation*}
\text { If } \emptyset \neq G \subset M \text { is open, there are } y, z \in G \text { with }|f(y)-f(z)| \geq 8 \varepsilon \tag{}
\end{equation*}
$$

Since $E(f)$ is dense in L there is $x_{1} \in E(f) \cap M$. Hence, there is a nonempty open set $U_{1} \subset M$ such that $f(y)<f\left(x_{1}\right)+\varepsilon$ for each $y \in U_{1}$. Further there is $x_{2} \in E(f) \cap U_{1}$ and hence there is a nonempty open set $U_{2} \subset U_{1}$ such that $f(y)>f\left(x_{2}\right)-\varepsilon$ for each $y \in U_{2}$. Thus for each $y \in U_{2}$ we have $f\left(x_{2}\right)-\varepsilon<f(y)<f\left(x_{1}\right)+\varepsilon$.

Let $v_{1}, v_{2}, \ldots, v_{m} \in \mathbb{R}$ be such that $\left(f\left(x_{2}\right)-\varepsilon, f\left(x_{1}\right)+\varepsilon\right) \subset \bigcup_{i=1}^{m}\left(v_{i}-\right.$ $\left.\varepsilon, v_{i}+\varepsilon\right)$. Then $U_{2}=\bigcup_{i=1}^{m} U_{2} \cap f^{-1}\left(\left(v_{i}-\varepsilon, v_{i}+\varepsilon\right)\right)$ and hence there is $j \in \mathbb{N}$ such that $U_{2} \cap f^{-1}\left(\left(v_{j}-\varepsilon, v_{j}+\varepsilon\right)\right)$ is not nowhere dense in U_{2}.

Therefore there is a nonempty open set $J \subset U_{2}$ and $v \in \mathbb{R}$ such that $f^{-1}((v-\varepsilon, v+\varepsilon))$ is dense in J .

Put $A=\{y \in J:|f(y)-v|<\varepsilon\}, B=\{y \in J: f(y) \geq v+3 \varepsilon\}$ and $C=\{y \in J: f(y) \leq v-3 \varepsilon\}$. Then A is dense in J and also $B \cup C$ is dense in J. If namely $B \cup C$ is not dense in J, then there is a nonempty open set $P \subset J$ such that $P \cap(B \cup C)=\emptyset$. Then $f(y) \in(v-3 \varepsilon, v+3 \varepsilon)$ for each $y \in P$ and thus $|f(y)-f(z)|<6 \varepsilon$ for each $y, z \in P$, which contradicts to $\left(^{*}\right)$.

This yields that B is not nowhere dense in J or C is not nowhere dense in J. Suppose that B is not nowhere dense in J; the case C is not nowhere dense in J is similar. Then there is a nonempty open set $T \subset J$ such that B is dense in T. There is a point $z_{0} \in E(f) \cap T$. We have two possibilities:
a) If $f\left(z_{0}\right) \leq 2 \varepsilon+v$, then every nonempty open set $U \subset T$ contains a point $z \in B$ and hence $f(z) \geq v+3 \varepsilon \geq f\left(z_{0}\right)+\varepsilon$. This yields $z_{0} \notin E(f)$, a contradiction.
b) If $f\left(z_{0}\right)>2 \varepsilon+v$, then every nonempty open set $U \subset T$ contains a point $z \in A$ and hence $f(z)<v+\varepsilon<f\left(z_{0}\right)-\varepsilon$. Again, $z_{0} \notin E(f)$, a contradiction.

Therefore the set $E(f) \backslash A(f)$ is nowhere dense.
Since $A(f)$ is closed, $E(f)=X$ implies $A(f)=X$ (see [4]).
Lemma 1. ([1],[8]) If $f_{1}: X \rightarrow \mathbb{R}$ is quasicontinuous (cliquish) [upper and lower quasicontinuous] at x and $f_{2}: X \rightarrow \mathbb{R}$ is continuous at x, then $f_{1}+f_{2}$ is quasicontinuous (cliquish) [upper and lower quasicontinuous] at x.

Theorem 2. Let C, Q, E and A be subsets of \mathbb{R}. Then $C=C(f), Q=Q(f)$, $E=E(f)$ and $A=A(f)$ for some $f: \mathbb{R} \rightarrow \mathbb{R}$ if and only if $C \subset Q \subset A \cap E$, C is G_{δ}, A is closed, $A \backslash C$ is of first category and $E \backslash A$ is nowhere dense.

