Bożena Szkopińska, Institute of Mathematics,Technical University of Lódź, Poland. e-mail: bozenasz@ck-sg.p.lodz.pl

FUNCTIONS \mathcal{I}-APPROXIMATELY CONTINUOUS IN \mathcal{I}_{1} A. E. DIRECTION AT EVERY POINT

Abstract

In this paper we shall show that every function $f: \Re^{2} \rightarrow \Re$ having the Baire property and \mathcal{I}-approximately continuous in \mathcal{I}_{1}-almost everywhere direction at every point is of the first class of Baire.

Let \mathbb{R}^{k} denote the k-dimensional Euclidean space, $k=1,2, \mathcal{N}$ the set of positive integers, \mathcal{W} the set of rational numbers and \mathbb{R}_{+}the set of positive real numbers. The ball centred at a point p and with radius $r>0$ will be denoted by $K(p, r)$. We introduce the following notations:
\mathcal{S}_{k} - the σ-field of subsets of \mathbb{R}^{k} with the Baire property,
\mathcal{I}_{k} - the σ-ideal of first category subsets of \mathbb{R}^{k}.
A set $A \subset \mathbb{R}^{k}$ is \mathcal{S}_{k}-measurable if and only if $A \in \mathcal{S}_{k}$. For $A \in \mathcal{S}_{1}$, denote by $\phi(A)$ the set of all \mathcal{I}_{1}-density points of A. It is known [3] that the mapping $\phi: \mathcal{S}_{1} \rightarrow 2^{\mathbb{R}^{1}}$ is a lower density operator. If a plane set A is contained in a line, then we use linear \mathcal{I}_{1}-density points of the set $A \in \mathcal{S}_{1}$.

Let $L_{\theta}\left(L_{\theta}(x, y)\right.$, respectively) denote a line passing through the point $(0,0)$ (respectively, the point $(x, y))$ and forming an angle θ with the x-axis for $\theta \in[0, \pi)$. Denote by $A \triangle B$ the symmetric difference of A and B. If $A, B \in \mathcal{S}_{k}$, then $A \sim B$ means that $A \triangle B \in \mathcal{I}_{k}, k=1,2$.

Set $M \in \mathcal{S}_{2}$ and $\theta \in[0, \pi)$. Put

$$
\begin{gathered}
S_{\theta}(M)=\left\{(x, y) \in \mathbb{R}^{2}: \exists_{r \in \mathbb{R}_{+}} M \cap L_{\theta}(x, y) \cap K((x, y), r) \in \mathcal{S}_{1}\right\}, \\
\Phi_{\theta}(M)=\left\{(x, y) \in S_{\theta}(M):(x, y) \in \phi\left(M \cap L_{\theta}(x, y)\right)\right\}
\end{gathered}
$$

and
$\Phi(M)=\left\{(x, y) \in \mathbb{R}^{2}:(x, y) \in \Phi_{\theta}(M)\right.$ in \mathcal{I}_{1}-almost every direction $\left.\theta \in[0, \pi)\right\}$.

[^0]Definition 1. A point $(x, y) \in \mathbb{R}^{2}$ is an \mathcal{I}_{1}-density point of M in the direction θ if and only if $(x, y) \in \Phi_{\theta}(M)$.

By [2] we have the following
Proposition 2. For any $\theta \in[0, \pi)$ and $M \subset \mathbb{R}^{2},(x, y) \in \Phi_{\theta}(M)$ if and only if $M \cap L_{\theta}(x, y) \in \mathcal{S}_{1}$ and, for each $n \in \mathcal{N}$, there exist $k, p \in \mathcal{N}$ such that, for any $h \in\left(0, \frac{1}{p}\right)$ and $i \in\{1, \ldots, n\}$, there exist $j_{1}, j_{2} \in\{1, \ldots, k\}$ such that
$\left\{(x+t \cos \theta, y+t \sin \theta): t \in\left(\frac{(i-1) k+j_{1}-1}{k n} h, \frac{(i-1) k+j_{1}}{k n} h\right)\right\} \backslash\left(M \cap L_{\theta}(x, y)\right) \in \mathcal{I}_{1}$
and
$\left\{(x+t \cos \theta, y+t \sin \theta): t \in\left(-\frac{(i-1) k+j_{2}}{k n} h,-\frac{(i-1) k+j_{2}-1}{k n} h\right)\right\} \backslash\left(M \cap L_{\theta}(x, y)\right) \in \mathcal{I}_{1}$.
By [1] we have the following three theorems:
Theorem 3. For all $A, B \in \mathcal{S}_{2}$,
I. $\Phi(A) \sim A$,
II. $A \sim B \Rightarrow \Phi(A)=\Phi(B)$,
III. $\Phi(\emptyset)=\emptyset, \Phi\left(\mathbb{R}^{2}\right)=\mathbb{R}^{2}$,
IV. $\Phi(A \cap B)=\Phi(A) \cap \Phi(B)$.

