THE DETERMINATION OF A HARMONIC FUNCTION BY ITS SIGN

Abstract
We give an improvement of the result that if $h P \geq 0$ on \mathbb{R}^{n}, where h is a harmonic function and P a non-trivial harmonic polynomial, then h is proportional to P.

The classical Liouville theorem for harmonic functions may be stated as follows: if h is a non-negative harmonic function on \mathbb{R}^{n}, where $n \geq 2$, then h is constant. Many years ago, Kuran [6, Theorem 1] generalized this result by showing that if h is harmonic on \mathbb{R}^{n} and P is a harmonic polynomial such that $P \not \equiv 0$ and $h P \geq 0$ on the complement of some compact set, then h is a constant multiple of P. In this note we show that the same conclusion holds under milder hypotheses.

Let $S(r)$ denote the boundary of the open ball $B(r)$ of radius r centered at the origin of \mathbb{R}^{n}.

Theorem. Let $\left(r_{j}\right)$ be an unbounded sequence of positive numbers. If h is harmonic on \mathbb{R}^{n} and $P \not \equiv 0$ is a harmonic polynomial such that $h P \geq 0$ on $\cup_{j=1}^{\infty} S\left(r_{j}\right)$, then h is a constant multiple of P.

We shall prove the Theorem by showing that if its hypotheses hold, then in fact $h P \geq 0$ in the complement of some compact set; the conclusion will then follow from the theorem of Kuran cited above. After giving the proof, we discuss possible relaxations of the hypotheses.

For a positive integer p, let Δ^{p} denote the $p^{\text {th }}$ iterate of the Laplacian operator on \mathbb{R}^{n}. Recall that a real-analytic function u on \mathbb{R}^{n} is said to be polyharmonic of order p if $\Delta^{p} \equiv 0$. We shall need the following result of Nakai and Tada [7, Theorem 1]. (For a short, elementary proof of a somewhat stronger result, see [1].)

[^0]Lemma 1. If u is polyharmonic of order p on \mathbb{R}^{n} and there exists an increasing divergent sequence $\left(r_{j}\right)$ of positive numbers such that

$$
\liminf _{j \rightarrow \infty} r_{j}^{-s} \min \left\{u(x): x \in S\left(r_{j}\right)\right\} \geq 0
$$

where $s>2 p-2$, then u is a polynomial of degree less than s.
Now let h and P be as in the Theorem, and let m denote the degree of P. Denoting the coordinates of a point x by $\left(x_{1}, \ldots, x_{n}\right)$, we calculate that if v is polyharmonic of order q on \mathbb{R}^{n}, then

$$
\Delta^{q+1}\left(x_{k} v\right)=\Delta^{q}\left(x_{k} \Delta v\right)=\Delta^{q-1}\left(x_{k} \Delta^{2} v\right)=\cdots=\Delta\left(x_{k} \Delta^{q} v\right) \equiv 0
$$

for $k \in\{1,2, \ldots, n\}$, so the function $x \mapsto x_{k} v(x)$ is polyhormonic of order $q+1$. Hence, by induction, if M is a monomial of degree m, then $M v$ is polyharmonic of order $m+q$, and the same holds if M is a polynomial of degree m. In particular, $h P$ is polyharmonic of order $m+1$.

By working with a subsequence, if necessary, we may suppose that the sequence $\left(r_{j}\right)$ is increasing. Since $h P \geq 0$ on $S\left(r_{j}\right)$ for each j, we can apply Lemma 1 with $u=h P, p=m+1$ and $s=2 m+1$. Thus we find that $h P$ is a polynomial of degree at most $2 m$.

Let Ω denote the open set $\left\{x \in \mathbb{R}^{n}: h(x) P(x)<0\right\}$. Since $h P$ is a polynomial, it follows from a theorem of Whitney [8, Theorem 4] that Ω has at most finitely many connected components. Moreover, since $\Omega \cap \cup_{j=1}^{\infty} S\left(r_{j}\right)=\emptyset$, each such component is bounded. Hence Ω is bounded, which is to say that $h P \geq 0$ on the complement of some compact set. It now follows from Kuran's theorem [6, Theorem 1] that h is a constant multiple of P.

The question naturally arises whether the spheres $S\left(r_{j}\right)$ can be replaced by more general sets. If $\left(\omega_{j}\right)$ is an expanding sequence of bounded domains with $\cup_{j=1}^{\infty} \omega_{j}=\mathbb{R}^{n}$, does the Theorem hold with $\partial \omega_{j}$ in place of $S\left(r_{j}\right)$? Example 1 below shows that in general the answer to this question is negative, even if $\partial \omega_{j}$ is close to being spherical. The verification of the example requires the following result of Gauthier, Goldstein and Ow ([4] for the case $n=2$ and [5] for $n \geq 3$) or see e.g. [3, Corollary 3.8].
Lemma 2. Let E be a closed subset of \mathbb{R}^{n} such that the complement of E in the one-point compactifiction of \mathbb{R}^{n} is connected and locally connected. If g is a harmonic function on some open set containing E and $\epsilon>0$, then there exists a harmonic function h on \mathbb{R}^{n} such that $|h-g|<\epsilon$ on E.