Proof. The sufficiency for this proof follows from our previous remarks and Theorem 1. To prove the necessity, first note that the set $A \backslash C$ is a F_{σ} set of first category, hence by [7] we can write $A \backslash C=\bigcup_{n \in \mathbb{N}} D_{n}$, where the sets D_{n} are closed nowhere dense and pairwise disjoint. Since every nowhere dense set $S \subset \mathbb{R}$ can be written as $S=S_{1} \cup S_{2}$, where S_{1} is a nowhere dense perfect set, S_{2} is countable and S_{1} and S_{2} are disjoint, we can write $A \backslash C=\bigcup_{i \in \mathbb{N}}\left(A_{i} \cup B_{i}\right)$, where sets A_{i} are nowhere dense perfect (maybe empty), B_{i} are singleton (or empty) and all A_{i} and B_{j} are mutually disjoint.

If A_{i} is nonempty nowhere dense perfect we can write $\mathbb{R} \backslash A_{i}=\bigcup_{j \in \mathbb{N}} I_{j}^{i}$, where $I_{j}^{i}=\left(a_{j}^{i}, b_{j}^{i}\right)$ are pairwise disjoint intervals. We can assume that $A_{i} \subset$ $\mathrm{Cl}\left(\bigcup_{j \in \mathbb{N}} I_{2 j}^{i}\right) \cap \mathrm{Cl}\left(\bigcup_{j \in \mathbb{N}} I_{2 j-1}^{i}\right)$.

If $A_{i}=\emptyset$ put $s_{i}(x)=0$ for each $x \in \mathbb{R}$. If $A_{i} \neq \emptyset$ define $s_{i}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
s_{i}(x)= \begin{cases}-4^{-i}, & \text { if } x \in I_{2 j}^{i} \text { for some } j \in \mathbb{N} \\ 0, & \text { if } x \in A_{i} \cap(E \backslash Q), \\ 2^{-i}, & \text { if } x \in A_{i} \cap(A \backslash E), \\ 4^{-i}, & \text { otherwise }\end{cases}
$$

and put $s=\sum_{i=1}^{\infty} s_{i}$.
If $x \notin A_{i}$, then $x \in C\left(s_{i}\right)$. Since the series $\sum_{i=1}^{\infty} s_{i}(x)$ converges uniformly we obtain

$$
\begin{equation*}
\mathbb{R} \backslash \bigcup_{i \in \mathbb{N}} A_{i} \subset C(s) \tag{1}
\end{equation*}
$$

Now, let $x \in A_{i}$. Then $x \notin \bigcup_{j \neq i} A_{j}$ and hence $x \in C\left(s_{j}\right)$ for each $j \neq i$ and

$$
\begin{equation*}
A_{i} \subset C\left(\sum_{j \neq i} s_{j}\right) \tag{2}
\end{equation*}
$$

Let $x \in A_{i} \cap(A \backslash E)$. Then $s_{i}(x)=2^{-i}$. Let U be an open neighbourhood of x. Then there is $j \in \mathbb{N}$ such that $U \cap I_{j}^{i} \neq \emptyset$. The set $G=U \cap I_{j}^{i}$ is a nonempty open subset of U and $s_{i}(y)=s_{i}(z)$ for each $y, z \in G$, i.e.

$$
\begin{equation*}
A_{i} \cap(A \backslash E) \subset A\left(s_{i}\right) \tag{3}
\end{equation*}
$$

Let H be an arbitrary open nonempty subset of U and let c be such that $4^{-i}<c<2^{-i}$. Since A_{i} is nowhere dense there is $z \in H \backslash A_{i}$ and $s_{i}(z) \leq$ $4^{-i}<c<2^{-i}=s_{i}(x)$. Therefore s_{i} is not lower quasicontinuous at x and

$$
\begin{equation*}
A_{i} \cap(A \backslash E) \subset \mathbb{R} \backslash E\left(s_{i}\right) \tag{4}
\end{equation*}
$$

Let $x \in A_{i} \cap(E \backslash Q)$. Then $s_{i}(x)=0$. Let U be an open neighbourhood of x. Then there is $j \in \mathbb{N}$ such that $H=U \cap I_{2 j}^{i} \neq \emptyset$. For each $y, z \in H$ we have $s_{i}(y)=s_{i}(z)$ and hence,

$$
\begin{equation*}
A_{i} \cap(E \backslash Q) \subset A_{i} \tag{5}
\end{equation*}
$$

