F. S. Cater, Department of Mathematics, Portland State University, Portland, Oregon 97207, USA

ON THE DERIVATIVES OF FUNCTIONS OF BOUNDED VARIATION

Abstract

Using a standard complete metric w on the set F of continuous functions of bounded variation on the interval $[0,1]$, we find that a typical function in F has an infinite derivative at continuum many points in every subinterval of $[0,1]$. Moreover, for a typical function in F, there are continuum many points in every subinterval of $[0,1]$ where it has no derivative, finite nor infinite. The restriction of the derivative of a typical function in F to the set of points of differentiability has infinite oscillation at each point of this set.

Let $C[0,1]$ denote the family of continuous real valued functions on the interval $[0,1]$ and let F denote the set of functions of bounded variation in $C[0,1]$.

It is known (see for example $[\mathrm{B}]$ or $[\mathrm{C}]$) that with respect to the uniform metric on $C[0,1]$, a typical function in $C[0,1]$ has a unilateral infinite derivative at continuum many points in each subinterval of $[0,1]$, even though it has no finite unilateral derivative at any point. We wondered if some sort of analogue can be constructed for F. Problems of finding such an analogue are two-fold: the uniform metric is not complete on F, and functions in F are differentiable almost everywhere. So we define

$$
w(f, g)=|f(0)-g(0)|+\text { total variation of } f-g \text { on }[0,1]
$$

The proof that w is a complete metric on F is well-known (see [R, p. 147], for example).

With respect to the metric w, we will show that a typical function in F has infinite derivatives at continuum many points in each subinterval of $[0,1]$. For any residual set S, we will find that a typical $f \in F$ satisfies $f^{\prime}(x) \in S$ almost

[^0]everywhere. For any subset E of $(0,1)$, with exterior measure 1 , we will show that the restriction to E of the Dini derivatives of any typical function in F are discontinuous at each point of E. All derivatives here are two-sided.

Theorem I. For a typical $f \in F$, the set

$$
\left\{x \in I:\left|f^{\prime}(x)\right|=\infty\right\}
$$

has the power of the continuum for each subinterval I of $[0,1]$.
Proof. Let $[c, d]$ be a subinterval of $[0,1]$. Let $k \in F$ and let ϵ be a positive number. Choose a subinterval $[a, b]$ of $[c, d]$ such that

$$
V(k,[a, b])<\frac{\epsilon}{8} .
$$

(Here V denotes total variation.) Let f be a singular nondecreasing function in F, that vanishes on $[0, a]$, is constant on $[b, 1]$ and such that

$$
f(b)-f(a)=\frac{\epsilon}{2} .
$$

(Lebesgue's singular function can be used to construct f; see [HS, (8.28)].) Then $w(k+f, k)=\epsilon / 2$.

Now any function in the open ball with center $k+f$ and radius $\epsilon / 8$ can be expressed $k+f+g$ where $g \in F$ and $w(g, 0)<\epsilon / 8$. Then

$$
V(k+g,[a, b]) \leq V(k,[a, b])+V(g,[a, b])<\frac{\epsilon}{8}+w(g, 0)<\frac{\epsilon}{8}+\frac{\epsilon}{8}=\frac{\epsilon}{4},
$$

and

$$
V(k+g,[a, b])<\frac{\epsilon}{2}=f(b)-f(a) .
$$

It follows from this and the fact that f is singular on $[a, b]$, that $k+f+g$ is not absolutely continuous on $[a, b]$ nor on $[c, d]$. Thus the set of functions in F that are not absolutely continuous on $[c, d]$ form a residual subset of F.

Finally, let $[c, d]$ run over all the subintervals of $[0,1]$ with rational endpoints and find that the set of functions in F that are absolutely continuous on no subinterval of $[0,1]$ form a residual subset of F. But such functions must have infinite derivatives at continuum many points in each subinterval of $[0,1]$.

