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SOME LATTICES OF CONTINUOUS
FUNCTIONS ON LOCALLY COMPACT
SPACES

Abstract

Let U be a locally compact Hausdorff space that is not compact. Let
L(U) denote the family of continuous real valued functions on U such
that for each f € L(U) there is a nonzero number p (depending on f)
for which f—p vanishes at infinity. Then L(U) is obviously a lattice
under the usual ordering of functions.

In this paper we prove that L(U), as a lattice alone, characterizes
the locally compact space U.

Let S be a locally compact Hausdorff space. Define T'(S) to be L(S)
if S is not compact, and T'(S) to be C(S) if S is compact. We prove
that any locally compact Hausdorff spaces S1 and S2 are homeomorphic
if and only if their associated lattices T'(S1) and T'(S2) are isomorphic.

In [1] it was proved that for the compact Hausdorff spaces X, the lattice
C(X) of continuous real valued functions on X, as a lattice alone, characterizes
the space X. The details are in [1], so we will not repeat them here.

So now let U be a locally compact Hausdorff space that is not compact.
Let L(U) denote the family of continuous real valued functions on U such that
for each f € L(U), there is a nonzero number p (depending on f) for which
f —p vanishes at infinity. Then L(U) is obviously a lattice under the usual
ordering of functions.

In this paper we prove that L(U), as a lattice alone, characterizes the
locally compact space U.
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Thus L(U) does for locally compact spaces U what C'(X) does for compact
spaces X. On the other hand, C(U) will not suffice for locally compact U. We
begin with the following theorem.

Theorem 1. Let X and Y be compact Hausdorff spaces. Fix ro, € X and
Yoo € Y. Let

L(X, 2e) = {g € C(X) : glo) # 0},

LY, o) = {9 € COV)  glyoc) 0}

Let f — f* be alattice isomorphism of L(X , o) onto L(Y , yoo) . Then there
18 a homeomorphism y — 3" of Y onto X that maps yse 0 Tos. Moreover,

F (@) f*(Woo) >0 forall f € L(X, 20) -

PROOF. Let y — y’ be the homeomorphism of Y onto X as in [1]. The
arguments in [1] for C(X) and C(Y) go through verbatim for L(X , 2,) and
L(Y, Yo) . This homeomorphism also enjoys the property

for each y € Y, the set

{f6): reLX . a0), ;') <0f (*)

is bounded above.

(To prove (x), observe that the set {f* € L(Y', yoo) : f*(y) <0} is a prime
ideal in L(Y, yoo) associated with the point y, and the corresponding prime
ideal in L(X , x4 ) is associated with the point g/.)

It remains to prove that y ., = zs. So assume to the contrary, that y. =
X # Too- Choose g € L(X , Zs) 80 that ¢* (yoo) < 0. Choose go € L(X , Zoo)
so that go(zo) and g(zs) have the same sign, but go(xo) is so large that
96 (Yoo) > 0 by (). Then g(zs) and go(zs) have the same sign, but ¢*(yoo)
and g§ (Yoo ) have opposite sign. Put F; = gUgg and f; = gNgg. Then F)(zs)
and f1(zs) have the same sign, but F; (y~) and f;(yo) have opposite sign.
Moreover Fy > f1.

Let g1 = (F1+ f1)/2. Let Fy and f5 be two of the functions Fy, g1, f1 such
that

F3(Yoo) > 0> f3(Yoo)

and one of the functions Fy or f5 is g;. Then

FL>F>f> fi
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and
FY (Yoo) 2 F5 (Yoo) > 0> f3(Yoo) > f1 (Yoo) -
Furthermore
Fy— fy = F1;f1.
If 2F5 (Yoo) + f5 (Yoo) # 0, choose g2 € L(X , xo) such that

otherwise choose g2 € L(X , x) such that

. _Fyrop
A R

Let F3 and f3 be two of the functions Fs, g2, fo such that
F3(yoo) > 0> f3(yoo)
and one of the functions F3 or fs is go. Then
Fa>F5> f32> fo

and
F5 (Yoo) 2 F5 (Yoo) > 0> f3(yoo) = f5 (Yoo) -
Furthermore

2(F3 (Yoo) — f3 (o))
; .

