D. H. Armitage, Department of Pure Mathematics, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland. email: d.armitage@qub.ac.uk

THE DETERMINATION OF A HARMONIC FUNCTION BY ITS SIGN

Abstract

We give an improvement of the result that if $hP \ge 0$ on \mathbb{R}^n , where h is a harmonic function and P a non-trivial harmonic polynomial, then h is proportional to P.

The classical Liouville theorem for harmonic functions may be stated as follows: if h is a non-negative harmonic function on \mathbb{R}^n , where $n \geq 2$, then h is constant. Many years ago, Kuran [6, Theorem 1] generalized this result by showing that if h is harmonic on \mathbb{R}^n and P is a harmonic polynomial such that $P \neq 0$ and $hP \geq 0$ on the complement of some compact set, then h is a constant multiple of P. In this note we show that the same conclusion holds under milder hypotheses.

Let S(r) denote the boundary of the open ball B(r) of radius r centered at the origin of \mathbb{R}^n .

Theorem. Let (r_j) be an unbounded sequence of positive numbers. If h is harmonic on \mathbb{R}^n and $P \neq 0$ is a harmonic polynomial such that $hP \geq 0$ on $\bigcup_{i=1}^{\infty} S(r_i)$, then h is a constant multiple of P.

We shall prove the Theorem by showing that if its hypotheses hold, then in fact $hP \ge 0$ in the complement of some compact set; the conclusion will then follow from the theorem of Kuran cited above. After giving the proof, we discuss possible relaxations of the hypotheses.

For a positive integer p, let Δ^p denote the p^{th} iterate of the Laplacian operator on \mathbb{R}^n . Recall that a real-analytic function u on \mathbb{R}^n is said to be *polyharmonic of order* p if $\Delta^p \equiv 0$. We shall need the following result of Nakai and Tada [7, Theorem 1]. (For a short, elementary proof of a somewhat stronger result, see [1].)

Key Words: harmonic function, Liouville theorem

Mathematical Reviews subject classification: 31A05

Received by the editors November 16, 2004

Communicated by: Alexander Olevskii

²⁷⁵

Lemma 1. If u is polyharmonic of order p on \mathbb{R}^n and there exists an increasing divergent sequence (r_i) of positive numbers such that

$$\liminf_{j \to \infty} r_j^{-s} \min\{u(x) : x \in S(r_j)\} \ge 0,$$

where s > 2p - 2, then u is a polynomial of degree less than s.

Now let h and P be as in the Theorem, and let m denote the degree of P. Denoting the coordinates of a point x by (x_1, \ldots, x_n) , we calculate that if v is polyharmonic of order q on \mathbb{R}^n , then

$$\Delta^{q+1}(x_k v) = \Delta^q(x_k \Delta v) = \Delta^{q-1}(x_k \Delta^2 v) = \dots = \Delta(x_k \Delta^q v) \equiv 0$$

for $k \in \{1, 2, ..., n\}$, so the function $x \mapsto x_k v(x)$ is polyhormonic of order q + 1. Hence, by induction, if M is a monomial of degree m, then Mv is polyharmonic of order m + q, and the same holds if M is a polynomial of degree m. In particular, hP is polyharmonic of order m + 1.

By working with a subsequence, if necessary, we may suppose that the sequence (r_j) is increasing. Since $hP \ge 0$ on $S(r_j)$ for each j, we can apply Lemma 1 with u = hP, p = m + 1 and s = 2m + 1. Thus we find that hP is a polynomial of degree at most 2m.

Let Ω denote the open set $\{x \in \mathbb{R}^n : h(x)P(x) < 0\}$. Since hP is a polynomial, it follows from a theorem of Whitney [8, Theorem 4] that Ω has at most finitely many connected components. Moreover, since $\Omega \cap \bigcup_{j=1}^{\infty} S(r_j) = \emptyset$, each such component is bounded. Hence Ω is bounded, which is to say that $hP \geq 0$ on the complement of some compact set. It now follows from Kuran's theorem [6, Theorem 1] that h is a constant multiple of P.

The question naturally arises whether the spheres $S(r_j)$ can be replaced by more general sets. If (ω_j) is an expanding sequence of bounded domains with $\bigcup_{j=1}^{\infty} \omega_j = \mathbb{R}^n$, does the Theorem hold with $\partial \omega_j$ in place of $S(r_j)$? Example 1 below shows that in general the answer to this question is negative, even if $\partial \omega_j$ is close to being spherical. The verification of the example requires the following result of Gauthier, Goldstein and Ow ([4] for the case n = 2 and [5] for $n \geq 3$) or see e.g. [3, Corollary 3.8].

Lemma 2. Let *E* be a closed subset of \mathbb{R}^n such that the complement of *E* in the one-point compactification of \mathbb{R}^n is connected and locally connected. If *g* is a harmonic function on some open set containing *E* and $\epsilon > 0$, then there exists a harmonic function *h* on \mathbb{R}^n such that $|h - g| < \epsilon$ on *E*.

