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WEAK LOCAL DIMENSION ON
DERANGED CANTOR SETS

Abstract

We define weak local dimension at each point in a deranged Cantor
set. Using this, we classify the deranged Cantor set into a multifractal
structure which is useful for computing the Hausdorff dimension and the
packing dimension of the deranged Cantor set. Finally, we give examples
in which the weak local dimensions are used for the calculation of the
dimensions in a deterministic case and a probabilistic case.

1 Introduction

The theory of a multifractal spectrum or a local dimension ([5]) of a fractal has
been studied because it is important to investigate its geometric structure and
fractal dimension. In fact, we need a nice mass distribution which represents
the geometric structure of a given fractal well to discover the exact value of its
fractal dimension. However it is difficult to find such a nice mass distribution
on the fractal and it is also hard to compute the local dimension at each point
in the fractal with respect to the mass distribution. It is also difficult for
the case of a generalized Cantor set which we call a deranged Cantor set ([2],
[3]). In this paper, we use a simple definition of weak local dimension at each
point in a deranged Cantor set to avoid such difficulties. In fact, we don’t use
any mass distribution on a deranged Cantor set but its construction structure
to define the weak local dimension. Ultimately the weak local dimension
may be related to some natural mass distribution but it is open. To define
weak local dimension, we need to define some terminologies such as local
Hausdorff measure, local Hausdorff dimension, local packing measure, local
packing dimension. We call local Hausdorff (packing) dimension at a point,
weak lower (upper) local dimension at the point.
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Now we recall the definition of deranged Cantor set ([2], [3]). Let Iφ =
[0, 1]. Then we obtain the left subinterval Iτ,1 and the right subinterval Iτ,2
of Iτ by deleting the middle open subinterval of Iτ inductively for each τ ∈
{1, 2}n, where n = 0, 1, 2, . . . . Consider En =

⋃
τ∈{1,2}n Iτ . Then {En} is a

decreasing sequence of closed sets. For each n, we put | Iτ,1 | / | Iτ |= cτ,1
and | Iτ,2 | / | Iτ |= cτ,2 for all τ ∈ {1, 2}n, where | I | denotes the diameter
of I. We call F =

⋂∞
n=0En a deranged Cantor set.

We note that if x ∈ F , then there is σ ∈ {1, 2}N such that
⋂∞
k=0 Iσ|k = {x}

(Here σ|k = i1, i2, · · · , ik where σ = i1, i2, . . . , ik, ik+1, . . . ). Hereafter, we
identify x ∈ F and the corresponding σ ∈ {1, 2}N . We define

hs(σ) = lim inf
k→∞

(cs1 + cs2)(csσ|1,1 + csσ|1,2)(csσ|2,1 + csσ|2,2) . . . (csσ|k,1 + csσ|k,2)

for each σ ∈ {1, 2}N , and call hs(σ) the s-dimensional local Hausdorff measure
of σ in F .

We define f(σ) = inf{s > 0 : hs(σ) = 0} and call it the local Hausdorff
dimension of σ in F . Clearly we see that f(σ) = sup{s > 0 : hs(σ) =∞}

Dually we define the local packing measure qs(σ) of σ in F , and the local
packing dimension g(σ) of σ in F . To be precise, for σ ∈ F

qs(σ) = lim sup
k→∞

(cs1 + cs2)(csσ|1,1 + csσ|1,2)(csσ|2,1 + csσ|2,2) · · · (csσ|k,1 + csσ|k,2),

g(σ) = inf{s > 0 : qs(σ) = 0} = sup{s > 0 : qs(σ) =∞}.

We call the local Hausdorff (packing) dimension of σ in F , the weak lower
(upper) local dimension of σ in F compared with a local dimension of σ in F
with respect to some mass distribution.