Theorem 4. The family $\tau=\left\{A \in \mathcal{S}_{2}: A \subset \Phi(A)\right\}$ is a topology in \mathbb{R}^{2}.
Theorem 5. For any $P \in \mathcal{I}_{2}$ and $(x, y) \in \mathbb{R}^{2}$ there exists a $\Theta \subset[0, \pi)$ such that $[0, \pi) \backslash \Theta \in \mathcal{I}_{1}$ and, for each $\theta \in \Theta, P \cap L_{\theta}(x, y) \in \mathcal{I}_{1}$.

Definition 6. A function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is \mathcal{I}-approximately continuous in \mathcal{I}_{1} almost every direction at every point if and only if the functions f is a continuous with respect to the topology τ.

Theorem 7. Every function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ having the Baire property and which is \mathcal{I}-approximately continuous in \mathcal{I}_{1}-almost every direction at every point is of the first class of Baire.

Proof. Suppose the assertion of the theorem is false. Then we may assume that there exists a perfect set $T \subset \mathbb{R}^{2}$ and two real numbers a, b such that the set $E_{a}=\{(x, y): f(x, y)<a\}$ is a second category subset of T and the set
$E^{b}=\{(x, y): f(x, y)>b\}$ is a dense subset of T. By our assumption, there exists a residual set $P \subset \mathbb{R}^{2}$ such that the function $f_{\mid P}$ is continuous on P .

We introduce the following notation: for any $p, n \in \mathcal{N}$, and for each $(x, y) \in$ \mathbb{R}^{2}, let $\Gamma(p, n,(x, y))$ be the set of all $\theta \in[0, \pi)$ such that for each $h \in\left(0, \frac{1}{p}\right)$ there exists an $i \in\{1, \ldots, n\}$ such that

$$
\left\{(x+t \cos \theta, y+t \sin \theta): t \in\left(\frac{i-1}{n} h, \frac{i}{n} h\right)\right\} \backslash\left(E_{a} \cap P \cap L_{\theta}(x, y)\right) \in \mathcal{I}_{1}
$$

and, for any $\alpha, \beta \in[0, \pi)$ let

$$
H(\alpha, \beta, p, n)=\{(x, y): \Gamma(p, n,(x, y)) \text { is a dense subset of }(\alpha, \beta) \subset[0, \pi)\}
$$

We shall show that

$$
E_{a} \subset \bigcup_{n \in \mathcal{N}} \bigcup_{p \in \mathcal{N}} \bigcup_{\alpha \in \mathcal{W}} \bigcup_{\beta \in \mathcal{W}} H(\alpha, \beta, p, n)
$$

Let $(x, y) \in E_{a}$. Then there exists a set $\Theta_{1} \subset[0, \pi)$ such that $[0, \pi) \backslash \Theta_{1} \in \mathcal{I}_{1}$ and for each $\theta \in \Theta_{1}, E_{a} \cap L_{\theta}(x, y) \in S_{1}$ and (x, y) is an \mathcal{I}-density point of the set E_{a} in the direction θ. Additionally, by $\mathbb{R}^{2} \backslash P \in \mathcal{I}_{2}$, there exists a set $\Theta_{2} \subset[0, \pi)$ such that $[0, \pi) \backslash \Theta_{2} \in \mathcal{I}_{1}$ and for each $\theta \in \Theta_{2}, L_{\theta}(x, y) \backslash P \in \mathcal{I}_{1}$.

We put $\Theta=\Theta_{1} \cap \Theta_{2}$. Then, for each $\theta \in \Theta$, there exist $n, p \in \mathcal{N}$ such that, for any $h \in\left(0, \frac{1}{p}\right)$ and $i \in\{1, \ldots, n\}$,

$$
\left\{(x+t \cos \theta, y+t \sin \theta): t \in\left(\frac{i-1}{n} h, \frac{i}{n} h\right)\right\} \backslash\left(E_{a} \cap P \cap L_{\theta}(x, y)\right) \in \mathcal{I}_{1} .
$$

Thus

$$
\Theta \subset \bigcup_{n \in \mathcal{N}} \bigcup_{p \in \mathcal{N}} \Gamma(p, n,(x, y))
$$

Therefore there exist two rational numbers $\alpha, \beta \in[0, \pi) \cap \mathcal{W}$ and two numbers $n, p \in \mathcal{N}$ such that $\Gamma(p, n,(x, y))$ is dense in (α, β).

Since $E_{a} \cap T$ is a second catgory subset of T,

$$
E_{a} \cap T \subset \bigcup_{n \in \mathcal{N}} \bigcup_{p \in \mathcal{N}} \bigcup_{\alpha \in \mathcal{W}} \bigcup_{\beta \in \mathcal{W}} H(\alpha, \beta, p, n) \cap T
$$

and $E^{b} \cap T$ is a dense subset of T we infer the existence of a point $\left(x_{0}, y_{0}\right) \in$ $T \cap E^{b}$, a sequence $\left\{\left(x_{k}, y_{k}\right)\right\}_{k \in \mathcal{N}} \subset T \cap E_{a}$, two rational numbers α, β and
two positive integers n, p such that $\left(x_{k}, y_{k}\right) \rightarrow\left(x_{0}, y_{0}\right)$ and, for each $k \in \mathcal{N}$, $\Gamma\left(p, n,\left(x_{k}, y_{k}\right)\right)$ is a dense subset of (α, β).