Moreover, for each $y \in H$ we have $s_{i}(y)=-4^{-i}<0=s_{i}(x)$, thus s_{i} is upper quasicontinuous at x. Further, there is $k \in \mathbb{N}$ such that $U \cap I_{2 k-1}^{i} \neq \emptyset$ and for each $y \in U \cap I_{2 k-1}^{i}$ we have $s_{i}(y)=4^{-i}>0=s_{i}(x)$, thus s_{i} is lower quasicontinuous at x. Therefore we have

$$
\begin{equation*}
A_{i} \cap(E \backslash Q) \subset E\left(s_{i}\right) \tag{6}
\end{equation*}
$$

Now, let G be an arbitrary open set. There is $z \in G \backslash A_{i}$ and $\left|s_{i}(z)\right|=4^{-i}$, hence we have $\left|s_{i}(z)-s_{i}(x)\right|=4^{-i}$. This yields

$$
\begin{equation*}
A_{i} \cap(E \backslash Q) \subset \mathbb{R} \backslash Q\left(s_{i}\right) \tag{7}
\end{equation*}
$$

Now, let $x \in A_{i} \cap(Q \backslash C)$. Then $s_{i}(x)=4^{-i}$. Let U be an open neighbourhood of x. Then there is $j \in \mathbb{N}$ such that $H=U \cap I_{2 j}^{i} \neq \emptyset$. For each $y \in H$ we have $s_{i}(y)=4^{-i}=s_{i}(x)$ and

$$
\begin{equation*}
A_{i} \cap(Q \backslash C) \subset Q\left(s_{i}\right) \tag{8}
\end{equation*}
$$

Since $\liminf _{y \rightarrow x} s_{i}(y)=-4^{-i}$ and $\underset{y \rightarrow x}{\limsup } s_{i}(y)=4^{i}$ we have

$$
\begin{equation*}
A_{i} \cap(Q \backslash C) \subset \mathbb{R} \backslash C\left(s_{i}\right) \tag{9}
\end{equation*}
$$

If $B_{i}=\emptyset$ put $t_{i}(x)=0$. If $B_{i}=\left\{b_{i}\right\}$ define a function $t_{i}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
t_{i}(x)= \begin{cases}4^{-i}, & \text { if } x>b_{i} \text { or } x=b_{i} \text { and } b_{i} \in Q \backslash C \\ 0, & \text { if } x=b_{i} \text { and } b_{i} \in E \backslash Q \\ 2^{-i}, & \text { if } x=b_{i} \text { and } b_{i} \in A \backslash E, \\ -4^{-i}, & \text { if } x<b_{i} .\end{cases}
$$

and put $t=\sum_{i=1}^{\infty} t_{i}$.
If $x \neq b_{i}$, then $x \in C\left(t_{i}\right)$ and since the series $\sum_{i=1}^{\infty} t_{i}$ converges uniformly we obtain

$$
\begin{equation*}
\mathbb{R} \backslash \bigcup_{i \in \mathbb{N}} B_{i} \subset C(t) \tag{10}
\end{equation*}
$$

Now, let $x=b_{i}$. Since B_{j} are pairwise disjoint we have $x \in C\left(t_{j}\right)$ for each $j \neq i$ and

$$
\begin{equation*}
B_{i} \subset C\left(\sum_{j \neq i} t_{j}\right) \tag{11}
\end{equation*}
$$

It is easy to see that

$$
\begin{align*}
& B_{i} \cap(A \backslash E) \subset A\left(t_{i}\right) \backslash E\left(t_{i}\right) \tag{12}\\
& B_{i} \cap(E \backslash Q) \subset E\left(t_{i}\right) \cap A\left(t_{i}\right) \backslash Q\left(t_{i}\right) \tag{13}\\
& B_{i} \cap(Q \backslash C) \subset Q\left(t_{i}\right) \backslash C\left(t_{i}\right) . \tag{14}
\end{align*}
$$

If $A=\mathbb{R}$ we put $u(x)=0$. Now, let $A \neq \mathbb{R}$. Then $A \cup \mathrm{Cl}(E)$ is a closed set and hence $\mathbb{R} \backslash(A \cup \mathrm{Cl}(E))=\bigcup_{i \in M}\left(a_{i}, b_{i}\right)$, where $M \subset \mathbb{N}$ and all intervals $\left(a_{i}, b_{i}\right)$ are pairwise disjoint. Since $A \neq \mathbb{R}$ and the set $E \backslash A$ is nowhere dense the set M is nonempty.

