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HENSTOCK-STIELTJES INTEGRAL NOT
INDUCED BY MEASURE

Abstract
The present paper concerns with the introduction of a new type of
generalized Stieltjes integral with an integrator function which depends
on multiple points in a division and cannot be induced by a measure.
Some properties of this integral were studied.

1 Introduction

The Stieltjes integral integrates a function f with respect to another function
g on [a,b]. In other words, the integral is approximated by Stieltjes sums
(D)3 f(€)g(u,v) using Henstock notation where D is a division of [a, b] and
g(u,v) = g(v) — g(u). In the literature there are many Stieltjes-type integrals
where the integrator functions g in the Stieltjes sums are taken to depend on
more than the endpoints of interval [u, v], for example RGy, RS} asin [1,2].
Motivated by an attempt to present a uniform approach to these integrals,
we here define an integral called GRy, integral, where GR refers to generalized
Riemann. In the GR;, integral the integrator is a function from [a, b]¥*1 to
R. Also a new concept of jump is introduced which plays an important role
in formulating the properties of the integral. The G Ry, integral includes the
classical Stieltjes integral as a special case.

We shall generalize the d-fine division of Henstock [3]. Using it we shall
define our new integral. Let k£ be a fixed positive integer and § a positive
function defined on [a, b]. We shall call a division D of [a, b] given by a = z¢ <
1 < -+ <z, = b with associated points {&o, &1, - ,€n—k } satisfying

gi € [xi?xi+k] - (gl - 5(51)351 + 6(52)) for i = 07 ]-7 e, — ka
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a 6*-fine division of [a,b]. For a given positive function &, we denote a *-fine
division D by {([zs, i+k], &) }i=0,1, n—k- When k = 1, it coincides with the
usual definition of a d-fine division.

Let g be a real-valued function defined on a closed interval [a,b]**! in
the (k+1)-dimensional space, and f a real-valued function defined on [a,b].
We say that f is GRy, integrable with respect to g to I on [a,b] if for every
€ > 0 there is a function 6(¢) > 0 such that for any ¢*—fine division D =

{([xi, zir), &) Yiz0,1, m—k We have

‘ > FE)g(@s, - wik) —I| <e.
i=0
We shall denote the above Riemann sum by s(f, g; D). If f is integrable with
respect to g in the above sense, we write (f,g) € GRg[a,b] and denote the

integral by f; fdg.

Let © € [z;,x;4k] where z; < 241 < -+ < Tipk. The jump of g at z,
denoted by J(g; ), is defined by
J(giw) = lim  g(@i- @itk),
Ti—T, g ks —T
if the limit exists finitely. Next, let [a;, 4], ¢ = 1,2, ,p, be pairwise non-
overlapping, and UL_, [a;, b;] C [a,b]. Then {D;}i=1,2.... , is said to be a §*-
fine partial division of [a,b] if each D; is a 6*-fine division of [a;, b;]. Its
corresponding partial Riemann sum is given by >°7_, s(f, g; D;).

We remark that some authors [1] defined Riemann sums over [a’, '] with
ad <a<b<d,d — a and ¥ — b. Eventually it reduces to the
case on [a,b]. Hence for simplicity we consider only [a,b]. Note that using
compactness of [a,b] it is easy to show that for a positive function § there

exists a 6%-fine division of [a,b]. For k = 1 and g(u,v) = a(v) — a(u),
we obtain the Henstock-Stieltjes integral. Also for g(x;, 11, -, Titk) =
(Tivk — ) Qr(; T, Tiy1, -+, Tiyx) Where Qr(a; @4, Tig1, -+, Tiqy) is the k-

th divided difference of «, the GR}, integral includes the RS; integral of Rus-
sell [5] and its corresponding Henstock type version. See Section 3 for other
examples.

2 Some Properties

‘We shall prove some simple properties of the integral. The first theorem follows
readily from the definition.



HENSTOCK-STIELTJES INTEGRALS NOT INDUCED BY MEASURE 855

Theorem 2.1. Let (f;,g) € GRi[a,b] and (f,9;) € GRg[a,b] fori=1,2,--- ,n.
Then for real numbers A1, Ao, -+ , A\, we have

(i) (i Mifirg) € GRylab] and [} ST, (Nifi)dg = 57—y M) fidg).

