Nikolaos Efstathiou Sofronidis, Department of Economics, University of Ioannina, Ioannina 45110, Greece.
email: nsofron@otenet.gr, nsofron@cc.uoi.gr

THE EQUIVALENCE RELATION OF BEING OF THE SAME KIND*

Abstract

Our purpose in this article is to prove that the equivalence relation of being of the same kind is not classifiable by countable structures.

1 Introduction.

A way to measure the complexity of an equivalence relation E defined on some Polish space X is to determine whether there exists a countable language L and a non-trivial Baire measurable function $f: X \rightarrow X_{L}$ with the property that

$$
\left(\forall(x, y) \in X^{2}\right)(x E y \Rightarrow f(x) \cong f(y))
$$

Here X_{L} is the Polish space of countably infinite structures for L (see, for example, 16.5 on page 96 of [2]) and \cong stands for the equivalence relation of isomorphism between structures for L, while $f: X \rightarrow X_{L}$ is said to be trivial if there exists a E-invariant comeager subset A of X for which all countable structures in $f[A]$ are isomorphic. When such a countable language L and such a non-trivial Baire measurable function $f: X \rightarrow X_{L}$ exist, we say that E is classifiable by countable structures and E is considered to be "less complicated" than the equivalence relation of isomorphism between countable structures. But if for any countable language L, every Baire measurable function $f: X \rightarrow$ X_{L} with the property (\star) is trivial, then we say that E is not classifiable by

[^0]countable structures and E is considered to be "more complicated" than the equivalence relation of isomorphism between countable structures.

In what follows, let $\mathbf{P}=\left\{\mathbf{x} \in l^{1}:(\forall n \in \mathbb{N})(\mathbf{x}(n)>0)\right\}$. It is not difficult to see that \mathbf{P} constitutes a G_{δ} subset of the separable Banach space l^{1} and consequently it constitutes a Polish space, which we call the Polish space of convergent series with positive terms. (See, for example, 3.11 on page 17 of [2].) If $\mathbf{x} \in \mathbf{P}$ and for any $n \in \mathbb{N}$, we set $R_{\mathbf{x}}(n)=\sum_{m=n}^{\infty} \mathbf{x}(m)$, then we call $R_{\mathbf{x}}$ the remainder sequence of \mathbf{x}. A natural way to determine the relative rapidity of the convergence of two convergent series with positive terms is by examining the quotient of their remainder sequences. In particular, if $\mathbf{x} \in \mathbf{P}$ and $\mathbf{y} \in \mathbf{P}$, then the convergence of \mathbf{x} is said to be of the same kind as that of \mathbf{y}, in symbols $\mathbf{x} E_{S K} \mathbf{y}$, if the following conditions hold: $\liminf _{n \rightarrow \infty} \frac{R_{\mathbf{y}}(n)}{R_{\mathbf{x}}(n)}>0$ and $\limsup _{n \rightarrow \infty} \frac{R_{\mathbf{y}}(n)}{R_{\mathbf{x}}(n)}<\infty$. (See, for example, 162 on pages 279-280 of [4].) It is not difficult to prove that $E_{S K}$ constitutes an equivalence relation and our purpose in this article is to prove the following result.

Theorem 1.1. $E_{S K}$ is not classifiable by countable structures.
So, for convergent series with positive terms, the equivalence relation of being of the same kind is, in a sense, "more complicated" than the equivalence relation of isomorphism between countable structures.

2 The Theory of Turbulence.

A method to prove that an equivalence relation E defined on some Polish space X is not classifiable by countable structures is to show that there exists a Polish group G acting continuously on X with the following properties:

- $E_{G}^{X} \subseteq E$, where E_{G}^{X} is the corresponding orbit equivalence relation, namely $x E_{G}^{X} y \Longleftrightarrow(\exists g \in G)(g \cdot x=y)$, whenever x, y are in X.
- The action of G on X is generically turbulent.

We explain what we mean below (see, for example, Chapter 3 on pages 37-58 of [1]):
Definition 2.1. (Hjorth) Let G be any Polish group acting continuously on a Polish space X and let $x \in X$. For any open neighborhood U of x in X and for any symmetric open neighborhood V of 1^{G} in G, the (U, V)-local orbit $O(x, U, V)$ of x in X is defined as follows:
$y \in O(x, U, V)$ if there exist g_{0}, \ldots, g_{k} in $V(k \in \mathbb{N})$ such that if $x_{0}=x$ and $x_{i+1}=g_{i} \cdot x_{i}$ for every $i \in\{0, \ldots, k\}$, then all the x_{i} are in U and $x_{k+1}=y$.

