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ON THE DERIVATIVES OF FUNCTIONS
OF BOUNDED VARIATION

Abstract

Using a standard complete metric w on the set F of continuous func-
tions of bounded variation on the interval [0, 1], we find that a typical
function in F has an infinite derivative at continuum many points in
every subinterval of [0, 1]. Moreover, for a typical function in F , there
are continuum many points in every subinterval of [0, 1] where it has
no derivative, finite nor infinite. The restriction of the derivative of a
typical function in F to the set of points of differentiability has infinite
oscillation at each point of this set.

Let C[0, 1] denote the family of continuous real valued functions on the
interval [0, 1] and let F denote the set of functions of bounded variation in
C[0, 1].

It is known (see for example [B] or [C]) that with respect to the uniform
metric on C[0, 1], a typical function in C[0, 1] has a unilateral infinite derivative
at continuum many points in each subinterval of [0, 1], even though it has no
finite unilateral derivative at any point. We wondered if some sort of analogue
can be constructed for F . Problems of finding such an analogue are two-fold:
the uniform metric is not complete on F , and functions in F are differentiable
almost everywhere. So we define

w(f, g) =
∣∣f(0)− g(0)

∣∣+ total variation of f − g on [0, 1] .

The proof that w is a complete metric on F is well-known (see [R, p. 147], for
example).

With respect to the metric w, we will show that a typical function in F has
infinite derivatives at continuum many points in each subinterval of [0, 1]. For
any residual set S, we will find that a typical f ∈ F satisfies f ′(x) ∈ S almost
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everywhere. For any subset E of (0, 1), with exterior measure 1, we will show
that the restriction to E of the Dini derivatives of any typical function in F
are discontinuous at each point of E. All derivatives here are two-sided.

Theorem I. For a typical f ∈ F , the set{
x ∈ I : |f ′(x)| =∞

}
has the power of the continuum for each subinterval I of [0, 1].

Proof. Let [c, d] be a subinterval of [0, 1]. Let k ∈ F and let ε be a positive
number. Choose a subinterval [a, b] of [c, d] such that

V
(
k, [a, b]

)
<
ε

8
.

(Here V denotes total variation.) Let f be a singular nondecreasing function
in F , that vanishes on [0, a], is constant on [b, 1] and such that

f(b)− f(a) =
ε

2
.

(Lebesgue’s singular function can be used to construct f ; see [HS, (8.28)].)
Then w(k + f, k) = ε/2.

Now any function in the open ball with center k+ f and radius ε/8 can be
expressed k + f + g where g ∈ F and w(g, 0) < ε/8. Then

V
(
k + g, [a, b]

)
≤ V

(
k, [a, b]

)
+ V

(
g, [a, b]

)
<
ε

8
+ w(g, 0) <

ε

8
+
ε

8
=
ε

4
,

and
V
(
k + g, [a, b]

)
<
ε

2
= f(b)− f(a) .

It follows from this and the fact that f is singular on [a, b], that k + f + g is
not absolutely continuous on [a, b] nor on [c, d]. Thus the set of functions in
F that are not absolutely continuous on [c, d] form a residual subset of F .

Finally, let [c, d] run over all the subintervals of [0, 1] with rational end-
points and find that the set of functions in F that are absolutely continuous
on no subinterval of [0, 1] form a residual subset of F . But such functions
must have infinite derivatives at continuum many points in each subinterval
of [0, 1].

Theorem II. For every residual set of real numbers S, f ′(x) ∈ S almost
everywhere for typical f ∈ F (in particular, for such sets S of measure 0).
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Proof. Let p be a positive number and let X be a closed nowhere dense
subset of R. It suffices to prove that the set of all g ∈ F for which

m
{
x ∈ (0, 1) : g′(x) ∈ X

}
≥ p

is a nowhere dense subset of F .
So let T denote the set of all g ∈ F for which m

{
x ∈ (0, 1) : g′(x) ∈

X
}
≥ p . Let k ∈ F \ T . Then

m
{
x ∈ (0, 1) : k′(x) ∈ X

}
< p .

There are positive numbers r and q such that

m
{
x ∈ (0, 1) : the distance from k′(x) to X is less than q

}
= r < p .

Choose any h ∈ T . Then

m
{
x ∈ (0, 1) :

∣∣k′(x)− h′(x)
∣∣ ≥ q} ≥ p− r .