Example 1. For positive numbers r, ϵ we define

$$
\omega(r, \epsilon)=B(r) \cup\left\{x \in B(r+\epsilon): x_{n}<0\right\}
$$

Let P be the harmonic polynomial given by $P(x)=x_{n}$, and let $\left(r_{j}\right)$ and $\left(\epsilon_{j}\right)$ be sequences of positive numbers such that $r_{j} \rightarrow+\infty$ and $r_{j}+\epsilon_{j}<r_{j+1}$ for each j. We claim that there exists a harmonic function h on \mathbb{R}^{n} such that $h P \geq 0$ on $\cup_{j=1}^{\infty} \partial \omega\left(r_{j}, \epsilon_{j}\right)$ but h is not a constant multiple of P.

To verify this, let E_{1}, E_{2} be the closed sets given by

$$
E_{1}=\cup_{j=1}^{\infty}\left\{x \in S\left(r_{j}\right): x_{n} \geq 0\right\} \text { and } E_{2}=\cup_{j=1}^{\infty}\left\{x \in S\left(r_{j}+\epsilon_{j}\right): x_{n} \leq 0\right\} .
$$

Let $E=E_{1} \cup E_{2}$ and let Ω_{1}, Ω_{2} be disjoint open sets containing E_{1}, E_{2} respectively. We define a function g by $g(x)=\left\{\begin{array}{ll}1 & \text { if } x \in \Omega_{1} \\ -1 & \text { if } x \in \Omega_{2}\end{array}\right.$. Then g is harmonic on an open set containing E. The topological hypotheses of Lemma 2 are clearly satisfied, and we conclude that there is a harmonic function h on \mathbb{R}^{n} such that $|h-g|<1$ on E. Thus $h>0$ on E_{1} and $h<0$ on E_{2}. It follows that $h P \geq 0$ on $E_{1} \cup E_{2} \cup\left\{x \in \mathbb{R}^{n}: x_{n}=0\right\}$, which contains $\cup_{j=1}^{\infty} \partial \omega\left(r_{j}, \epsilon_{j}\right)$. Since $0<h\left(0, \ldots, 0, r_{j}\right)<2$, we see that h is not a constant multiple of P.

It is unclear whether the Theorem remains true if $\cup_{j=1}^{\infty} S\left(r_{j}\right)$ is replaced by $\cup_{j=1}^{\infty} \partial \omega_{j}$ in the case where, for example, $\left(\omega_{j}\right)$ is an expanding sequence of (not necessarily concentric) balls or, more generally, ellipsoids, with $\cup_{j=1}^{\infty} \omega_{j}=\mathbb{R}^{n}$.

The question whether the Theorem holds if P is merely supposed to be harmonic, not necessarily a polynomial, is easily answered. An observation similar to that in the following example was made in [2, Example 4].

Example 2. Let $a=\left(a_{1}, \ldots, a_{2}\right)$ be a point in the unit sphere Σ in \mathbb{R}^{n-1} and let h_{a} be defined on \mathbb{R}^{n} by

$$
h_{a}(x)=\exp \left(a_{1} x_{1}+\cdots+a_{n-1} x_{n-1}\right) \sin x_{n} .
$$

Then h_{a} is harmonic on \mathbb{R}^{n}. If $a, b \in \Sigma$, then $h_{a} h_{b} \geq 0$ on \mathbb{R}^{n}, and if $a \neq b$, then the functions h_{a}, h_{b} are not constant multiples of one another.

This example shows that the Theorem fails if P is one of the function h_{a}. We note in passing that in the case $n \geq 3$ there are uncountably many distinct functions h_{a}, whereas in the case $n=2$ there are only two such functions. Much insight into the differences between the plane and higher dimensions as regards the set where a harmonic function is positive is given in [2].

The functions h_{a} in Example 2 are of exponential growth. The question, first raised in [2, p. 215] in relation to Kuran's theorem [6, Theorem1], as to whether P can be taken to be a harmonic function of slow growth remains open, to the best of my knowledge: is it enough, for example, to suppose that $\max _{S(r)} \log (1+|P|)=o(r)$ as $r \rightarrow+\infty$?

References

[1] D. H. Armitage, A Liouville theorem for polyharmonic functions, Hiroshima Math. J., 31 (2001), 367-370.
[2] D. A. Brannan, W. H. J. Fuchs, W. K. Hayman and Ü. Kuran, A characterization of harmonic poloynomials in the plane, Proc. London Math. Soc., 32(3) (1976), 203-229.
[3] S. J. Gardiner, Harmonic Approximations, London Math. Soc., Lecture Note Series, 221, Cambridge Univ. Press, Cambridge, 1995.
[4] P. M. Gauthier, M. Goldstein and W. H. Ow, Uniform approximation on unbounded sets by harmonic functions with logarithmic singularities, Trans. Amer. Math. Soc., 261 (1908), 169-183.
[5] P. M. Gauthier, M. Goldstein and W. H. Ow, Uniform approximation on closed sets by harmonic functions with Newtonian singularities, J. London Math. Soc., 28(2) (1983), 71-82.
[6] Ü. Kuran, Generalizations of a theorem on harmonic functions, J. London Math. Soc., 41 (1966), 145-152.
[7] M. Nakai and T. Tada, A form of classical Liouville theorem for polyharmonic functions, Hiroshima Math. J., 30 (2000), 205-213.
[8] H. Whitney, Elementary structure of real algebraic varieties, Ann. of Math., 66(2) (1657), 545-556.

[^0]: Key Words: harmonic function, Liouville theorem
 Mathematical Reviews subject classification: 31A05
 Received by the editors November 16, 2004
 Communicated by: Alexander Olevskii

