Bożena Szkopińska, Institute of Mathematics, Technical University of Łódź, Poland. e-mail: bozenasz@ck-sg.p.lodz.pl

FUNCTIONS \mathcal{I} -APPROXIMATELY CONTINUOUS IN \mathcal{I}_1 A. E. DIRECTION AT EVERY POINT

Abstract

In this paper we shall show that every function $f: \mathfrak{R}^2 \to \mathfrak{R}$ having the Baire property and \mathcal{I} -approximately continuous in \mathcal{I}_1 -almost everywhere direction at every point is of the first class of Baire.

Let \mathbb{R}^k denote the k-dimensional Euclidean space, $k = 1, 2, \mathcal{N}$ the set of positive integers, \mathcal{W} the set of rational numbers and \mathbb{R}_+ the set of positive real numbers. The ball centred at a point p and with radius r > 0 will be denoted by K(p, r). We introduce the following notations:

 \mathcal{S}_k – the σ -field of subsets of \mathbb{R}^k with the Baire property,

 \mathcal{I}_k – the σ -ideal of first category subsets of \mathbb{R}^k .

A set $A \subset \mathbb{R}^k$ is \mathcal{S}_k -measurable if and only if $A \in \mathcal{S}_k$. For $A \in \mathcal{S}_1$, denote by $\phi(A)$ the set of all \mathcal{I}_1 -density points of A. It is known [3] that the mapping $\phi: \mathcal{S}_1 \to 2^{\mathbb{R}^1}$ is a lower density operator. If a plane set A is contained in a line, then we use linear \mathcal{I}_1 -density points of the set $A \in \mathcal{S}_1$.

Let L_{θ} $(L_{\theta}(x, y), respectively)$ denote a line passing through the point (0,0) (respectively, the point (x, y)) and forming an angle θ with the x-axis for $\theta \in [0,\pi)$. Denote by $A \triangle B$ the symmetric difference of A and B. If $A, B \in \mathcal{S}_k$, then $A \sim B$ means that $A \triangle B \in \mathcal{I}_k, k = 1, 2$.

Set $M \in S_2$ and $\theta \in [0, \pi)$. Put

$$S_{\theta}(M) = \{(x, y) \in \mathbb{R}^2 \colon \exists_{r \in \mathbb{R}_+} M \cap L_{\theta}(x, y) \cap K((x, y), r) \in \mathcal{S}_1\},$$
$$\Phi_{\theta}(M) = \{(x, y) \in S_{\theta}(M) \colon (x, y) \in \phi(M \cap L_{\theta}(x, y))\}$$

and

$$\Phi(M) = \{ (x, y) \in \mathbb{R}^2 \colon (x, y) \in \Phi_{\theta}(M) \text{ in } \mathcal{I}_1 \text{-almost every direction } \theta \in [0, \pi) \}.$$

Key Words: \mathcal{I} -density point, \mathcal{I} -continuous function, the Baire classes

Mathematical Reviews subject classification: Primary 26A24, Secondary 26A21 Received by the editors December 18, 2000

Definition 1. A point $(x, y) \in \mathbb{R}^2$ is an \mathcal{I}_1 -density point of M in the direction θ if and only if $(x, y) \in \Phi_{\theta}(M)$.

By [2] we have the following

Proposition 2. For any $\theta \in [0, \pi)$ and $M \subset \mathbb{R}^2$, $(x, y) \in \Phi_{\theta}(M)$ if and only if $M \cap L_{\theta}(x, y) \in S_1$ and, for each $n \in \mathcal{N}$, there exist $k, p \in \mathcal{N}$ such that, for any $h \in \left(0, \frac{1}{p}\right)$ and $i \in \{1, \ldots, n\}$, there exist $j_1, j_2 \in \{1, \ldots, k\}$ such that

$$\left\{ (x+t\cos\theta, y+t\sin\theta) \colon t \in \left(\frac{(i-1)k+j_1-1}{kn}h, \frac{(i-1)k+j_1}{kn}h\right) \right\} \setminus (M \cap L_{\theta}(x,y)) \in \mathcal{I}_1$$

and

$$\left\{(x+t\cos\theta,y+t\sin\theta)\colon t\in \left(-\frac{(i-1)k+j_2}{kn}h,-\frac{(i-1)k+j_2-1}{kn}h\right)\right\}\backslash (M\cap L_{\theta}(x,y))\in \mathcal{I}_1.$$

By [1] we have the following three theorems:

Theorem 3. For all $A, B \in S_2$,

- $\mathbf{I.} \ \Phi(A) \sim A,$
- II. $A \sim B \Rightarrow \Phi(A) = \Phi(B)$,
- III. $\Phi(\emptyset) = \emptyset, \ \Phi(\mathbb{R}^2) = \mathbb{R}^2,$

IV. $\Phi(A \cap B) = \Phi(A) \cap \Phi(B)$.

Theorem 4. The family $\tau = \{A \in S_2 : A \subset \Phi(A)\}$ is a topology in \mathbb{R}^2 .