Theorem II. For every residual set of real numbers $S, f^{\prime}(x) \in S$ almost everywhere for typical $f \in F$ (in particular, for such sets S of measure 0).

Proof. Let p be a positive number and let X be a closed nowhere dense subset of \mathbb{R}. It suffices to prove that the set of all $g \in F$ for which

$$
m\left\{x \in(0,1): g^{\prime}(x) \in X\right\} \geq p
$$

is a nowhere dense subset of F.
So let T denote the set of all $g \in F$ for which $m\left\{x \in(0,1): g^{\prime}(x) \in\right.$ $X\} \geq p$. Let $k \in F \backslash T$. Then

$$
m\left\{x \in(0,1): k^{\prime}(x) \in X\right\}<p
$$

There are positive numbers r and q such that

$$
m\left\{x \in(0,1): \text { the distance from } k^{\prime}(x) \text { to } X \text { is less than } q\right\}=r<p
$$

Choose any $h \in T$. Then

$$
m\left\{x \in(0,1):\left|k^{\prime}(x)-h^{\prime}(x)\right| \geq q\right\} \geq p-r
$$

We apply the Vitali Covering Theorem to this set to find mutually disjoint intervals $\left[x_{i}, u_{i}\right]$ such that

$$
\sum_{i}\left(u_{i}-x_{i}\right) \geq p-r
$$

and for each index i,

$$
\left|(k-h)\left(u_{i}\right)-(k-h)\left(x_{i}\right)\right| \geq \frac{q\left(u_{i}-x_{i}\right)}{2}
$$

Consequently,

$$
\sum_{i}\left|(k-h)\left(u_{i}\right)-(k-h)\left(x_{i}\right)\right| \geq \frac{q(p-r)}{2}
$$

It follows that

$$
w(h, k) \geq \frac{q(p-r)}{2}
$$

and T is a closed subset of F. It remains to prove that $F \backslash T$ is dense in F.
Let ϵ be a positive number. Let $\left(y_{j}\right)_{j=-\infty}^{\infty} \subset \mathbb{R} \backslash X$ be a sequence such that

$$
\lim _{j \rightarrow-\infty} y_{j}=-\infty, \quad \lim _{j \rightarrow \infty} y_{j}=\infty \quad \text { and } \quad 0 \leq y_{j}-y_{j-1}<\epsilon \text { for each } j
$$

Let $h_{0} \in F$. For $x \in[0,1]$, define

$$
f_{1}(x)=r_{j}-h_{0}^{\prime}(x) \text { where } j \text { is such that } r_{j}>h_{0}^{\prime}(x) \geq r_{j-1}
$$

Then $0 \leq f_{1}(x)<\epsilon$. Let f_{2} be the indefinite integral of f_{1} :

$$
f_{2}(x)=\int_{0}^{x} f_{1}(t) d t
$$

Then $0 \leq f_{2}^{\prime}(x) \leq \epsilon$ almost everywhere and

$$
w\left(f_{2}, 0\right)=V\left(f_{2},[0,1]\right)=\int_{0}^{1} f_{2}^{\prime}(t) d t \leq \epsilon
$$

Also $f_{2}^{\prime}(x)+h_{0}^{\prime}(x)$ is in the set $\left\{r_{j}\right\} \subset \mathbb{R} \backslash X$ almost everywhere, so $f_{2}+h_{0} \notin T$. Finally

$$
w\left(f_{2}+h_{0}, h_{0}\right)=w\left(f_{2}, 0\right) \leq \epsilon
$$

Thus $F \backslash T$ is a dense open subset of F.
Theorem III. Let E be any subset of $[0,1]$ with exterior measure 1. Then the restriction to E of the Dini derivates of a typical function in F are discontinuous on E. Moreover, their oscillations at each point of E are infinite.