The action of G on X is said to be turbulent at the point x, in symbols $x \in T_{G}^{X}$, if for any such U and V, there exists an open neighborhood U^{\prime} of x in X such that $U^{\prime} \subseteq U$ and $O(x, U, V)$ is dense in U^{\prime}.

Theorem 2.2. (Hjorth) Let G be any Polish group acting continuously on a Polish space X in such a way that the orbits of the action are meager and at least one orbit is dense. Then the following are equivalent:

- The action of G on X is generically turbulent, in the sense that T_{G}^{X} is comeager in X.
- For any countable language L and for any Baire measurable function $f: X \rightarrow X_{L}$ with the property that $\left(\forall(x, y) \in X^{2}\right)\left(x E_{G}^{X} y \Rightarrow f(x) \cong\right.$ $f(y))$, there exists a E_{G}^{X}-invariant comeager subset A of X for which all countable structures in $f[A]$ are isomorphic.
Indeed, if $f: X \rightarrow X_{L}$ has the property that $\left(\forall(x, y) \in X^{2}\right)(x E y \Rightarrow f(x) \cong$ $f(y))$, then f has also the property that $\left(\forall(x, y) \in X^{2}\right)\left(x E_{G}^{X} y \Rightarrow f(x) \cong\right.$ $f(y))$ and, by virtue of Theorem 2.2 , there exists a E_{G}^{X}-invariant comeager subset A of X for which all countable structures in $f[A]$ are isomorphic. So if we set $A^{*}=\{x \in X:(\exists a \in A)(x E a)\}$, then it is not difficult to verify that A^{*} constitutes a E-invariant comeager subset of X such that all countable structures in $f\left[A^{*}\right]$ are isomorphic.

3 The Proof of the Theorem.

By virtue of the discussion in Section 2, in order to prove Theorem 1.1, it is enough to show the following result.
Theorem 3.1. If $\mathbf{G}=\left\{\mathbf{g} \in(0, \infty)^{\mathbb{N}}: \lim _{n \rightarrow \infty} \mathbf{g}(n)=1\right\}$ and $(\mathbf{g} \cdot \mathbf{x})(n)=\mathbf{g}(n) \mathbf{x}(n)$, whenever $\mathbf{g} \in \mathbf{G}, \mathbf{x} \in \mathbf{P}$ and $n \in \mathbb{N}$, then the following are true:
(i) G constitutes a commutative Polish group under pointwise multiplication.
(ii) $\mathbf{G} \times \mathbf{P} \ni(\mathbf{g}, \mathbf{x}) \mapsto \mathbf{g} \cdot \mathbf{x} \in \mathbf{P}$ constitutes a continuous Polish group action.
(iii) The action of \mathbf{G} on \mathbf{P} is turbulent.
(iv) $E_{\mathbf{G}}^{\mathbf{P}} \subseteq E_{S K}$.

The Proof of (i)

Proof. It is well-known that $(0, \infty)$ constitutes a commutative Polish group under multiplication and if $d(x, y)=|x-y|+\left|\frac{1}{x}-\frac{1}{y}\right|$, whenever x and y are in $(0, \infty)$, then d constitutes a complete compatible metric on $(0, \infty)$. (See, for example, 9 .A on page 58 of [2].) Given any $\mathbf{g} \in \mathbf{G}$ and any $\mathbf{h} \in \mathbf{G}$, we set $\rho(\mathbf{g}, \mathbf{h})=\sup _{n \in \mathbf{N}} d(\mathbf{g}(n), \mathbf{h}(n))$ and it is not difficult to verify that ρ constitutes a metric on \mathbf{G}. So let $\left(\mathbf{g}_{k}\right)_{k \in \mathbb{N}}$ be any Cauchy sequence in (\mathbf{G}, ρ) and let $\epsilon>0$. Then there exists $K \in \mathbb{N}$ such that for any integer $k \geq K$ and for any integer $l \geq K$, we have $\left|\mathbf{g}_{k}(n)-\mathbf{g}_{l}(n)\right| \leq d\left(\mathbf{g}_{k}(n), \mathbf{g}_{l}(n)\right) \leq \rho\left(\mathbf{g}_{k}, \mathbf{g}_{l}\right)<\frac{\epsilon}{2}$, whenever $n \in \mathbb{N}$. So for any $n \in \mathbb{N},\left(\mathbf{g}_{k}(n)\right)_{k \in \mathbf{N}}$ constitutes a Cauchy sequence in $((0, \infty), d)$ and consequently it has a limit, say $\mathbf{g}(n)=\lim _{k \rightarrow \infty} \mathbf{g}_{k}(n)$.