For each $i \in M$ let c_{j}^{i}, d_{j}^{i} be such that for each $j \in \mathbb{N} a_{i}<c_{j+1}^{i}<d_{j}^{i}<$ $c_{j}^{i}<c_{1}^{i}=b_{i}$ and $\lim _{j \rightarrow \infty} c_{j}^{i}=a_{i}$. Define a function $u: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
u(x)= \begin{cases}\min \{1, \operatorname{dist}(x, A)\}, & \text { if } x \in\left(d_{2 j}^{i}, c_{2 j}^{i}\right) \backslash \mathbb{Q} \\ & \text { for some } i \in M \text { and } j \in \mathbb{N}, \\ \min \{2,2 \operatorname{dist}(x, A)\}, & \text { if } x \in\left(d_{2 j}^{i}, c_{2 j}^{i}\right) \cap \mathbb{Q} \\ & \text { for some } i \in M \text { and } j \in \mathbb{N}, \\ \min \{3,3 \operatorname{dist}(x, A)\}, & \text { if } x \in\left(\left[c_{j+1}^{i}, d_{j}^{i}\right] \cup(\operatorname{Cl}(E \backslash A) \backslash E)\right) \cap \mathbb{Q} \\ 0, & \text { for some } i \in M \text { and } j \in \mathbb{N}, \\ & \text { if } x \in A \cup E, \\ \max \{-1,-\operatorname{dist}(x, A)\}, & \text { if } x \in\left(d_{2 j-1}^{i}, c_{2 j-1}^{i}\right) \backslash \mathbb{Q} \\ & \text { for some } i \in M \text { and } j \in \mathbb{N}, \\ \max \{-2,-2 \operatorname{dist}(x, A)\}, & \text { if } x \in\left(d_{2 j-1}^{i}, c_{2 j-1}^{i}\right) \cap \mathbb{Q} \\ & \text { for some } i \in M \text { and } j \in \mathbb{N}, \\ \max \{-3,-3 \operatorname{dist}(x, A)\}, & \text { if } x \in\left(\left[c_{j+1}^{i}, d_{j}^{i}\right] \cup(\mathrm{Cl}(E \backslash A) \backslash E)\right) \backslash \mathbb{Q} \\ & \text { for some } i \in M \text { and } j \in \mathbb{N} .\end{cases}
$$

Let $x \in A$ and let $\varepsilon>0$. Then $u(x)=0$. Since $\operatorname{dist}(x, A)$ is continuous there is a neighbourhood U of x such that $|\operatorname{dist}(y, A)|=\mid \operatorname{dist}(x, A)-$ $\operatorname{dist}(y, A) \mid<\varepsilon / 3$ for each $y \in U$. Hence for each $y \in U$ we have $|u(x)-u(y)|=$ $|u(y)| \leq 3 \operatorname{dist}(x, A)<\varepsilon$. Therefore we get

$$
\begin{equation*}
A \subset C(u) \tag{15}
\end{equation*}
$$

Now, let $x \notin A$. Let $a=\operatorname{dist}(x, A)$ if $A \neq \emptyset$ and $a=2$ if $A=\emptyset$. Then $U=(x-a / 4, x+a / 4)$ is a neighbourhood of x. Let $G \subset U$ be an arbitrary nonempty open set and let $b=\min \left\{1, \frac{1}{8} a\right\}>0$.

Let $z \in G$ and $A \neq \emptyset$. Then $|x-z|<\frac{a}{4}$. Let $w \in A$. Then $a=\operatorname{dist}(x, A) \leq$ $|x-w| \leq|x-z|+|z-w|<\frac{a}{4}+|z-w|$. Therefore for each $w \in A$ we have $|z-w|>\frac{3}{4} a$ and hence $\operatorname{dist}(z, A) \geq \frac{3}{4} a$. On the other hand, there is $v \in A$ such that $|v-x|<\frac{9}{8} a$ and hence $\operatorname{dist}(z, A) \leq|v-z| \leq|z-x|+|x-v|<\frac{a}{4}+\frac{9}{8} a=\frac{11}{8} a$. Therefore, if $G \subset U$ is a nonempty open set and $A \neq \emptyset$ we have

$$
\begin{equation*}
\frac{3}{4} a<\operatorname{dist}(z, A)<\frac{11}{8} a . \tag{16}
\end{equation*}
$$