Proof. Let I be an open subinterval of $[0,1]$ and J be an open subinterval of \mathbb{R}. Then it suffices to prove that the set of functions $g \in F$ for which

$$
m\left\{x \in I: g^{\prime}(x) \in J\right\}>0
$$

is an open dense subset of F. Let T denote the set of all $g \in F$ for which $m\left\{x \in I: g^{\prime}(x) \in J\right\}=0$. Take $h \notin T$. Then $m\left\{x \in I: h^{\prime}(x) \in J\right\}>0$. Let s and r be positive numbers such that

$$
m\left\{x \in I: \text { the distance from } h^{\prime}(x) \text { to } \mathbb{R} \backslash J \text { is at least } s\right\}=r>0
$$

Let $g \in T$. So

$$
m\left\{x \in I:\left|h^{\prime}(x)-g^{\prime}(x)\right| \geq s\right\} \geq r
$$

We use the Vitali Covering Theorem on this set to find pairwise disjoint intervals $\left[a_{i}, b_{i}\right]$ such that

$$
\left|(h-g)\left(b_{i}\right)-(h-g)\left(a_{i}\right)\right| \geq \frac{s\left(b_{i}-a_{i}\right)}{2} \text { for each } i
$$

and $\sum_{i}\left(b_{i}-a_{i}\right) \geq r$. Hence

$$
w(h, g) \geq V(h-g,[0,1]) \geq s \sum_{i} \frac{b_{i}-a_{i}}{2} \geq \frac{r s}{2}
$$

and T is a closed subset of F.
Now let $g_{0} \in T$, and let p be a positive number. Let $[a, b]$ be a subinterval of I for which $V\left(g_{0},[a, b]\right)<p / 4$. It is easy to construct a function $g_{1} \in F$ that coincides wit g_{0} on $[0, a]$ and on $[b, 1]$, for which

$$
V\left(g_{1},[a, b]\right)<\frac{p}{2} \quad \text { and } \quad m\left\{x \in[a, b]: g_{1}^{\prime}(x) \in J\right\}>0
$$

Hence $g_{1} \notin T$ and

$$
w\left(g_{0}, g_{1}\right)=V\left(g_{1}-g_{0},[a, b]\right) \leq V\left(g_{1},[a, b]\right)+V\left(g_{0},[a, b]\right)<\frac{p}{2}+\frac{p}{4}<p
$$

So T is a nowhere dense closed set.
Note that the set F_{1} of nondecreasing functions in F is a closed subset of F. So F_{1} is a complete metric space under w in its own right. The Theorems I, II and III are also true with F_{1} in place of F by essentially the same arguments.

Let $g \in F_{1}$ and assume that $D^{+} g<\infty$ on a second category subset of $[0,1]$. It follows that there is a second category set E such that the set

$$
\left\{\frac{g(x+p)-g(x)}{p}: p>0, x \in E\right\}
$$

is bounded. Let I be a subinterval of $[0,1]$ in which E is dense. By continuity, the difference quotient of g is bounded on I. On the other hand, it is easy to prove that the set of all functions in F_{1} with bounded difference quotient on I is a first category subset of F_{1}. It follows that the set of all $g \in F_{1}$ such that $D^{+} g(x)=\infty$ on a residual subset of $[0,1]$ is a residual subset of F_{1}. Likewise it is easy to prove that the set of all functions in F_{1} with difference quotient bounded away from 0 on I is a first category subset of F_{1}. By an analogous argument it follows that the set of all $g \in F_{1}$ such that $D_{+} g(x)=0$ on a residual subset of $[0,1]$ is a residual subset of F_{1}. The corresponding statements can be proved for $D^{-} g$ and $D_{-} g$. We conclude with:

Proposition 1. For a typical $f \in F_{1}$, the set

$$
\left\{x \in(0,1): D^{+} f(x)=D^{-} f(x)=\infty \quad \text { and } \quad D_{+} f(x)=D_{-} f(x)=0\right\}
$$

is a residual subset of $[0,1]$. Thus typical $f \in F_{1}$ have unilateral derivatives, finite or infinite, on at most a first category subset of $[0,1]$.