We apply the Vitali Covering Theorem to this set to find mutually disjoint
intervals [xi, ui] such that ∑

i

(ui − xi) ≥ p− r

and for each index i,

∣∣(k − h)(ui)− (k − h)(xi)
∣∣ ≥ q(ui − xi)

2
.

Consequently, ∑
i

∣∣(k − h)(ui)− (k − h)(xi)
∣∣ ≥ q(p− r)

2
.

It follows that

w(h, k) ≥ q(p− r)
2

,

and T is a closed subset of F . It remains to prove that F \ T is dense in F .
Let ε be a positive number. Let (yj)∞j=−∞ ⊂ R\X be a sequence such that

lim
j→−∞

yj = −∞ , lim
j→∞

yj =∞ and 0 ≤ yj − yj−1 < ε for each j .
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Let h0 ∈ F . For x ∈ [0, 1], define

f1(x) = rj − h′0(x) where j is such that rj > h′0(x) ≥ rj−1 .

Then 0 ≤ f1(x) < ε. Let f2 be the indefinite integral of f1:

f2(x) =
∫ x

0

f1(t) dt .

Then 0 ≤ f ′2(x) ≤ ε almost everywhere and

w(f2, 0) = V
(
f2, [0, 1]

)
=
∫ 1

0

f ′2(t) dt ≤ ε .

Also f ′2(x)+h′0(x) is in the set {rj} ⊂ R\X almost everywhere, so f2+h0 /∈ T .
Finally

w(f2 + h0, h0) = w(f2, 0) ≤ ε .

Thus F \ T is a dense open subset of F .

Theorem III. Let E be any subset of [0, 1] with exterior measure 1. Then
the restriction to E of the Dini derivates of a typical function in F are dis-
continuous on E. Moreover, their oscillations at each point of E are infinite.

Proof. Let I be an open subinterval of [0, 1] and J be an open subinterval
of R. Then it suffices to prove that the set of functions g ∈ F for which

m
{
x ∈ I : g′(x) ∈ J

}
> 0

is an open dense subset of F . Let T denote the set of all g ∈ F for which
m{x ∈ I : g′(x) ∈ J} = 0. Take h /∈ T . Then m{x ∈ I : h′(x) ∈ J} > 0.
Let s and r be positive numbers such that

m
{
x ∈ I : the distance from h′(x) to R \ J is at least s

}
= r > 0 .

Let g ∈ T . So
m
{
x ∈ I :

∣∣h′(x)− g′(x)
∣∣ ≥ s} ≥ r .

We use the Vitali Covering Theorem on this set to find pairwise disjoint in-
tervals [ai, bi] such that

∣∣(h− g)(bi)− (h− g)(ai)
∣∣ ≥ s(bi − ai)

2
for each i
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and
∑

i(bi − ai) ≥ r . Hence

w(h, g) ≥ V
(
h− g, [0, 1]

)
≥ s

∑
i

bi − ai

2
≥ rs

2
,

and T is a closed subset of F .

Now let g0 ∈ T , and let p be a positive number. Let [a, b] be a subinterval of
I for which V (g0, [a, b]) < p/4. It is easy to construct a function g1 ∈ F that
coincides wit g0 on [0, a] and on [b, 1], for which

V
(
g1, [a, b]

)
<
p

2
and m

{
x ∈ [a, b] : g′1(x) ∈ J

}
> 0 .

Hence g1 /∈ T and

w(g0, g1) = V
(
g1 − g0, [a, b]

)
≤ V

(
g1, [a, b]

)
+ V

(
g0, [a, b]

)
<
p

2
+
p

4
< p .

So T is a nowhere dense closed set.

Note that the set F1 of nondecreasing functions in F is a closed subset of F .
So F1 is a complete metric space under w in its own right. The Theorems I, II
and III are also true with F1 in place of F by essentially the same arguments.