(i6) (. Xy Aigi) € GRea,b] and [ fd(Siy Ngi) = Sy s, Fdg:

(iii) If f1(x) < fa(x) for all z € [a,b] and g : [a, b T — [0,00), then fab fidg <
I f2dg.

Theorem 2.2. Let (f,g) € GRi[a,c] and (f,g9) € GRilc,b]. If J(g;c) exists
then (f,g) € GRy[a,b] and

/ab fdg = /aC fdg+/cb fdg + (k- 1)f(c)J(g;c).

PrROOF.  Since (f,g) € GRgla,c| and (f,g) € GRi[c,b], given € > 0 there
exist positive functions d;, d2 defined on [a, ¢] and [¢, b] respectively such that
for any df-fine division D; of [a, ¢] and any d5-fine division Ds of [c, b] we have

1s(f,9; D1) — Ii| < e and [s(f, g; D2) — I2| <€,

where I; and I denote the integrals of (f, g) on [a, c] and on [c, b] respectively.
Now we define §(§) = min{d1(§),c—&} when & € [a, ¢), min{d1(c), d2(c)} when
¢ = ¢, and min{d2(£), ¢ — ¢} when £ € (c, b).

Let D = {([zi,%isk),&)}Yim0.1.... .m—k be a d¥-fine division of [a,b]. Note
that ¢ = x,, for some n < m. Also by definition of §, no other interval will cover
c except the one using ¢ as an associated point. More precisely, ¢ is the associ-
ated point of the (k + 1) intervals [k, Tnl, [Tn—k+1, Tnt1], s [Tn, Tntr]-
Since J(g; ¢) exists, there exists 7 > 0 such that for 0 < z;4 —x; < n we have

|g(xl7 7$i+k) - J(g,C)I <€

Next we modify § at c if necessary by 0 < §(c) < n/2. Then for any §*-fine D
we have

s(f,9: D) =1 = Ia = (k = 1) f(¢)J (g5 )| < | Z f&)g(@s, - wik) — I

m—k
Y g i) — I
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S f@an ai) — (k— 1 f(e(g:0)]

i=n—k+1
<2e+ (k—1)|f(c)le.

Hence (f,g) € GRy[a,b] and the equality holds. O

Theorem 2.3 (Cauchy Condition). The pair (f,g) € GRi|a,b] if and only if
for every € > 0 there is a positive function § on [a,b] such that for all 5*-fine
divisions D1 and Do of [a,b] we have |s(f,g;D1) — s(f,g; D2)| < e.

PROOF. We prove only the sufficiency. Suppose the condition holds. We can
choose ,,(¢) > 0 and §*-fine divisions D,, such that for all n, m

1 1
Dn - ’ ;Dm - I
|5(f,9; Du) = s(f,9; D)l < — + —

Hence {s(f,g; D»)} is a Cauchy sequence and the limit exists, say, I. Thus,
for every € > 0 choose N such that |s(f,g; Dn) — I| < e. We may assume
Sy < 8. Then we find that for any 6% -fine division D of [a, b] we have

|S(fagvD) _I| S |S(fvgaD) _s(fvg7DN)| + ‘S(fvngN) _I‘ < 2e.
That is, (f,g) € GRg[a,b]. O

Theorem 2.4. If (f,g) € GRila,b] anda < ¢ < d <b, then (f,g) € GRylc,d]
provided J(g;c) and J(g;d) exist.

PRrOOF. It is sufficient to prove that (f,g) € GRia, c] provided J(g; ¢) exists.
Since (f,g) € GRyla,b], for every e > 0 there is () > 0 such that for any
d*-fine divisions D and D’ of [a,b] we have |s(f,g; D) — s(f, g; D')| < e. Also,
since J(g;c) exists, there exists n > 0 such that for 0 < u;4x — u; < n and
¢ € [ug, uit] we have |g(ug, -+, uirr) — J(g;¢)| < e. Modify § if necessary as
in the proof of Theorem 2.2 so that ¢ is always a division point of any 6*-fine
division D of [a,b] and furthermore (&) < /2 for all .