There are three possibilities:
a) $P=(G \backslash \operatorname{Cl}(E \backslash A)) \cap\left(d_{2 j}^{i}, c_{2 j}^{i}\right) \neq \emptyset$ for some $i \in M$ and $j \in \mathbb{N}$. Then there are points $z_{1} \in P \cap \mathbb{Q}$ and $z_{2} \in P \backslash \mathbb{Q}$. According to
(16) we have $u\left(z_{1}\right)=\min \left\{2,2 \operatorname{dist}\left(z_{1}, A\right)\right\} \geq \min \left\{2, \frac{3}{2} a\right\}$ and $u\left(z_{2}\right)=$ $\min \left\{1, \operatorname{dist}\left(z_{2}, A\right) \leq \min \left\{1, \frac{11}{8} a\right\}\right.$. We obtain

$$
\left|u\left(z_{1}\right)-u\left(z_{2}\right)\right| \geq \min \left\{2, \frac{3}{2} a\right\}-\min \left\{1, \frac{11}{8} a\right\} \geq \min \left\{1, \frac{1}{8} a\right\}=b
$$

b) $P=(G \backslash \operatorname{Cl}(E \backslash A)) \cap\left(d_{2 j-1}^{i}, c_{2 j-1}^{i}\right) \neq \emptyset$ for some $i \in M$ and $j \in \mathbb{N}$. Then for $z_{1} \in P \cap \mathbb{Q}$ and $z_{2} \in P \backslash \mathbb{Q}$ we have

$$
\left|u\left(z_{1}\right)-u\left(z_{2}\right)\right| \geq \max \left\{-1,-\frac{11}{8} a\right\}-\max \left\{-2,-\frac{3}{2} a\right\} \geq \min \left\{1, \frac{1}{8} a\right\}=b
$$

c) $(G \backslash \operatorname{Cl}(E \backslash A)) \cap\left(\bigcup_{i \in M} \bigcup_{j \in \mathbb{N}}\left(d_{j}^{i}, c_{j}^{i}\right)\right)=\emptyset$. Since $E \backslash A$ is nowhere dense there are $z_{1} \in(G \backslash \operatorname{Cl}(E \backslash A)) \cap \mathbb{Q}$ and $z_{2} \in(G \backslash \mathrm{Cl}(E \backslash A)) \backslash$ \mathbb{Q}. We have $u\left(z_{1}\right)=\min \left\{3,3 \operatorname{dist}\left(z_{1}, A\right)\right\} \geq \min \left\{3, \frac{9}{4} a\right\}$ and $u\left(z_{2}\right)=$ $\max \left\{-3,-3 \operatorname{dist}\left(z_{2}, A\right)\right\} \leq-\min \left\{3, \frac{9}{4} a\right\}$ and hence

$$
\left|u\left(z_{1}\right)-u\left(z_{2}\right)\right| \geq 2 \min \left\{3, \frac{9}{4} a\right\}>b
$$

Therefore u is not cliquish in x and

$$
\begin{equation*}
\mathbb{R} \backslash A \subset \mathbb{R} \backslash A(u) \tag{17}
\end{equation*}
$$

Now, let $x \in E \backslash A$ and let $U=(x-\delta, x+\delta), \delta>0$, be a neighbourhood of x. Then $u(x)=0$ and there is $0<\delta_{1}<\delta$ such that $\left(x-\delta_{1}, x+\delta_{1}\right) \cap A=\emptyset$. Since $E \backslash A$ is nowhere dense there is an interval $(c, d) \subset\left(x, x+\delta_{1}\right)$ such that $(c, d) \cap \mathrm{Cl}(E \backslash A)=\emptyset$. This yields $(c, d) \subset \bigcup_{i \in M}\left(a_{i}, b_{i}\right)$ and since $\left(a_{i}, b_{i}\right)$ are disjoint there is $i \in M$ such that $(c, d) \subset\left(a_{i}, b_{i}\right)$. Since $x \notin\left(a_{i}, b_{i}\right)$ we have $x \leq a_{i} \leq c<x+\delta_{1}$. Since $\lim _{j \rightarrow \infty} c_{j}^{i}=a_{i}$ there is $j \in \mathbb{N}$ such that $a_{i}<c_{j}^{i}<x+\delta_{1}$.

