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THE EQUIVALENCE RELATION OF BEING
OF THE SAME KIND∗

Abstract

Our purpose in this article is to prove that the equivalence relation
of being of the same kind is not classifiable by countable structures.

1 Introduction.

A way to measure the complexity of an equivalence relation E defined on some
Polish space X is to determine whether there exists a countable language L
and a non-trivial Baire measurable function f : X → XL with the property
that

(∀(x, y) ∈ X2)(xEy ⇒ f(x) ∼= f(y)). (?)

Here XL is the Polish space of countably infinite structures for L (see, for
example, 16.5 on page 96 of [2]) and ∼= stands for the equivalence relation of
isomorphism between structures for L, while f : X → XL is said to be trivial
if there exists a E-invariant comeager subset A of X for which all countable
structures in f [A] are isomorphic. When such a countable language L and such
a non-trivial Baire measurable function f : X → XL exist, we say that E is
classifiable by countable structures and E is considered to be ”less complicated”
than the equivalence relation of isomorphism between countable structures.
But if for any countable language L, every Baire measurable function f : X →
XL with the property (?) is trivial, then we say that E is not classifiable by
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countable structures and E is considered to be “more complicated” than the
equivalence relation of isomorphism between countable structures.

In what follows, let P =
{
x ∈ l1 : (∀n ∈ N)(x(n) > 0)

}
. It is not difficult

to see that P constitutes a Gδ subset of the separable Banach space l1 and
consequently it constitutes a Polish space, which we call the Polish space of
convergent series with positive terms. (See, for example, 3.11 on page 17 of

[2].) If x ∈ P and for any n ∈ N, we set Rx(n) =
∞∑
m=n

x(m), then we call

Rx the remainder sequence of x. A natural way to determine the relative
rapidity of the convergence of two convergent series with positive terms is by
examining the quotient of their remainder sequences. In particular, if x ∈ P
and y ∈ P, then the convergence of x is said to be of the same kind as that
of y, in symbols xESKy, if the following conditions hold: lim inf

n→∞
Ry(n)
Rx(n) > 0

and lim sup
n→∞

Ry(n)
Rx(n) < ∞. (See, for example, 162 on pages 279-280 of [4].) It

is not difficult to prove that ESK constitutes an equivalence relation and our
purpose in this article is to prove the following result.

Theorem 1.1. ESK is not classifiable by countable structures.

So, for convergent series with positive terms, the equivalence relation of
being of the same kind is, in a sense, ”more complicated” than the equivalence
relation of isomorphism between countable structures.

2 The Theory of Turbulence.

A method to prove that an equivalence relation E defined on some Polish
space X is not classifiable by countable structures is to show that there exists
a Polish group G acting continuously on X with the following properties:

• EXG ⊆ E, where EXG is the corresponding orbit equivalence relation,
namely xEXG y ⇐⇒ (∃g ∈ G)(g · x = y), whenever x, y are in X.

• The action of G on X is generically turbulent.

We explain what we mean below (see, for example, Chapter 3 on pages 37-58
of [1]):

Definition 2.1. (Hjorth) Let G be any Polish group acting continuously on
a Polish space X and let x ∈ X. For any open neighborhood U of x in X
and for any symmetric open neighborhood V of 1G in G, the (U, V )-local orbit
O(x, U, V ) of x in X is defined as follows:
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y ∈ O(x, U, V ) if there exist g0, ..., gk in V (k ∈ N) such that if x0 = x
and xi+1 = gi · xi for every i ∈ {0, ..., k}, then all the xi are in U and
xk+1 = y.

The action of G on X is said to be turbulent at the point x, in symbols x ∈ TXG ,
if for any such U and V , there exists an open neighborhood U ′ of x in X such
that U ′ ⊆ U and O(x, U, V ) is dense in U ′.

Theorem 2.2. (Hjorth) Let G be any Polish group acting continuously on a
Polish space X in such a way that the orbits of the action are meager and at
least one orbit is dense. Then the following are equivalent:

• The action of G on X is generically turbulent, in the sense that TXG is
comeager in X.

• For any countable language L and for any Baire measurable function
f : X → XL with the property that (∀(x, y) ∈ X2)(xEXG y ⇒ f(x) ∼=
f(y)), there exists a EXG -invariant comeager subset A of X for which all
countable structures in f [A] are isomorphic.