Fix a §*-fine division Dy of [c,b], where Do = {([zs, Titk), &) Fico1, o m—k
and & = z¢ = c. Next, take any two 6*-fine divisions D; and Dy of [a, c].
Write D1 = {([ys, Yiti)s M) }i=0,1, m—k and Da = {([zi, 2i+x), Gi) }iz=0,1, p—k-
Note that 7,,— = yn = (p—r = 2p = c. Define

D = Dy U{([Yitn—k>Ti],¢) }i=1,2, k—1 U Do,
D/ = D2 @] {([Zierflm QCZ'], C)}i:l,Q)... k—1 U Do.

Then we obtain

Is(f,g; D1) = s(f,9; D2)| <|s(f,g; D) — s(f,g9; D")| + 2(k — 1)| f(c)|e
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<(142(k—1)|f(c|)e.
By Theorem 2.3, (f,g) € GRyla,c|. O

Theorem 2.5 (Saks-Henstock Lemma). If (f,g) € GRgla,b] and J(g;c) exists
for all ¢ € (a,b), then for every € > 0, there exists a positive function § on
[a,b] such that for any §*-fine division D of [a,b] and for any 6*-fine partial
division {D;}i=12.... p of [a,b] we have

[5(/.9: D) = F(a,b)| < ¢ and | " {s(f.9: i) ~ Flaz.b)}| < (k + e,

where each D; is a 0*-fine division of |a;,b;] and F(u,v) denotes the GRy,
integral on [u,v] C [a, b].

PrROOF.  Since (f,g9) € GRgla,b], for every € > 0 there exists 01(§) > 0
such that for any §f-fine division D of [a, b] we have |s(f, g; D) — F(a,b)| < ¢,
where F'(a,b) denotes the integral of (f,g) on [a,b]. Let {D;}i=11,.. , be a
dF-fine partial division of [a,b] where each D; is a df-fine division of [a;, b;].
By Theorem 2.4, (f,g) is integrable on the complement of U?_; [a;, b;] called
cj,d;] for j =1,2,---,q. So there exists d2(&) > 0 defined on U]_, [c;, d;] such
that for any 65-fine division P; of [c;,d;] for j = 1,2,--- , ¢ we have

q q
‘ Zs(f,g;Pj) - ZF(cj7dj)‘ < e,
j=1 j=1

where again F(c;,d;) denotes the integral of (f,g) on [¢;,d;]. Let A denote
the set of endpoints of [a;,b;] for i =1,2,--- ,p and [¢;,d;] for j =1,2,--- ,q.
The set A is finite, say consisting of m elements. Since J(g;c¢) exists for each
¢ € (a,b), there exists 7. > 0 such that for 0 < 2 — 29 < 7. with ¢ € [zg, 2]
and xg < 1 < --- < T} we have

€
|g($c0, 7-7;16) J(g,C)‘ < m|f(c)\

Now define 6 = min{dq,d2} and n = min{n. : ¢ € A}. Modify 0 if necessary
so that points in A are always division points of any §*-fine division of [a, b],
and 6(x) < n/2 for all x. Let {D;};—12,.. , be a §F-fine partial division of
[a,b]. Then we may choose ¢*-fine division P; of [¢j,d;] for j = 1,2,--- ,q
such that for z € A,

x € [zp,xoqr] C (x—6(x),x +0(x)) for £ =1,2,-- [k —1,
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in which x, are division points in D; or P; for some i, j.

Clearly the §*-fine partial divisions {D;}i—12,... p, {P;}j=12, ¢ and the
partial division {([z¢,Z¢+k,%)}e=1,2.. k-1 corresponding to each z € A to-
gether constitute a 6*-fine division D of [a,b]. Then

p q

faga Zs.ﬂgv +Zsfag7 +22f "'am€+k)a
Jj=1

=1 zEA (=1

and in view of Theorem 2.2

q

1= Flaib)+ > Flej,dy)+ Y (k= 1)f(x)J(g; ).

i=1 j=1 TEA

Hence |s(f,g; D) — F(a,b)| < e. This proves the first inequality. Also for
any &*-fine partial division {D;};—12.... , of [a,b], where each D; is a §*-fine
division of [a;, b;], we have