For each $y \in\left(d_{2 j}^{i}, c_{2 j}^{i}\right) \subset U$ we have $y(y)>0=u(x)$, i.e. u is lower quasicontinuous at x. Similarly, for each $y \in\left(d_{2 j-1}^{i}, c_{2 j-1}^{i}\right) \subset U$ we have $u(y)<0=u(x)$, i.e. u is upper quasicontinuous at x. Thus

$$
\begin{equation*}
E \backslash A \subset E(u) \tag{18}
\end{equation*}
$$

Finally, let $x \notin(E \cup A)$. Let $a=\operatorname{dist}(x, A)$ if $A \neq \emptyset$ and $a=3$ if $A=\emptyset$. We have three possibilities:
a) $x \in\left(d_{2 j}^{i}, c_{2 j}^{i}\right)$ for some $i \in M$ and $j \in \mathbb{N}$. Then $U=(x-a / 4, x+a / 4) \cap$ $\left(d_{2 j}^{i}, c_{2 j}^{i}\right)$ is a neighbourhood of x. Let G be an open nonempty open subset of U.
If $x \in \mathbb{Q}$, then $u(x)=\min \{2,2 \operatorname{dist}(x, A)\}$ and $b=\min \left\{1, \frac{11}{8} a\right\}<u(x)$. There is a point $z \in G \backslash \mathbb{Q}$ and according to (16) we have $\frac{3}{4} a<$ $\operatorname{dist}(z, A)<\frac{11}{8} a$ for $A \neq \emptyset$. Therefore $u(z)=\min \{1, \operatorname{dist}(z, A)\} \leq$ $\min \left\{1, \frac{11}{8} a\right\}=b<u(x)$, i.e. u is not lower quasicontinuous at x.
If $x \notin \mathbb{Q}$, then $u(x)=\min \{1, \operatorname{dist}(x, A)\}$ and $b=\left\{2, \frac{3}{2} a\right\}>u(x)$. There is a point $z \in G \cap \mathbb{Q}$ and $u(z)=\min \{2,2 \operatorname{dist}(x, A)\} \geq \min \left\{2, \frac{3}{2} a\right\}=b>$ $u(x)$, i.e. u is not upper quasicontinuous at x.
b) $x \in\left(d_{2 j-1}^{i}, c_{2 j-1}^{i}\right)$ for some $i \in M$ and $j \in \mathbb{N}$. Then similarly as in a) we can show that $x \notin E(u)$.
c) $x \notin \bigcup_{i \in M} \bigcup_{j \in \mathbb{N}}\left(d_{j}^{i}, c_{j}^{i}\right)$. Let G be an open nonempty subset of $(x-$ $a / 4, x+a / 4)$.
If $x \in \mathbb{Q}$, then $u(x)=\min \{3,3 \operatorname{dist}(x, A)\}$. For each $y \in G \backslash \mathbb{Q}$ we have $u(y) \leq \min \{2,2 \operatorname{dist}(y, A)\} \leq \min \left\{2, \frac{11}{4} a\right\}=b<u(x)$ and u is not lower quasicontinuous at x.
If $x \notin \mathbb{Q}$, then $u(x)=\max \{-3,-3 \operatorname{dist}(x, A)\}$ and for each $y \in G \cap \mathbb{Q}$ we have $u(y) \leq \max \{-2,-2 \operatorname{dist}(y, A)\} \geq \max \left\{-2,-\frac{11}{4} a\right\}>u(x)$, i.e. u is not upper quasicontinuous at x.

Therefore we have

$$
\begin{equation*}
\mathbb{R} \backslash(E \cup A) \subset \mathbb{R} \backslash E(u) \tag{19}
\end{equation*}
$$

Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f=s+t+u$. We will show that f is the desired function.

1. Let $x \in C$. Then according to (1), (10) and (15) we have $x \in C(s) \cap$ $C(t) \cap C(u)$ and hence $x \in C(f)$,

$$
\begin{equation*}
C \subset C(f) \tag{20}
\end{equation*}
$$

2. Let $x \in Q \backslash C$. If $x \in A_{i}$ for some $i \in M$, then according to (10), (15) and (2) we obtain $x \in C(t) \cap C(u) \cap C\left(\sum_{j \neq i} s_{j}\right)$, according to (8) we have $x \in Q\left(s_{i}\right)$ and by $(9) x \notin C\left(s_{i}\right)$. Therefore by Lemma 1 we have $x \in Q(f) \backslash C(f)$.