Let g ∈ F1 and assume that D+g < ∞ on a second category subset of
[0, 1]. It follows that there is a second category set E such that the set{g(x+ p)− g(x)

p
: p > 0, x ∈ E

}
is bounded. Let I be a subinterval of [0, 1] in which E is dense. By continuity,
the difference quotient of g is bounded on I. On the other hand, it is easy
to prove that the set of all functions in F1 with bounded difference quotient
on I is a first category subset of F1. It follows that the set of all g ∈ F1

such that D+g(x) =∞ on a residual subset of [0, 1] is a residual subset of F1.
Likewise it is easy to prove that the set of all functions in F1 with difference
quotient bounded away from 0 on I is a first category subset of F1. By an
analogous argument it follows that the set of all g ∈ F1 such that D+g(x) = 0
on a residual subset of [0, 1] is a residual subset of F1. The corresponding
statements can be proved for D−g and D−g. We conclude with:

Proposition 1. For a typical f ∈ F1, the set{
x ∈ (0, 1) : D+f(x) = D−f(x) =∞ and D+f(x) = D−f(x) = 0

}
is a residual subset of [0, 1]. Thus typical f ∈ F1 have unilateral derivatives,
finite or infinite, on at most a first category subset of [0, 1].



928 F. S. Cater

For f ∈ F1 we define the four sets:

• Af =
{
x ∈ (0, 1) : D−f(x) = D+f(x) = 0

}
,

• Bf =
{
x ∈ (0, 1) : D−f(x) = D+f(x) =∞

}
,

• Cf =
{
x ∈ (0, 1) : D−f(x) = 0 and D+f(x) =∞

}
,

• Df =
{
x ∈ (0, 1) : D−f(x) =∞ and D+f(x) = 0

}
.

(The idea is that in each set there is one restriction on the left and one on
the right.) For typical f ∈ F1, we know that Af ∪Bf ∪ Cf ∪Df is a residual
subset of [0, 1].
Is there a strictly increasing singular function f for which Af ∪Bf ∪Cf ∪Df =
(0, 1)? The answer is yes; we showed how one can be constructed in [C1].
Is there a strictly increasing singular function in F1 for which (0, 1) equals the
union of any three of these sets? The answer, we shall see, is no.

Proposition 2. Let f be a strictly increasing singular function in F1. Then
each of the sets

Af ∪Bf ∪ Cf , Af ∪Bf ∪Df , Af ∪ Cf ∪Df , Bf ∪ Cf ∪Df ,

has a dense complement in [0, 1].

Proof. Let I be a subinterval of [0, 1]. Because f is a singular function, we
deduce that there exist points a, b ∈ I such that

a < b, f ′(a) =∞ and f ′(b) = 0 .

Let G denote the graph in R2{(
x, f(x)

)
: a ≤ x ≤ b

}
.

Then G is a compact subset of R2. Let r be the maximum value for which
the line (in R2) y = x+ r meets G. Say they meet at the point

(
u, f(u)

)
. By

comparing the slope of the line with the slope of the graph, we conclude that
u 6= a and u 6= b. So a < u < b and u ∈ I. By the same reasoning we find
that D+f(u) ≤ 1 and D−f(u) ≥ 1. It follows that u /∈ Af ∪Bf ∪ Cf . By the
analogous argument (with b < a and r minimal) we find a point in I that is
not in Af ∪Bf ∪Df . Of course any point where f ′ =∞ is not in Af ∪Cf ∪Df

and any point where f ′ = 0 is not in Bf ∪Cf ∪Df . The conclusion follows.

Let us recapitulate. For typical f ∈ F1 and any subinterval I of [0, 1] we
have:
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1) f has derivative ∞ at continuum many points in I,

2) f has a finite derivative at continuum many points in I,

3) there are continuum many points in I at which f has no derivative, finite
or infinite,

4) the restriction of f ′ to the set of all points of differentiability of f , has
infinite oscillation at each point.

We conclude by giving an indirect but elementary proof of the well-known
result that the set {

x ∈ (a, b) :
∣∣f ′(x)

∣∣ =∞
}

has measure zero. The arguments will not require the Vitali Covering Theorem
nor the differential properties of monotonic functions. We require only the
following well-known facts, that we state without proof.

Lemma A. If S1, S2, S3, . . . are finitely many subsets of [a, b], then∑
i

m(Si) ≥ m
(
∪iSi

)
where m denotes Lebesgue outer measure.

Lemma B. If S1, S2, S3, . . . is a sequence of subsets of [a, b], then there is an
index k such that

m
(
∪k

i=1Si

)
≥ 1

2
·m
(
∪∞i=1Si

)
.