P

’zp:Sfaga ) ZF(GZ’ bi)| <

i=1

+‘Zsfagv ZFC]7
‘HZZf g(xo, -+ ,o8) — Z(k’— 1) f(z)J(g; z)|

xzeA (=1 zEA
<2+ (k—1)e. O

|s(f,9; D) — F(a,b)|

2

3 Examples

Let X C [a,b]. We define V}(X) = infssupp, deex 9@, k)], D =
{[zi, 2ivk], & Yizo,.. .n—k being any 6*-fine division of [a,b]. A set X C [a,b] is
said to be of g¥-variation zero if V*(X) = 0. Let g be a function from [a, ]
to R. Then g is said to be of BV¥[a,b] if V[a,b] is finite. Clearly, g is of
BV¥[a,b] if and only if Z?:_ok lg(xi, - ,zi1x)| < M for all §F-fine division
D = {[zs,%itk]; &} i=0,... n—k of [a,b]. For example, let o be any increasing
function on [a, b] and g defined on [a, b]? as g(u,v,w) = a(u) — 2a(v) + a(w).
Then g is of BV?[a,b].

Theorem 3.1. Let f(x) = 0 for all z in [a,b] except for a set X of g*-variation
zero, then (f,g) € GRg[a,b] and f: fdg = 0.
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ProOOF. Let X;={x e X :i—-1<|f(x)|<i}, i=1,2,---.S0X; C X and
UX, X, = X, and ng(Xi) =0fori=1,2,--- . Hence given € > 0, there exists

6i(z) > 0 defined on [a, b] such that supp > ¢ cx, [9(25, - @j8)| < 5 for
i=1,2,-+,D={([rj,2j+k],&)}j=0.1,... n—k being a §*fine division of [a, b].

We define 6(x) = 6;(x) for x € X;, and 1 otherwise. If

D = {([Yi> Yj+k], M) }i=0.1, - sm—k

is a §F-fine division of [a, b], then

[s(F g D) =1 2 F0)gluse -yl < D5 = e
=1

njeX
So (f,9) € GRy[a,b] and f; fdg = 0.

A property is said to hold g*-almost everywhere (¢g* a.e.) in [a, ] if it holds
everywhere in [a, b] except in a set of gF-variation zero. Thus if f; = fa, g*

a.e. in [a, b] then f; fidg = fab fadg.
The following is easily verified.

Theorem 3.2. Let f be continuous on [a,b] and g of BV¥[a,b]. Then (f,g) €
GRy[a,b].

4 Integration by parts

We now establish an integration by parts formula for & = 2 for particular
functions.

Theorem 4.1. Let g be continuous on [a,b] and f; of BV?[a,b]. Then fj fd%g
caists and [ fd?g = [, g8 f+g(a)[f(at) ~ f(@)]+9(b)[f (b=) ~ f (b)), provided
fla+), f(b—) exist and where f: fd%g and fab gd?f mean f; fdg1 and f: gdf1

respectively with

fl(uvv7w) = f(u) - 2f(’l)) + f(w)7 91(u7v7w) = g(u) - 29(”) +g(w).

PROOF. Since g is continuous on [a,b] and f; is of BV?[a,b], by Theorem
3.2, (g, f1) € GRa[a,b]. Also since g is uniformly continuous on [a, b] and f; is
of BV?[a,b], given € > 0 there is a constant 7 > 0 such that for any division
Dy = {([I,, IH_Q], gi)}i:&l,»-- n—2 with fi S [xi, xi_,_g] C (& -, {Z + 77) we have

n—2
Zg(fi)f1($i,wi+1,xi+2) —I|<e

=0
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where [ = f: gdfi. Also since f(a+), f(b—) exist we can find §; > 0 such that
x—a < 61 implies | f(z) — f(a+)| <€, |g(z) —g(a)] < e and b—y < &; implies
lf(y) — f(b=)| <, |g(y) — g(b)| < e. Let §(£) be any function satisfying 0 <
§(¢) < $min{d1,n}. For any 6>-fine division D = {([z;, zi42], &) iz0,1, n—2
of [a,b] we have

s(f,9: D) = I = g(a)[f(a+) = f(a)] = g(D)[f (b—) — f(D)]|

n—1

< | [f(§i2) = 2f (&) + f(&)] — 1]

+ Ig(a |1/ (&0) — flat) + | f(a)llg(z1) — g(a)|
+ 9@ f (€n—2) = FO=) + [f(0)llg(zn-1) — 9(b)|
< e +1g(a)| + [f(a)l + lg(®)] + £ (D)),
where £ 1 =a, &,_1 = 0. O
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