F5 (Yoo) = f3 (Yoo) <

We use the technique of the preceding two paragraphs and inductive con-
struction to construct sequences of functions (f,) C L(X, z«) and (F,) C
L(X, 2+) such that

anleanannfla (1)
1 (Woo) 2 Fi(Yos) > 0> f(Yoo) 2 fr_1(Yosc) , for n>1,and (2

Fn—l - fn—l

5 , for n even, and (3)

Fn_.fn:

F*

3

, for n odd. (4)
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It follows from (1) and (3) that the sequences of functions (F,,) and (f,)
each converges uniformly to a continuous function H on X, and furthermore
F, > H > f, for each n. Plainly H(z) has the same sign as F}(z) and
f1(zs), and it follows that H € L(X , xoo)-

On the other hand, it follows from (2) and (4) that the sequences of num-
bers (F(yoo)) and (f(yoo)) each converges to 0. We deduce from (1) that

Fy>H > f, and F(yso) > H (Yoo) = f7(Y0)

for each index n. Necessarily, then, H*(yo) = 0 and consequently H* ¢
L(Y, ys), contrary to hypothesis. This proves that y., = Zo .

Let s € L(X, z) such that s(zs) > 0. Choose r € L(X, z) such
that r(xs) > 0 and r(x) is so large that r*(ys) > 0 by (*). Then s*(yoo)
is necessarily positive; for otherwise we could repeat our argument with r
and s in place of go and g. It follows that for s € L(X , ), the inequality
$(Zoo) > 0 implies s*(yo0) > 0. For the converse implication, reverse the roles
of the spaces X and Y. O

Before we turn to locally compact Hausdorff spaces that are not compact,
we offer one corollary.

Corollary 1. Let X and Y be compact Hausdorff spaces, let zo € X and
Yo € Y. Then a necessary and sufficient condition that there exists a homeo-

morphism y — y' of Y onto X that maps yo to xq is that there exists a lattice
isomorphism f— f* of L(X, xg) onto L(Y , yo).

Proor. Sufficiency. Theorem 1.
Necessity. For each f € L(X , xg), put f*(y) = f(y'). We leave the rest. [

We now come to the result we stated in our introductory comments.

Corollary 2. Let U and V be locally compact Hausdorff spaces, not compact.
Then a necessary and sufficient condition that U and V be homeomorphic is
that the lattices L(U) and L(V') be isomorphic.

PROOF. Let X = U U {2} and Y = V U {ys} be the one point compactifi-
cations of U and V respectively where x, and y., are the points at infinity.
Sufficiency. Theorem 1.
Necessity. Let y — y’ be the homeomorphism. For f € L(U) put f*(y) =
f(y"). We leave the rest. O

Next we see how C(X) and L(V) compare when X is compact Hausdorff
and V is only locally compact Hausdorff.
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Corollary 3. Let X be compact Hausdorff and V' be locally compact Hausdorff
but not compact. Then C(X) and L(V') are not isomorphic lattices.

PROOF. Let Y = V U {ys} be the one point compactification of V. Use the
construction in the proof of Theorem 1 to show that C(X) and L(V) can not
be isomorphic lattices. (Just delete any references to zo..) O

Say that a compact space X is homogeneous if for any a,b € X, there is
a homeomorphism of X onto X that maps a to b. For example, a circle is
homogeneous but the compact interval [0, 1] is not.

Corollary 4. Let X be a compact Hausdorff space. Then X is homogeneous
if and only if L(X , a) and L(X, b) are isomorphic lattices for any a € X,
be X.

ProOOF. Theorem 1. O
We conclude with an example.

Example 1. Let U be the linearly ordered space consisting of the real line
followed by all the countable ordinal numbers in their usual order. Let V'
be the linearly ordered space U with one final point p adjoined. In V every
neighborhood of p contains an uncountable totally disconnected neighborhood
of p. But U contains no such point, so U and V' are not homeomorphic spaces.
However both U and V are locally compact Hausdorff spaces that are not
compact. From Theorem 1 we deduce that L(U) and L(V') are not isomorphic.
On the other hand, the lattices C(U) and C (V) are essentially identical, and
likewise C*(U) and C*(V') are essentially identical lattices.

Finally, let S be a locally compact Hausdorff space. Define T'(S) to be L(S)
if S is not compact, and T'(S) to be C(S) if S is compact. From reference [1]
and Corollaries 2 and 3 we deduce that any locally compact Hausdorff spaces
S7 and Ss are homeomorphic if and only if their associated lattices T'(S7) and
T'(S2) are isomorphic.

References

[1] I. Kaplansky, Lattices of continuous functions, Bull. Amer. Math. Soc.
53 (1947), 617-623.



290 F. S. CATER