For $f \in F_{1}$ we define the four sets:

- $A_{f}=\left\{x \in(0,1): D_{-} f(x)=D_{+} f(x)=0\right\}$,
- $B_{f}=\left\{x \in(0,1): D^{-} f(x)=D^{+} f(x)=\infty\right\}$,
- $C_{f}=\left\{x \in(0,1): D_{-} f(x)=0\right.$ and $\left.D^{+} f(x)=\infty\right\}$,
- $D_{f}=\left\{x \in(0,1): D^{-} f(x)=\infty\right.$ and $\left.D_{+} f(x)=0\right\}$.
(The idea is that in each set there is one restriction on the left and one on the right.) For typical $f \in F_{1}$, we know that $A_{f} \cup B_{f} \cup C_{f} \cup D_{f}$ is a residual subset of $[0,1]$.
Is there a strictly increasing singular function f for which $A_{f} \cup B_{f} \cup C_{f} \cup D_{f}=$ $(0,1)$? The answer is yes; we showed how one can be constructed in [C1].
Is there a strictly increasing singular function in F_{1} for which $(0,1)$ equals the union of any three of these sets? The answer, we shall see, is $n o$.

Proposition 2. Let f be a strictly increasing singular function in F_{1}. Then each of the sets

$$
A_{f} \cup B_{f} \cup C_{f}, \quad A_{f} \cup B_{f} \cup D_{f}, \quad A_{f} \cup C_{f} \cup D_{f}, \quad B_{f} \cup C_{f} \cup D_{f}
$$

has a dense complement in $[0,1]$.
Proof. Let I be a subinterval of $[0,1]$. Because f is a singular function, we deduce that there exist points $a, b \in I$ such that

$$
a<b, \quad f^{\prime}(a)=\infty \quad \text { and } \quad f^{\prime}(b)=0
$$

Let G denote the graph in \mathbb{R}^{2}

$$
\{(x, f(x)): a \leq x \leq b\}
$$

Then G is a compact subset of \mathbb{R}^{2}. Let r be the maximum value for which the line (in $\left.\mathbb{R}^{2}\right) y=x+r$ meets G. Say they meet at the point $(u, f(u))$. By comparing the slope of the line with the slope of the graph, we conclude that $u \neq a$ and $u \neq b$. So $a<u<b$ and $u \in I$. By the same reasoning we find that $D^{+} f(u) \leq 1$ and $D_{-} f(u) \geq 1$. It follows that $u \notin A_{f} \cup B_{f} \cup C_{f}$. By the analogous argument (with $b<a$ and r minimal) we find a point in I that is not in $A_{f} \cup B_{f} \cup D_{f}$. Of course any point where $f^{\prime}=\infty$ is not in $A_{f} \cup C_{f} \cup D_{f}$ and any point where $f^{\prime}=0$ is not in $B_{f} \cup C_{f} \cup D_{f}$. The conclusion follows.

Let us recapitulate. For typical $f \in F_{1}$ and any subinterval I of $[0,1]$ we have:

1) f has derivative ∞ at continuum many points in I,
2) f has a finite derivative at continuum many points in I,
3) there are continuum many points in I at which f has no derivative, finite or infinite,
4) the restriction of f^{\prime} to the set of all points of differentiability of f, has infinite oscillation at each point.