Moreover, since $\lim _{n \rightarrow \infty} \mathbf{g}_{K}(n)=1$, there exists $N \in \mathbb{N}$ such that for any integer $n \geq N$, we have $\left|\mathbf{g}_{K}(n)-1\right|<\frac{\epsilon}{2}$ and hence $|\mathbf{g}(n)-1|=\lim _{l \rightarrow \infty}\left|\mathbf{g}_{l}(n)-1\right| \leq$ $\sup _{l \geq K}\left(\left|\mathbf{g}_{l}(n)-\mathbf{g}_{K}(n)\right|+\left|\mathbf{g}_{K}(n)-1\right|\right) \leq \sup _{l \geq K}\left|\mathbf{g}_{l}(n)-\mathbf{g}_{K}(n)\right|+\left|\mathbf{g}_{K}(n)-1\right|<\epsilon$, which implies that $\mathbf{g} \in \mathbf{G}$, while for any integer $k \geq K$ and for any $n \in$ \mathbb{N}, we have $d\left(\mathbf{g}_{k}(n), \mathbf{g}(n)\right)=\lim _{l \rightarrow \infty} d\left(\mathbf{g}_{k}(n), \mathbf{g}_{l}(n)\right) \leq \frac{\epsilon}{2}$, hence $\rho\left(\mathbf{g}_{k}, \mathbf{g}\right)=$ $\sup _{n \in \mathbb{N}} d\left(\mathbf{g}_{k}(n), \mathbf{g}(n)\right) \leq \frac{\epsilon}{2}<\epsilon$ and consequently $\mathbf{g}_{k} \rightarrow \mathbf{g}$ in (\mathbf{G}, ρ) as $k \rightarrow \infty$, which implies that ρ constitutes a complete metric on \mathbf{G}. If \mathbf{f}, \mathbf{g} and \mathbf{h} are any elements of \mathbf{G}, then it is not difficult to prove that $\rho\left(\mathbf{f}^{-1}, \mathbf{g}^{-1}\right)=\rho(\mathbf{f}, \mathbf{g})$ and $\rho(\mathbf{f h}, \mathbf{g h}) \leq \max \left\{\sup _{n \in \mathbb{N}} \mathbf{h}(n), \sup _{n \in \mathbf{N}} \frac{1}{\mathbf{h}(n)}\right\} \rho(\mathbf{f}, \mathbf{g})$, which imply that inversion is continuous and multiplication is separately continuous and consequently \mathbf{G} constitutes a topological group. (See, for example, 9.15 on page 62 of [2].)

What is left to show is that (\mathbf{G}, ρ) is separable. But it is not difficult to verify that $\mathcal{C}=\left\{\mathbf{g} \in(\mathbb{Q} \cap(0, \infty))^{\mathbb{N}}: \exists m \forall n \geq m(\mathbf{g}(n)=1)\right\}$ constitutes a countable dense subset of (\mathbf{G}, ρ). Indeed, it is not difficult to see that \mathcal{C} is equinumerous to the countable set $(\mathbb{Q} \cap(0, \infty))^{<\mathbb{N}}=\bigcup_{n \in \mathbb{N}}(\mathbf{Q} \cap(0, \infty))^{n}$, while if $\mathbf{g} \in \mathbf{G}$ and $\epsilon>0$, then since $\lim _{n \rightarrow \infty} \mathbf{g}(n)=1$, and hence $\lim _{n \rightarrow \infty} \frac{1}{\mathbf{g}(n)}=1$, there exists $N \in \mathbb{N}$ such that for any integer $n>N$, we have $|\mathbf{g}(n)-1|<\frac{\epsilon}{2}$ and $\left|\frac{1}{\mathbf{g}(n)}-1\right|<\frac{\epsilon}{2}$, which implies that $d(\mathbf{g}(n), 1)<\epsilon$. Moreover, if $n \in\{0, \ldots, N\}$, then since $\mathbb{Q} \cap(0, \infty)$ is dense in $(0, \infty)$, there exists an $r_{n} \in \mathbb{Q} \cap(0, \infty)$ such that $d\left(\mathbf{g}(n), r_{n}\right)<\epsilon$. So if $\mathbf{c}=\left(r_{0}, \ldots, r_{N}, 1,1,1, \ldots\right)$, then $\mathbf{c} \in \mathcal{C}$ and $\rho(\mathbf{g}, \mathbf{c}) \leq \epsilon$.