As above we can show there exists a set $\Theta^{*} \subset[0, \pi)$ such that $[0, \pi) \backslash \Theta^{*} \in \mathcal{I}_{1}$ and for each $\theta \in \Theta^{*},\left(x_{0}, y_{0}\right)$ is an \mathcal{I}_{1}-density point of $E^{b} \cap P$ in the direction θ. Let $\theta \in(\alpha, \beta) \cap \Theta^{*}$. Then there exists $\delta \in \mathbb{R}$ such that, for any $h \in(0, \delta)$ and $i \in\{1, \ldots, n\}$,

$$
E^{b} \cap P \cap L_{\theta}\left(x_{0}, y_{0}\right) \cap\left\{\left(x_{0}+t \cos \theta, y_{0}+t \sin \theta\right): t \in\left(\frac{i-1}{n} h, \frac{i}{n} h\right)\right\} \notin \mathcal{I}_{1} .
$$

Let $h<\min \left\{\frac{1}{p}, \delta\right\}$. Since $f_{\mid P}$ continuous on P, for each $i \in\{1, \ldots, n\}$, there exist

$$
\left(u_{i}, v_{i}\right) \in\left\{\left(x_{0}+t \cos \theta, y_{0}+t \sin \theta\right): t \in\left(\frac{i-1}{n} h, \frac{i}{n} h\right)\right\}
$$

and $r_{i}>0$ such that $P \cap K\left(\left(u_{i}, v_{i}\right), r_{i}\right) \subset P \cap E^{b}$. Additionally, since $\left(x_{k}, y_{k}\right) \rightarrow$ $\left(x_{0}, y_{0}\right)$, there exists $k \in \mathcal{N}$, such that, for each $i \in\{1, \ldots, n\}$,

$$
\left\{\left(x_{k}+t \cos \theta, y_{k}+t \sin \theta\right): t \in\left(\frac{i-1}{n} h, \frac{i}{n} h\right)\right\} \cap K\left(\left(u_{i}, v_{i}\right), r_{i}\right) \neq \emptyset .
$$

We know that $\Gamma\left(p, n,\left(x_{k}, y_{k}\right)\right)$ is a dense subset of (α, β). Thus there exists a $\theta_{k} \in \Gamma\left(p, n,\left(x_{k}, y_{k}\right)\right)$ such that, for each $i \in\{1, \ldots, n\}$,

$$
\left\{\left(x_{k}+t \cos \theta_{k}, y_{k}+t \sin \theta_{k}\right): t \in\left(\frac{i-1}{n} h, \frac{i}{n} h\right)\right\} \cap K\left(\left(u_{i}, v_{i}\right), r_{i}\right) \neq \emptyset
$$

and, for θ_{k}, there exists an $i_{0} \in\{1, \ldots, n\}$ such that
$\left\{\left(x_{k}+t \cos \theta_{k}, y_{k}+t \sin \theta_{k}\right): t \in\left(\frac{i_{0}-1}{n} h, \frac{i_{0}}{n} h\right)\right\} \backslash\left(E_{a} \cap P \cap L_{\theta_{k}}\left(x_{k}, y_{k}\right)\right) \in \mathcal{I}_{1}$.
Let $t_{0} \in\left[\frac{i_{0}-1}{n} h, \frac{i_{0}}{n} h\right]$ be such that

$$
\left(x_{k}+t_{0} \cos \theta_{k}, y_{k}+t_{0} \sin \theta_{k}\right) \in P \cap E_{a} \cap K\left(\left(u_{i_{0}}, v_{i_{0}}\right), r_{i_{0}}\right)
$$

Then there exists an $r>0$ such that
$K\left(\left(x_{k}+t_{0} \cos \theta_{k}, y_{k}+t_{0} \sin \theta_{k}\right), r\right) \cap P \subset K\left(\left(u_{i_{0}}, v_{i_{0}}\right), r_{i}\right) \cap P \cap E_{a} \subset E^{b} \cap E_{a}$,
which is a contradiction. Thus the proof of the theorem is completed.

References

[1] I. Libicka, B. Szkopińska, On directional I_{1}-density points, Demonstratio Mathematica Vol. XXX, No. 3 (1997), 479-484.
[2] E. Łazarow, On the Baire class of \mathcal{I}-approximate derivatives, Proc. Amer. Math. Soc. 100 (1987-88), 669-674.
[3] W. Poreda, E. Wagner-Bojakowska, W. Wilczyński, A category analogue of the density topology, Fund. Math. 125 (1985), 167-173.

[^0]: Key Words: \mathcal{I}-density point, \mathcal{I}-continuous function, the Baire classes
 Mathematical Reviews subject classification: Primary 26A24, Secondary 26A21
 Received by the editors December 18, 2000