Indeed, if f : X → XL has the property that (∀(x, y) ∈ X2)(xEy ⇒ f(x) ∼=
f(y)), then f has also the property that (∀(x, y) ∈ X2)(xEXG y ⇒ f(x) ∼=
f(y)) and, by virtue of Theorem 2.2, there exists a EXG -invariant comeager
subset A of X for which all countable structures in f [A] are isomorphic. So
if we set A∗ = {x ∈ X : (∃a ∈ A)(xEa)}, then it is not difficult to verify that
A∗ constitutes a E-invariant comeager subset of X such that all countable
structures in f [A∗] are isomorphic.

3 The Proof of the Theorem.

By virtue of the discussion in Section 2, in order to prove Theorem 1.1, it is
enough to show the following result.

Theorem 3.1. If G =
{

g ∈ (0,∞)N : lim
n→∞

g(n) = 1
}

and (g · x) (n) = g(n)x(n),
whenever g ∈ G, x ∈ P and n ∈ N, then the following are true:

(i) G constitutes a commutative Polish group under pointwise multiplica-
tion.

(ii) G×P 3 (g,x) 7→ g ·x ∈ P constitutes a continuous Polish group action.

(iii) The action of G on P is turbulent.

(iv) EP
G ⊆ ESK .
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The Proof of (i)

Proof. It is well-known that (0,∞) constitutes a commutative Polish group
under multiplication and if d(x, y) = |x− y|+

∣∣∣ 1x − 1
y

∣∣∣, whenever x and y are
in (0,∞), then d constitutes a complete compatible metric on (0,∞). (See,
for example, 9.A on page 58 of [2].) Given any g ∈ G and any h ∈ G, we set
ρ(g,h) = sup

n∈N
d (g(n),h(n)) and it is not difficult to verify that ρ constitutes

a metric on G. So let (gk)k∈N be any Cauchy sequence in (G, ρ) and let
ε > 0. Then there exists K ∈ N such that for any integer k ≥ K and for any
integer l ≥ K, we have |gk(n)− gl(n)| ≤ d (gk(n),gl(n)) ≤ ρ (gk,gl) < ε

2 ,
whenever n ∈ N. So for any n ∈ N, (gk(n))k∈N constitutes a Cauchy sequence
in ((0,∞), d) and consequently it has a limit, say g(n) = lim

k→∞
gk(n).

Moreover, since lim
n→∞

gK(n) = 1, there exists N ∈ N such that for any inte-

ger n ≥ N , we have |gK(n)− 1| < ε
2 and hence |g(n)− 1| = lim

l→∞
|gl(n)− 1| ≤

sup
l≥K

(|gl(n)− gK(n)|+ |gK(n)− 1|) ≤ sup
l≥K
|gl(n)− gK(n)| + |gK(n)− 1| < ε,

which implies that g ∈ G, while for any integer k ≥ K and for any n ∈
N, we have d (gk(n),g(n)) = lim

l→∞
d (gk(n),gl(n)) ≤ ε

2 , hence ρ (gk,g) =

sup
n∈N

d (gk(n),g(n)) ≤ ε
2 < ε and consequently gk → g in (G, ρ) as k → ∞,

which implies that ρ constitutes a complete metric on G. If f , g and h are any
elements of G, then it is not difficult to prove that ρ

(
f−1,g−1

)
= ρ (f ,g) and

ρ (fh,gh) ≤ max
{

sup
n∈N

h(n), sup
n∈N

1
h(n)

}
ρ (f ,g), which imply that inversion is

continuous and multiplication is separately continuous and consequently G
constitutes a topological group. (See, for example, 9.15 on page 62 of [2].)

What is left to show is that (G, ρ) is separable. But it is not difficult
to verify that C =

{
g ∈ (Q ∩ (0,∞))N : ∃m∀n ≥ m(g(n) = 1)

}
constitutes a

countable dense subset of (G, ρ). Indeed, it is not difficult to see that C is
equinumerous to the countable set (Q ∩ (0,∞))<N =

⋃
n∈N

(Q ∩ (0,∞))n, while

if g ∈ G and ε > 0, then since lim
n→∞

g(n) = 1, and hence lim
n→∞

1
g(n) = 1, there

exists N ∈ N such that for any integer n > N , we have |g(n) − 1| < ε
2 and∣∣∣ 1

g(n) − 1
∣∣∣ < ε

2 , which implies that d (g(n), 1) < ε. Moreover, if n ∈ {0, ..., N},
then since Q ∩ (0,∞) is dense in (0,∞), there exists an rn ∈ Q ∩ (0,∞)
such that d (g(n), rn) < ε. So if c = (r0, ..., rN , 1, 1, 1, ...), then c ∈ C and
ρ (g, c) ≤ ε.
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The Proof of (ii)