Example 1. For positive numbers r, ϵ we define

$$\omega(r,\epsilon) = B(r) \cup \{ x \in B(r+\epsilon) : x_n < 0 \}.$$

Let P be the harmonic polynomial given by $P(x) = x_n$, and let (r_j) and (ϵ_j) be sequences of positive numbers such that $r_j \to +\infty$ and $r_j + \epsilon_j < r_{j+1}$ for each j. We claim that there exists a harmonic function h on \mathbb{R}^n such that $hP \ge 0$ on $\bigcup_{j=1}^{\infty} \partial \omega(r_j, \epsilon_j)$ but h is not a constant multiple of P.

To verify this, let E_1 , E_2 be the closed sets given by

$$E_1 = \bigcup_{j=1}^{\infty} \{ x \in S(r_j) : x_n \ge 0 \}$$
 and $E_2 = \bigcup_{j=1}^{\infty} \{ x \in S(r_j + \epsilon_j) : x_n \le 0 \}.$

Let $E = E_1 \cup E_2$ and let Ω_1 , Ω_2 be disjoint open sets containing E_1 , E_2 respectively. We define a function g by $g(x) = \begin{cases} 1 & \text{if } x \in \Omega_1 \\ -1 & \text{if } x \in \Omega_2 \end{cases}$. Then g is harmonic on an open set containing E. The topological hypotheses of Lemma 2

are clearly satisfied, and we conclude that there is a harmonic function h on \mathbb{R}^n such that |h - g| < 1 on E. Thus h > 0 on E_1 and h < 0 on E_2 . It follows that $hP \ge 0$ on $E_1 \cup E_2 \cup \{x \in \mathbb{R}^n : x_n = 0\}$, which contains $\bigcup_{j=1}^{\infty} \partial \omega(r_j, \epsilon_j)$. Since $0 < h(0, \ldots, 0, r_j) < 2$, we see that h is not a constant multiple of P.

It is unclear whether the Theorem remains true if $\bigcup_{j=1}^{\infty} S(r_j)$ is replaced by $\bigcup_{j=1}^{\infty} \partial \omega_j$ in the case where, for example, (ω_j) is an expanding sequence of (not necessarily concentric) balls or, more generally, ellipsoids, with $\bigcup_{j=1}^{\infty} \omega_j = \mathbb{R}^n$.

The question whether the Theorem holds if P is merely supposed to be harmonic, not necessarily a polynomial, is easily answered. An observation similar to that in the following example was made in [2, Example 4].

Example 2. Let $a = (a_1, \ldots, a_2)$ be a point in the unit sphere Σ in \mathbb{R}^{n-1} and let h_a be defined on \mathbb{R}^n by

$$h_a(x) = \exp(a_1 x_1 + \dots + a_{n-1} x_{n-1}) \sin x_n.$$

Then h_a is harmonic on \mathbb{R}^n . If $a, b \in \Sigma$, then $h_a h_b \ge 0$ on \mathbb{R}^n , and if $a \ne b$, then the functions h_a , h_b are not constant multiples of one another.

This example shows that the Theorem fails if P is one of the function h_a . We note in passing that in the case $n \ge 3$ there are uncountably many distinct functions h_a , whereas in the case n = 2 there are only two such functions. Much insight into the differences between the plane and higher dimensions as regards the set where a harmonic function is positive is given in [2].

The functions h_a in Example 2 are of exponential growth. The question, first raised in [2, p. 215] in relation to Kuran's theorem [6, Theorem1], as to whether P can be taken to be a harmonic function of slow growth remains open, to the best of my knowledge: is it enough, for example, to suppose that $\max_{S(r)} \log(1 + |P|) = o(r)$ as $r \to +\infty$?

References

- D. H. Armitage, A Liouville theorem for polyharmonic functions, Hiroshima Math. J., 31 (2001), 367–370.
- [2] D. A. Brannan, W. H. J. Fuchs, W. K. Hayman and U. Kuran, A characterization of harmonic poloynomials in the plane, Proc. London Math. Soc., 32(3) (1976), 203–229.
- [3] S. J. Gardiner, *Harmonic Approximations*, London Math. Soc., Lecture Note Series, 221, Cambridge Univ. Press, Cambridge, 1995.
- [4] P. M. Gauthier, M. Goldstein and W. H. Ow, Uniform approximation on unbounded sets by harmonic functions with logarithmic singularities, Trans. Amer. Math. Soc., 261 (1908), 169–183.
- [5] P. M. Gauthier, M. Goldstein and W. H. Ow, Uniform approximation on closed sets by harmonic functions with Newtonian singularities, J. London Math. Soc., 28(2) (1983), 71–82.
- [6] Ü. Kuran, Generalizations of a theorem on harmonic functions, J. London Math. Soc., 41 (1966), 145–152.
- [7] M. Nakai and T. Tada, A form of classical Liouville theorem for polyharmonic functions, Hiroshima Math. J., 30 (2000), 205–213.
- [8] H. Whitney, Elementary structure of real algebraic varieties, Ann. of Math., 66(2) (1657), 545–556.