We conclude by giving an indirect but elementary proof of the well-known result that the set

$$
\left\{x \in(a, b):\left|f^{\prime}(x)\right|=\infty\right\}
$$

has measure zero. The arguments will not require the Vitali Covering Theorem nor the differential properties of monotonic functions. We require only the following well-known facts, that we state without proof.
Lemma A. If $S_{1}, S_{2}, S_{3}, \ldots$ are finitely many subsets of $[a, b]$, then

$$
\sum_{i} m\left(S_{i}\right) \geq m\left(\cup_{i} S_{i}\right)
$$

where m denotes Lebesgue outer measure.
Lemma B. If $S_{1}, S_{2}, S_{3}, \ldots$ is a sequence of subsets of $[a, b]$, then there is an index k such that

$$
m\left(\cup_{i=1}^{k} S_{i}\right) \geq \frac{1}{2} \cdot m\left(\cup_{i=1}^{\infty} S_{i}\right) .
$$

Proof of the result. It suffices to prove the result for bounded functions. Then it will hold for arbitrary functions by truncating such a function at N and $-N$. So let g be a bounded function on $[a, b]$ and let $E \subset[a, b]$ be a set such that $g^{\prime}(x)=\infty$ at each $x \in E$. The plan is to assume that $m(E)>0$ and eventually find a contradiction. Fix an integer N so large that on $[a, b]$

$$
\begin{equation*}
N>2 \cdot|g| \tag{1}
\end{equation*}
$$

So

$$
E=\bigcup_{j=1}^{\infty}\left\{x \in E: \frac{f(x)-f(u)}{x-u}>\frac{8 N}{m(E)} \text { for } 0<|x-u|<\frac{1}{j}\right\} .
$$

By Lemma B, there is an index k for which $m\left(E_{1}\right)>m\left(E_{2}\right) / 2$ where

$$
E_{1}=\left\{x \in E: \frac{g(x)-g(u)}{x-u}>\frac{8 N}{m(E)} \text { for } 0<|x-u|<\frac{1}{k}\right\} .
$$

Choose points $u_{0}, u_{1}, u_{2}, \ldots, u_{p}$ such that

$$
a=u_{0}<u_{1}<u_{2}<\ldots<u_{p}=b \text { and } u_{i}=u_{i-1}<\frac{1}{k} \text { for } i=1,2, \ldots, p
$$

For each index i for which the interval $\left[u_{i-1}, u_{i}\right]$ meets E_{1}, choose a point $x_{i} \in$ $\left[u_{i-1}, u_{i}\right] \cap E_{1}$ such that $2\left(u_{i}-x_{i}\right)$ exceeds the diameter of the set $\left[u_{i-1}, u_{i}\right] \cap E_{1}$. Then

$$
u_{i}-x_{i}>\frac{1}{2} \cdot m\left(\left[u_{i-1}, u_{i}\right] \cap E_{1}\right)
$$

We sum over the indices i for which $\left[u_{i-1}, u_{i}\right] \cap E_{1}$ is nonvoid and obtain (by Lemma A)

$$
\sum_{i}\left(u_{i}-x_{i}\right)>\sum_{i} \frac{1}{2} \cdot m\left(\left[u_{i-1}, u_{i}\right] \cap E_{1}\right)>\frac{1}{2} \cdot m\left(E_{1}\right)
$$

But $m\left(E_{1}\right)>\frac{1}{2} \cdot m(E)$, so

$$
\begin{equation*}
\sum_{i}\left(u_{i}-x_{i}\right)>\frac{1}{4} \cdot m(E) \tag{2}
\end{equation*}
$$

By the definition of E_{1},

$$
\sum_{i}\left(g\left(u_{i}\right)-g\left(x_{i}\right)\right)>\sum_{i} \frac{8 N}{m(E)} \cdot\left(u_{i}-c_{i}\right)=\frac{8 N}{m(E)} \cdot \sum_{i}\left(u_{i}-x_{i}\right)
$$

and by (2),

$$
\begin{equation*}
\sum_{i}\left(g\left(u_{i}\right)-g\left(x_{i}\right)\right)>\frac{8 N}{m(E)} \cdot \frac{m(E)}{4}=2 N \tag{3}
\end{equation*}
$$