Proof. If g ∈ G and x ∈ P, then ‖g · x‖1 ≤
(

sup
n∈N

g(n)
)
‖x‖1 and conse-

quently g · x ∈ P. So the map G × P 3 (g,x) 7→ g · x ∈ P is well-defined
and it is not difficult to verify that it constitutes a group action. Moreover,
if g and h are any elements of G, while x and y are any elements of P, then

‖g · x− h · x‖1 ≤ ρ (g,h) ‖x‖1 and ‖g · y − g · x‖1 ≤
(

sup
n∈N

g(n)
)
‖y − x‖1,

which imply that the group action in question constitutes a continuous action.
(See, for example, 9.14 on page 62 of [2].)

The Proof of (iii)

Lemma 3.2. For any x ∈ P, G · x is dense in P.

Proof. It is enough to notice that if y ∈ P and N ∈ N, while

gN (n) =


y(n)
x(n) if n ∈ {0, ..., N}

1 if n ∈ N \ {0, ..., N}

then gN ∈ G and ‖gN · x− y‖1 =
∑
n>N

|x(n)− y(n)| → 0 as N →∞.

Lemma 3.3. For any x ∈ P, G · x is meager in P.

Proof. If y ∈ G · x, then it is not difficult to see that lim
n→∞

y(n)
x(n) = 1 and

consequently there exists m ∈ N such that for any integer n ≥ m, we have
y(n)
x(n) ≤

3
2 . So G · x ⊆ M, where M =

⋃
m∈N

⋂
n≥m

{
y ∈ P : y(n)

x(n) ≤
3
2

}
is easily

seen to be Fσ. So it is enough to show that P \M is dense in P. Indeed, if
z ∈ P and N ∈ N, while

zN (n) =

 z(n) if n ∈ {0, ..., N}

2x(n) if n ∈ N \ {0, ..., N},

then it is enough to notice that zN ∈ P \M and ‖zN − z‖1 =
∑
n>N

|2x(n) −

z(n)| → 0 as N →∞.
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If for an arbitrary x ∈ P and for an arbitrary ε > 0, we set U(x, ε) =
{y ∈ P : ‖y − x‖1 < ε}, then it is not difficult to see that the U(x, ε) form a
base of open neighborhoods of x in P.

Lemma 3.4. If x ∈ P and ε > 0, while g ∈ G and g · x ∈ U(x, ε), then there
exists a continuous path [0, 1] 3 t 7→ gt ∈ G such that g0 = 1G, g1 = g and
gt · x ∈ U(x, ε) for every t ∈ [0, 1].

Proof. Given any t ∈ [0, 1], we set gt = (1− t)1G + tg and it is not difficult
to verify that gt ∈ G, while obviously g0 = 1G and g1 = g. Moreover,
if s, t are in [0, 1], then it is not difficult to prove that ρ (gs,gt) ≤ |s −
t| sup
n∈N

(
|g(n)− 1|+ |g(n)−1|

(min{1,g(n)})2

)
and consequently [0, 1] 3 t 7→ gt ∈ G is

continuous. What is left to show is that gt ∈ U(x, ε) for every t ∈ [0, 1].
But this follows from the fact that for any t ∈ [0, 1], we have ‖gt · x− x‖1 =
t ‖g · x− x‖1.

Now, Lemmas 3.3 – 3.4 and Lemma 5.7 on page 1472 of [3] imply that the
action of G on P is turbulent.

The Proof of (iv)

Proof. If x ∈ P, y ∈ P, g ∈ G and y = g · x, then lim
n→∞

y(n)
x(n) = 1, hence

there exists m ∈ N such that for any integer n ≥ m, we have
∣∣∣y(n)
x(n) − 1

∣∣∣ < 1
2 ,

hence 1
2x(n) < y(n) < 3

2x(n) and consequently 1
2Rx(n) ≤ Ry(n) ≤ 3

2Rx(n),
which implies that 1

2 ≤
Ry(n)
Rx(n) ≤

3
2 , which implies in its turn that yESKx.
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