The Proof of (ii)

Proof. If $\mathbf{g} \in \mathbf{G}$ and $\mathbf{x} \in \mathbf{P}$, then $\|\mathbf{g} \cdot \mathbf{x}\|_{1} \leq\left(\sup _{n \in \mathbb{N}} \mathbf{g}(n)\right)\|\mathbf{x}\|_{1}$ and consequently $\mathbf{g} \cdot \mathbf{x} \in \mathbf{P}$. So the map $\mathbf{G} \times \mathbf{P} \ni(\mathbf{g}, \mathbf{x}) \mapsto \mathbf{g} \cdot \mathbf{x} \in \mathbf{P}$ is well-defined and it is not difficult to verify that it constitutes a group action. Moreover, if \mathbf{g} and \mathbf{h} are any elements of \mathbf{G}, while \mathbf{x} and \mathbf{y} are any elements of \mathbf{P}, then $\|\mathbf{g} \cdot \mathbf{x}-\mathbf{h} \cdot \mathbf{x}\|_{1} \leq \rho(\mathbf{g}, \mathbf{h})\|\mathbf{x}\|_{1}$ and $\|\mathbf{g} \cdot \mathbf{y}-\mathbf{g} \cdot \mathbf{x}\|_{1} \leq\left(\sup _{n \in \mathbb{N}} \mathbf{g}(n)\right)\|\mathbf{y}-\mathbf{x}\|_{1}$, which imply that the group action in question constitutes a continuous action. (See, for example, 9.14 on page 62 of [2].)

The Proof of (iii)

Lemma 3.2. For any $\mathbf{x} \in \mathbf{P}, \mathbf{G} \cdot \mathbf{x}$ is dense in \mathbf{P}.

Proof. It is enough to notice that if $\mathbf{y} \in \mathbf{P}$ and $N \in \mathbb{N}$, while

$$
\mathbf{g}_{N}(n)= \begin{cases}\frac{\mathbf{y}(n)}{\mathbf{x}(n)} & \text { if } n \in\{0, \ldots, N\} \\ 1 & \text { if } n \in \mathbb{N} \backslash\{0, \ldots, N\}\end{cases}
$$

then $\mathbf{g}_{N} \in \mathbf{G}$ and $\left\|\mathbf{g}_{N} \cdot \mathbf{x}-\mathbf{y}\right\|_{1}=\sum_{n>N}|\mathbf{x}(n)-\mathbf{y}(n)| \rightarrow 0$ as $N \rightarrow \infty$.

Lemma 3.3. For any $\mathbf{x} \in \mathbf{P}, \mathbf{G} \cdot \mathbf{x}$ is meager in \mathbf{P}.
Proof. If $\mathbf{y} \in \mathbf{G} \cdot \mathbf{x}$, then it is not difficult to see that $\lim _{n \rightarrow \infty} \frac{\mathbf{y}(n)}{\mathbf{x}(n)}=1$ and consequently there exists $m \in \mathbb{N}$ such that for any integer $n \geq m$, we have $\frac{\mathbf{y}(n)}{\mathbf{x}(n)} \leq \frac{3}{2}$. So $\mathbf{G} \cdot \mathbf{x} \subseteq \mathcal{M}$, where $\mathcal{M}=\bigcup_{m \in \mathbb{N}} \bigcap_{n \geq m}\left\{\mathbf{y} \in \mathbf{P}: \frac{\mathbf{y}(n)}{\mathbf{x}(n)} \leq \frac{3}{2}\right\}$ is easily seen to be F_{σ}. So it is enough to show that $\mathbf{P} \backslash \mathcal{M}$ is dense in \mathbf{P}. Indeed, if $\mathbf{z} \in \mathbf{P}$ and $N \in \mathbb{N}$, while

$$
\mathbf{z}_{N}(n)= \begin{cases}\mathbf{z}(n) & \text { if } n \in\{0, \ldots, N\} \\ 2 \mathbf{x}(n) & \text { if } n \in \mathbb{N} \backslash\{0, \ldots, N\}\end{cases}
$$

then it is enough to notice that $\mathbf{z}_{N} \in \mathbf{P} \backslash \mathcal{M}$ and $\left\|\mathbf{z}_{N}-\mathbf{z}\right\|_{1}=\sum_{n>N} \mid 2 \mathbf{x}(n)-$ $\mathbf{z}(n) \mid \rightarrow 0$ as $N \rightarrow \infty$.