If $x=b_{i}$ for some $i \in M$, then by (1), (15) and (11) we have $x \in$ $C(s) \cap C(u) \cap C\left(\sum_{j \neq i} t_{j}\right)$ and by (14) $x \in Q\left(t_{i}\right) \backslash C\left(t_{i}\right)$. Hence, by Lemma 1 again $x \in Q(f) \backslash C(f)$ and

$$
\begin{equation*}
Q \backslash C \subset Q(f) \backslash C(f) \tag{21}
\end{equation*}
$$

3. Let $x \in A \cap E \backslash Q$. If $x \in A_{i}$, then by (10), (15) and (2) we have $x \in C(t) \cap C(u) \cap C\left(\sum_{j \neq i} s_{j}\right)$. Further, $x \in A\left(s_{i}\right)$ by (5), $x \in E\left(s_{i}\right)$ by (6) and $x \notin Q\left(s_{i}\right)$ by (7), therefore $x \in A(f) \cap E(f) \backslash Q(f)$.

If $x=b_{i}$, then (1), (15) and (11) imply $x \in C(s) \cap C(u) \cap C\left(\sum_{j \neq i} t_{j}\right)$ and (13) yields $x \in A\left(t_{i}\right) \cap E\left(t_{i}\right) \backslash Q\left(t_{i}\right)$. Hence $x \in A(f) \cap E(f) \backslash Q(f)$. Therefore

$$
\begin{equation*}
A \cap E \backslash Q \subset A(f) \cap E(f) \backslash Q(f) \tag{22}
\end{equation*}
$$

4. Let $x \in A \backslash E$. If $x \in A_{i}$, then by (10), (15) and (2) we have $x \in$ $C(t) \cap C(u) \cap C\left(\sum_{j \neq i} s_{j}\right)$, by (3) $x \in A\left(s_{i}\right)$ and by (4) $x \notin E\left(s_{i}\right)$, therefore $x \in A(f) \backslash E(f)$.
If $x=b_{i}$, then by (1), (15) and (11) we have $x \in C(s) \cap C(u) \cap C\left(\sum_{j \neq i} t_{j}\right)$ and by (12) $x \in A\left(t_{i}\right) \backslash E\left(t_{i}\right)$ and hence $x \in A(f) \backslash E(f)$ and

$$
\begin{equation*}
A \backslash E \subset A(f) \backslash E(f) \tag{23}
\end{equation*}
$$

5. Let $x \in E \backslash A$. Then according to (1) and (10) we have $x \in C(s) \cap C(t)$, by (18) we have $x \in E(u)$ and by (16) $x \notin A(u)$. Lemma 1 implies $x \in E(f) \backslash A(f)$ and

$$
\begin{equation*}
E \backslash A \subset E(f) \backslash A(f) \tag{24}
\end{equation*}
$$

6. Let $x \in R \backslash(A \cup E)$. Then (1) and (10) imply $x \in C(s) \cap C(t)$, (19) yields $x \notin E(u)$ and (17) implies $x \notin A(u)$. From Lemma 1 we deduce

$$
\begin{equation*}
\mathbb{R} \backslash(A \cup E) \subset \mathbb{R} \backslash(A(f) \cup E(f)) \tag{25}
\end{equation*}
$$

Finally, from (20), (21), (22), (23), (24) and (25) we conclude that $C=$ $C(f), Q=Q(f), E=E(f)$ and $A=A(f)$.

Remark 1. Theorem 2 is not true for functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. If $C=Q=$ $\mathbb{R}^{2} \backslash\{(0,0)\}$ and $A=E=\mathbb{R}^{2}$, then all the assumptions of Theorem 1 are satisfied, however there is no function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $C=C(f), Q=Q(f)$, $E=E(f)$ and $A=A(f)$.

Proof. Assume that there is a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $C=C(f), \mathbb{R}^{2}=$ $A(f)=E(f)$. We will show that under this assumption, $(0,0) \in Q(f)$, which is a contradiction.