Theorem 5. For any $P \in \mathcal{I}_2$ and $(x, y) \in \mathbb{R}^2$ there exists a $\Theta \subset [0, \pi)$ such that $[0, \pi) \setminus \Theta \in \mathcal{I}_1$ and, for each $\theta \in \Theta$, $P \cap L_{\theta}(x, y) \in \mathcal{I}_1$.

Definition 6. A function $f: \mathbb{R}^2 \to \mathbb{R}$ is \mathcal{I} -approximately continuous in \mathcal{I}_1 almost every direction at every point if and only if the functions f is a continuous with respect to the topology τ .

Theorem 7. Every function $f : \mathbb{R}^2 \to \mathbb{R}$ having the Baire property and which is \mathcal{I} -approximately continuous in \mathcal{I}_1 -almost every direction at every point is of the first class of Baire.

Proof. Suppose the assertion of the theorem is false. Then we may assume that there exists a perfect set $T \subset \mathbb{R}^2$ and two real numbers a, b such that the set $E_a = \{(x, y) : f(x, y) < a\}$ is a second category subset of T and the set

 $E^b = \{(x, y) : f(x, y) > b\}$ is a dense subset of T. By our assumption, there exists a residual set $P \subset \mathbb{R}^2$ such that the function $f_{|P}$ is continuous on P.

We introduce the following notation: for any $p, n \in \mathcal{N}$, and for each $(x, y) \in \mathbb{R}^2$, let $\Gamma(p, n, (x, y))$ be the set of all $\theta \in [0, \pi)$ such that for each $h \in \left(0, \frac{1}{p}\right)$ there exists an $i \in \{1, \ldots, n\}$ such that

$$\left\{ (x + t\cos\theta, y + t\sin\theta) \colon t \in \left(\frac{i-1}{n}h, \frac{i}{n}h\right) \right\} \setminus (E_a \cap P \cap L_\theta(x, y)) \in \mathcal{I}_1$$

and, for any $\alpha, \beta \in [0, \pi)$ let

$$H(\alpha,\beta,p,n) = \{(x,y) \colon \Gamma(p,n,(x,y)) \text{ is a dense subset of } (\alpha,\beta) \subset [0,\pi) \}.$$

We shall show that

$$E_a \subset \bigcup_{n \in \mathcal{N}} \bigcup_{p \in \mathcal{N}} \bigcup_{\alpha \in \mathcal{W}} \bigcup_{\beta \in \mathcal{W}} H(\alpha, \beta, p, n).$$

Let $(x, y) \in E_a$. Then there exists a set $\Theta_1 \subset [0, \pi)$ such that $[0, \pi) \setminus \Theta_1 \in \mathcal{I}_1$ and for each $\theta \in \Theta_1$, $E_a \cap L_{\theta}(x, y) \in S_1$ and (x, y) is an \mathcal{I} -density point of the set E_a in the direction θ . Additionally, by $\mathbb{R}^2 \setminus P \in \mathcal{I}_2$, there exists a set $\Theta_2 \subset [0, \pi)$ such that $[0, \pi) \setminus \Theta_2 \in \mathcal{I}_1$ and for each $\theta \in \Theta_2$, $L_{\theta}(x, y) \setminus P \in \mathcal{I}_1$.

We put $\Theta = \Theta_1 \cap \Theta_2$. Then, for each $\theta \in \Theta$, there exist $n, p \in \mathcal{N}$ such that, for any $h \in \left(0, \frac{1}{p}\right)$ and $i \in \{1, \ldots, n\}$,

$$\left\{ (x + t\cos\theta, y + t\sin\theta) \colon t \in \left(\frac{i-1}{n}h, \frac{i}{n}h\right) \right\} \setminus (E_a \cap P \cap L_\theta(x, y)) \in \mathcal{I}_1.$$

Thus

$$\Theta \subset \bigcup_{n \in \mathcal{N}} \bigcup_{p \in \mathcal{N}} \Gamma(p, n, (x, y)).$$

Therefore there exist two rational numbers $\alpha, \beta \in [0, \pi) \cap \mathcal{W}$ and two numbers $n, p \in \mathcal{N}$ such that $\Gamma(p, n, (x, y))$ is dense in (α, β) .