If for an arbitrary $\mathbf{x} \in \mathbf{P}$ and for an arbitrary $\epsilon>0$, we set $U(\mathbf{x}, \epsilon)=$ $\left\{\mathbf{y} \in \mathbf{P}:\|\mathbf{y}-\mathbf{x}\|_{1}<\epsilon\right\}$, then it is not difficult to see that the $U(\mathbf{x}, \epsilon)$ form a base of open neighborhoods of \mathbf{x} in \mathbf{P}.

Lemma 3.4. If $\mathbf{x} \in \mathbf{P}$ and $\epsilon>0$, while $\mathbf{g} \in \mathbf{G}$ and $\mathbf{g} \cdot \mathbf{x} \in U(\mathbf{x}, \epsilon)$, then there exists a continuous path $[0,1] \ni t \mapsto \mathbf{g}_{t} \in \mathbf{G}$ such that $\mathbf{g}_{0}=1^{\mathbf{G}}, \mathbf{g}_{1}=\mathbf{g}$ and $\mathbf{g}_{t} \cdot \mathbf{x} \in U(\mathbf{x}, \epsilon)$ for every $t \in[0,1]$.

Proof. Given any $t \in[0,1]$, we set $\mathbf{g}_{t}=(1-t) 1^{\mathbf{G}}+t \mathbf{g}$ and it is not difficult to verify that $\mathbf{g}_{t} \in \mathbf{G}$, while obviously $\mathbf{g}_{0}=1^{\mathbf{G}}$ and $\mathbf{g}_{1}=\mathbf{g}$. Moreover, if s, t are in $[0,1]$, then it is not difficult to prove that $\rho\left(\mathbf{g}_{s}, \mathbf{g}_{t}\right) \leq \mid s-$ $t \left\lvert\, \sup _{n \in \mathbb{N}}\left(|\mathbf{g}(n)-1|+\frac{|\mathbf{g}(n)-1|}{(\min \{1, \mathbf{g}(n)\})^{2}}\right)\right.$ and consequently $[0,1] \ni t \mapsto \mathbf{g}_{t} \in \mathbf{G}$ is continuous. What is left to show is that $\mathbf{g}_{t} \in U(\mathbf{x}, \epsilon)$ for every $t \in[0,1]$. But this follows from the fact that for any $t \in[0,1]$, we have $\left\|\mathbf{g}_{t} \cdot \mathbf{x}-\mathbf{x}\right\|_{1}=$ $t\|\mathbf{g} \cdot \mathbf{x}-\mathbf{x}\|_{1}$.

Now, Lemmas 3.3 - 3.4 and Lemma 5.7 on page 1472 of [3] imply that the action of \mathbf{G} on \mathbf{P} is turbulent.

The Proof of (iv)

Proof. If $\mathbf{x} \in \mathbf{P}, \mathbf{y} \in \mathbf{P}, \mathbf{g} \in \mathbf{G}$ and $\mathbf{y}=\mathbf{g} \cdot \mathbf{x}$, then $\lim _{n \rightarrow \infty} \frac{\mathbf{y}(n)}{\mathbf{x}(n)}=1$, hence there exists $m \in \mathbb{N}$ such that for any integer $n \geq m$, we have $\left|\frac{\mathbf{y}(n)}{\mathbf{x}(n)}-1\right|<\frac{1}{2}$, hence $\frac{1}{2} \mathbf{x}(n)<\mathbf{y}(n)<\frac{3}{2} \mathbf{x}(n)$ and consequently $\frac{1}{2} R_{\mathbf{x}}(n) \leq R_{\mathbf{y}}(n) \leq \frac{3}{2} R_{\mathbf{x}}(n)$, which implies that $\frac{1}{2} \leq \frac{R_{\mathbf{Y}}(n)}{R_{\mathbf{x}}(n)} \leq \frac{3}{2}$, which implies in its turn that $\mathbf{y} E_{S K} \mathbf{x}$.

References

[1] G. Hjorth, Classification and Orbit Equivalence Relations, Math. Surveys Monogr., 75, Amer. Math. Soc., Providence, RI, 2000.
[2] A. S. Kechris, Classical Descriptive Set Theory, Springer, New York, 1995.
[3] A. S. Kechris and N. E. Sofronidis, A strong generic ergodicity property of unitary and self-adjoint operators, Ergodic Theory Dynam. Systems, 21 (2001), 1459-1479.
[4] K. Knopp, Theory and Application of Infinite Series, Dover, New York, 1990.

[^0]: Key Words: same kind, turbulence
 Mathematical Reviews subject classification: 03E15, 40A99
 Received by the editors March 3, 2006
 Communicated by: Steve Jackson
 *Dedicated to the family of my brother Konstantinos Sofronidis