Let U be a neighbourhood of $(0,0)$ and let $\varepsilon>0$. Let $\delta>0$ be such that $T=\left\{(x, y) \in \mathbb{R}^{2}: \sqrt{x^{2}+y^{2}}<\delta\right\} \subset U$ and let $W=T \backslash\{(0,0)\}$ and $a=f(0,0)$. Since $(0,0) \in E(f)$ there are nonempty open sets $G_{1}, G_{2} \subset T$ such that $f\left(G_{1}\right) \subset(a-\varepsilon / 2, \infty)$ and $f\left(G_{2}\right) \subset(-\infty, a+\varepsilon / 2)$. Therefore there are $\left(y_{1}, z_{1}\right),\left(y_{2}, z_{2}\right) \in W$ such that $f\left(y_{1}, z_{1}\right)>a-\varepsilon / 2$ and $f\left(y_{2}, z_{2}\right)<a+\varepsilon / 2$.

If $f\left(y_{1}, z_{1}\right) \leq a$, then $\left|f\left(y_{1}, z_{1}\right)-a\right|<\varepsilon / 2$ and there is an open neighbourhood $G \subset W \subset U$ of $\left(y_{1}, z_{1}\right)$ such that $\left|f(y, z)-f\left(y_{1}, z_{1}\right)\right|<\varepsilon / 2$ for each $(y, z) \in G$. Therefore for each $(y, z) \in G$ we obtain $|f(y, z)-f(0,0)| \leq$ $\left|f(y, z)-f\left(y_{1}, z_{1}\right)\right|+\left|f\left(y_{1}, z_{1}\right)-a\right|<\varepsilon / 2+\varepsilon / 2=\varepsilon$, i.e $(0,0) \in Q(f)$. If $f\left(y_{2}, z_{2}\right) \geq a$, then similarly we can show $(0,0) \in Q(f)$.

Finally, let $f\left(y_{2}, z_{2}\right)<a<f\left(y_{1}, z_{1}\right)$. The set W is connected and the function $f \upharpoonright W$ is continuous, hence the set $f \upharpoonright W(W)=f(W)$ is connected. Since $f\left(y_{2}, z_{2}\right), f\left(y_{1}, z_{1}\right) \in f(W)$ there is $\left(y_{3}, z_{3}\right) \in W$ such that $f\left(y_{3}, z_{3}\right)=a$. Since $\left(y_{3}, z_{3}\right) \in C(f)$ there is an open neighbourhood $G \subset U$ of $\left(y_{3}, z_{3}\right)$ such that $\left|f\left(y_{3}, z_{3}\right)-f(y, z)\right|<\varepsilon$ for each $(y, z) \in G$. Therefore for each $(y, z) \in G$ we have $|f(y, z)-f(0,0)| \leq\left|f(y, z)-f\left(y_{3}, z_{3}\right)\right|+\left|f\left(y_{3}, z_{3}\right)-a\right|<\varepsilon$ and $(0,0) \in Q(f)$.

Problem 1. Characterize the quadruplet $(C(f), Q(f), E(f), A(f)$) for real functions defined on a metric space, or at least for \mathbb{R}^{2}.

References

[1] J. Borsík, On the points of bilateral quasicontinuity, Real Anal. Exchange 19 (2) (1993/94), 529-536.
[2] J. Ewert, J. S. Lipiński, On the points of continuity, quasicontinuity and cliquishness, Real Anal. Exchange 8(2) (1982/83), 473-478.
[3] J. Ewert, T. Lipski, Lower and upper quasicontinuous functions, Demonstratio Math. 16 (1983), 85-93.
[4] Z. Grande, Quasicontinuity, cliquishness and the Baire property of functions of two variables, Tatra Mt. Math. Publ. 24 (2002), 29-35.
[5] J. S. Lipiński, T. Šalát, On the points of quasicontinuity and cliquishness of functions, Czechoslovak Math. J. 21 (1971), 484-489.
[6] T. Neubrunn, Quasi-continuity, Real Anal. Exchange 14(2) (1988/89), 259-308.
[7] W. Sierpiński, Sur une propriété des ensembles F_{σ} lineáires, Fund. Math. 14 (1929), 216-226.
[8] E. Strońska, Maximal families for the class of upper and lower semiquasicontinuous functions, Real Anal. Exchange 27(2) (2001/2002), 599608.

[^0]: Key Words: continuity, quasicontinuity, cliquishness, upper and lower quasicontinuity
 Mathematical Reviews subject classification: Primary: 26A15; Secondary: 54C08, 54C30

 Received by the editors February 27, 2007
 Communicated by: Brian S. Thomson
 *This research was supported by Grant VEGA 2/6087/26 and APVT-51-006904