Since $E_a \cap T$ is a second catgory subset of T,

$$E_a \cap T \subset \bigcup_{n \in \mathcal{N}} \bigcup_{p \in \mathcal{N}} \bigcup_{\alpha \in \mathcal{W}} \bigcup_{\beta \in \mathcal{W}} H(\alpha, \beta, p, n) \cap T$$

and $E^b \cap T$ is a dense subset of T we infer the existence of a point $(x_0, y_0) \in T \cap E^b$, a sequence $\{(x_k, y_k)\}_{k \in \mathcal{N}} \subset T \cap E_a$, two rational numbers α, β and

two positive integers n, p such that $(x_k, y_k) \to (x_0, y_0)$ and, for each $k \in \mathcal{N}$, $\Gamma(p, n, (x_k, y_k))$ is a dense subset of (α, β) .

As above we can show there exists a set $\Theta^* \subset [0, \pi)$ such that $[0, \pi) \setminus \Theta^* \in \mathcal{I}_1$ and for each $\theta \in \Theta^*$, (x_0, y_0) is an \mathcal{I}_1 -density point of $E^b \cap P$ in the direction θ . Let $\theta \in (\alpha, \beta) \cap \Theta^*$. Then there exists $\delta \in \mathbb{R}$ such that, for any $h \in (0, \delta)$ and $i \in \{1, \ldots, n\}$,

$$E^{b} \cap P \cap L_{\theta}(x_{0}, y_{0}) \cap \left\{ (x_{0} + t \cos \theta, y_{0} + t \sin \theta) \colon t \in \left(\frac{i-1}{n}h, \frac{i}{n}h\right) \right\} \notin \mathcal{I}_{1}.$$

Let $h < \min\{\frac{1}{p}, \delta\}$. Since $f_{|P}$ continuous on P, for each $i \in \{1, \ldots, n\}$, there exist

$$(u_i, v_i) \in \left\{ (x_0 + t\cos\theta, y_0 + t\sin\theta) \colon t \in \left(\frac{i-1}{n}h, \frac{i}{n}h\right) \right\}$$

and $r_i > 0$ such that $P \cap K((u_i, v_i), r_i) \subset P \cap E^b$. Additionally, since $(x_k, y_k) \to (x_0, y_0)$, there exists $k \in \mathcal{N}$, such that, for each $i \in \{1, \ldots, n\}$,

$$\left\{(x_k + t\cos\theta, y_k + t\sin\theta) \colon t \in \left(\frac{i-1}{n}h, \frac{i}{n}h\right)\right\} \cap K((u_i, v_i), r_i) \neq \emptyset$$

We know that $\Gamma(p, n, (x_k, y_k))$ is a dense subset of (α, β) . Thus there exists a $\theta_k \in \Gamma(p, n, (x_k, y_k))$ such that, for each $i \in \{1, \ldots, n\}$,

$$\left\{ (x_k + t\cos\theta_k, y_k + t\sin\theta_k) \colon t \in \left(\frac{i-1}{n}h, \frac{i}{n}h\right) \right\} \cap K((u_i, v_i), r_i) \neq \emptyset$$

and, for θ_k , there exists an $i_0 \in \{1, \ldots, n\}$ such that

$$\left\{ (x_k + t\cos\theta_k, y_k + t\sin\theta_k) \colon t \in \left(\frac{i_0 - 1}{n}h, \frac{i_0}{n}h\right) \right\} \setminus (E_a \cap P \cap L_{\theta_k}(x_k, y_k)) \in \mathcal{I}_1$$

Let $t_0 \in \left[\frac{i_0-1}{n}h, \frac{i_0}{n}h\right]$ be such that

$$(x_k + t_0 \cos \theta_k, y_k + t_0 \sin \theta_k) \in P \cap E_a \cap K((u_{i_0}, v_{i_0}), r_{i_0}).$$

Then there exists an r > 0 such that

$$K((x_k + t_0 \cos \theta_k, y_k + t_0 \sin \theta_k), r) \cap P \subset K((u_{i_0}, v_{i_0}), r_i) \cap P \cap E_a \subset E^b \cap E_a,$$

which is a contradiction. Thus the proof of the theorem is completed.

References

- I. Libicka, B. Szkopińska, On directional I₁-density points, Demonstratio Mathematica Vol. XXX, No. 3 (1997), 479-484.
- [2] E. Lazarow, On the Baire class of *I*-approximate derivatives, Proc. Amer. Math. Soc. 100 (1987-88), 669-674.
- [3] W. Poreda, E. Wagner-Bojakowska, W. Wilczyński, A category analogue of the density topology, Fund. Math. 125 (1985), 167-173.