Note also that no two of the intervals $\left[x_{i}, u_{i}\right]$ overlap.
From Lemma A we deduce that one of the sets $\left[u_{i-1}, u_{i}\right] \cap E_{1}$ does not have measure zero; call this set E_{2}. Thus there is a subinterval $[c, d]$ of $[a, b]$, containing this subset E_{2} of E_{1}, such that

$$
d-c<\frac{1}{k}, \quad m\left(E_{2}\right)>0, \quad \text { and } \quad g^{\prime}(x)=\infty \quad \text { for each } x \in E_{2}
$$

We repeat the preceding arguments with $[c, d]$ in place of $[a, b]$ and E_{2} in place of E, to find mutually nonoverlapping subintervals

$$
\left[y_{1}, v_{1}\right],\left[y_{2}, v_{2}\right],\left[y_{3}, v_{3}\right], \ldots,\left[y_{t}, v_{t}\right]
$$

of $[c, d]$, such that $y_{j} \in E_{2}$ for all j and

$$
\begin{equation*}
\sum_{j=1}^{t}\left(g\left(v_{j}\right)-g\left(y_{j}\right)\right)=2 N . \tag{4}
\end{equation*}
$$

We index these intervals so that $y_{1} \leq y_{2} \leq y_{3} \leq \ldots \leq y_{t}$. Because the intervals do not overlap, we have in fact

$$
\begin{equation*}
y_{1}<v_{1} \leq y_{2}<v_{2} \leq y_{3}<v_{3} \leq \ldots \leq y_{t}<v_{t} . \tag{5}
\end{equation*}
$$

But each $y_{j} \in E_{1}$ also, and we deduce from the definition of E_{1} that $v_{j}-y_{j}$ and $g\left(v_{j}\right)-g\left(y_{j}\right)$ are both positive, and $y_{j}-v_{j-1}$ and $g\left(y_{j}\right)-g\left(v_{j-1}\right)$ are both nonnegative. It follows from (5) that

$$
\begin{equation*}
g\left(y_{1}\right)<g\left(v_{1}\right) \leq g\left(y_{2}\right)<g\left(v_{2}\right) \leq g\left(y_{3}\right)<g\left(v_{3}\right) \leq \ldots \leq g\left(y_{t}\right)<g\left(v_{t}\right) . \tag{6}
\end{equation*}
$$

From (4) and (6) we obtain

$$
\begin{equation*}
g\left(v_{t}\right)-g\left(y_{1}\right) \geq \sum_{j=1}^{t}\left(g\left(v_{j}\right)-g\left(y_{j}\right)\right)>2 N . \tag{7}
\end{equation*}
$$

By (1) we have $g\left(v_{t}\right)-g\left(y_{1}\right)<N$. Combining this with (7), we have

$$
\begin{equation*}
N>2 N . \tag{8}
\end{equation*}
$$

Finally, $0>N$ contrary to (1). This contradiction completes the proof.

References

[B] A. Bruckner, Some new simple proofs of old difficult theorems, Real Anal. Exchange, 9 (1984), 74-75.
[C] F. S. Cater, An elementary proof of a theorem on unilateral derivatives, Can. Math. Bull., 29 (3), (1986), 341-343.
[C1] F. S. Cater, On the Dini derivatives of a particular function, Real Anal. Exchange, 25 (1), (1999/2000), 943-946.
[HS] E. Hewitt and K. Stromberg, Real and Abstract Analysis, SpringerVerlag, New York, 1965.
[R] W. O. Ray, Real Analysis, Prentice Hall, Englewood Cliffs, 1988.
[S] S. Saks, Theory of the integral, 2nd rev. ed., Dover, New York, 1964.

[^0]: Key Words: bounded variation, absolutely continuous, singular, derivative, complete metric, category.

 Mathematical Reviews subject classification: 26A21, 26A24, 26A27, 26A30, 26A45, 26A46, 26A48.

 Received by the editors December 28, 2000