Proof of the result. It suffices to prove the result for bounded functions.
Then it will hold for arbitrary functions by truncating such a function at N
and −N . So let g be a bounded function on [a, b] and let E ⊂ [a, b] be a set
such that g′(x) = ∞ at each x ∈ E. The plan is to assume that m(E) > 0
and eventually find a contradiction. Fix an integer N so large that on [a, b]

N > 2 · |g| (1)

So

E =
∞⋃

j=1

{
x ∈ E :

f(x)− f(u)
x− u

>
8N
m(E)

for 0 < |x− u| < 1
j

}
.

By Lemma B, there is an index k for which m(E1) > m(E2)/2 where

E1 =
{
x ∈ E :

g(x)− g(u)
x− u

>
8N
m(E)

for 0 < |x− u| < 1
k

}
.



930 F. S. Cater

Choose points u0, u1, u2, . . . , up such that

a = u0 < u1 < u2 < . . . < up = b and ui = ui−1 <
1
k

for i = 1, 2, . . . , p .

For each index i for which the interval [ui−1, ui] meets E1, choose a point xi ∈
[ui−1, ui]∩E1 such that 2(ui−xi) exceeds the diameter of the set [ui−1, ui]∩E1.
Then

ui − xi >
1
2
·m
(
[ui−1, ui] ∩ E1

)
.

We sum over the indices i for which [ui−1, ui] ∩ E1 is nonvoid and obtain (by
Lemma A) ∑

i

(ui − xi) >
∑

i

1
2
·m
(
[ui−1, ui] ∩ E1

)
>

1
2
·m(E1) .

But m(E1) > 1
2 ·m(E), so

∑
i

(ui − xi) >
1
4
·m(E) . (2)

By the definition of E1,∑
i

(
g(ui)− g(xi)

)
>
∑

i

8N
m(E)

· (ui − ci) =
8N
m(E)

·
∑

i

(ui − xi)

and by (2), ∑
i

(
g(ui)− g(xi)

)
>

8N
m(E)

· m(E)
4

= 2N . (3)

Note also that no two of the intervals [xi, ui] overlap.
From Lemma A we deduce that one of the sets [ui−1, ui] ∩ E1 does not have
measure zero; call this set E2. Thus there is a subinterval [c, d] of [a, b],
containing this subset E2 of E1, such that

d− c < 1
k
, m(E2) > 0, and g′(x) =∞ for each x ∈ E2 .

We repeat the preceding arguments with [c, d] in place of [a, b] and E2 in place
of E, to find mutually nonoverlapping subintervals

[y1, v1], [y2, v2], [y3, v3], . . . , [yt, vt]
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of [c, d], such that yj ∈ E2 for all j and

t∑
j=1

(
g(vj)− g(yj)

)
= 2N . (4)

We index these intervals so that y1 ≤ y2 ≤ y3 ≤ . . . ≤ yt. Because the intervals
do not overlap, we have in fact

y1 < v1 ≤ y2 < v2 ≤ y3 < v3 ≤ . . . ≤ yt < vt . (5)

But each yj ∈ E1 also, and we deduce from the definition of E1 that vj − yj

and g(vj)−g(yj) are both positive, and yj−vj−1 and g(yj)−g(vj−1) are both
nonnegative. It follows from (5) that

g(y1) < g(v1) ≤ g(y2) < g(v2) ≤ g(y3) < g(v3) ≤ . . . ≤ g(yt) < g(vt) . (6)

From (4) and (6) we obtain

g(vt)− g(y1) ≥
t∑

j=1

(
g(vj)− g(yj)

)
> 2N . (7)

By (1) we have g(vt)− g(y1) < N . Combining this with (7), we have

N > 2N . (8)

Finally, 0 > N contrary to (1). This contradiction completes the proof.

References

[B] A. Bruckner, Some new simple proofs of old difficult theorems, Real Anal.
Exchange, 9 (1984), 74–75.

[C] F. S. Cater, An elementary proof of a theorem on unilateral derivatives,
Can. Math. Bull., 29 (3), (1986), 341–343.

[C1] F. S. Cater, On the Dini derivatives of a particular function, Real Anal.
Exchange, 25 (1), (1999/2000), 943–946.

[HS] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer-
Verlag, New York, 1965.

[R] W. O. Ray, Real Analysis, Prentice Hall, Englewood Cliffs, 1988.

[S] S. Saks, Theory of the integral, 2nd rev. ed., Dover, New York, 1964.



932 F. S. Cater