To compare the weak local dimension of σ in F with a local dimension of
σ in F with respect to a mass distribution, we will consider the most related
mass distribution µs. We define

µs(Iτ ) =
|Iτ |s

(cs1+ cs2)(csi1,1 + csi1,2) · · · (csi1,i2,··· ,ik−1,1
+ csi1,i2,...,ik−1,2

)

for each τ = i1, i2, · · · , ik−1, ik, where ij ∈ {1, 2}. Then µs is extended to a
Borel measure on F for each s ∈ (0, 1) and µs(F ) = 1 (see [4], [5]).

Now we can think of a multifractal structure Es, Gs on F using weak local
dimensions, Es = {σ ∈ F : f(σ) = s} and Gs = {σ ∈ F : g(σ) = s}. Then F
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is classified as F =
⋃

0<s<1Es and F =
⋃

0<s<1Gs. We conjecture

Es = {x ∈ F : lim inf
r→0

logµs(Br(x))
log r

= s}

Gs = {x ∈ F : lim sup
r→0

logµs(Br(x))
log r

= s}.

2 Main Results

In this section, F means a deranged Cantor set determined by {cτ} with
τ ∈ {1, 2}n where n = 1, 2, . . . . Hereafter we only consider a deranged Cantor
set whose contraction ratios {cτ} and gap ratios dτ (= 1 − (cτ,1 + cτ,2)) are
uniformly bounded away from 0 .

Before going into our main theorem, we note that the function hs(σ) or
hs(x) is clearly a Borel function from F to the extended real numbers. Given
s > 0, let As =

⋃
t≤sEt =

⋂∞
n=1{σ : hs+

1
n (σ) = 0}. Then As is a Borel set.

Thus Es = As\
⋃∞
n=1As− 1

n
is a Borel set for each s. Since As = {σ : f(σ) ≤ s}

is a Borel set, f is a Borel function and hence µs-measurable for all s.

Theorem 1. If µs(
⋃
t>sEt) > 0, then dimH(

⋃
t>sEt) ≥ s.

Proof. Assume that cτ , dτ ≥ α > 0 for some small α. Let x ∈ F . Then there
is unique σ ∈ {1, 2}N such that

⋂∞
k=0 Iσ|k = {x}. Assume that µs(

⋃
t>sEt) >

0. Let σ(≡ x) ∈
⋃
t>sEt. Given a small positive number r, there exists k

such that |Iσ|k+1| ≤ r < |Iσ|k|. Since dσ|j |Iσ|j |≥ α|Iσ|k|> αr for 0 ≤ j ≤ k,
Bαr(x) ⊂ [

⋃
τ(6=σ|k)∈{1,2}k Iτ ]c, where Bαr(x) is the ball of radius αr with

center x. Thus µs(Bαr(x)) ≤ µs(Iσ|k).

lim sup
r→0

µs(Br(x))
rs

≤ 1
α2shs(σ)

= 0.

Since µs(
⋃
t>sEt) > 0, Hs(

⋃
t>sEt) = ∞ ([5, Prop. 2.2 (a)]). Consequently,

dimH(
⋃
t>sEt) ≥ s.

Corollary 2. dimH(F ) ≥ sup{s > 0 : µs(
⋃
t>sEt) > 0}.

Proof. Let t′ < sup{s > 0 : µs(
⋃
t≥sEt) > 0}. Then there exists s such that

t′ < s ≤ sup{s > 0 : µs(
⋃
t>sEt) > 0} and µs(

⋃
t>sEt) > 0. So, by Theorem

1, dimH(
⋃
t>sEt) ≥ s. Hence dimH(F ) > t′.

Corollary 3. dimH(
⋃
t≤sEt) ≤ s.
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Proof. Let t′ > s and σ(≡ x) ∈
⋃
t≤sEt. Given a small positive number r,

there exists k such that |Iσ|k+1| ≤ r < |Iσ|k|. Then
µt′(Br(x))

rt′
≥
µt′(Iσ|k+1)
|Iσ|k|t′

.

Since |Iσ|k+1|/|Iσ|k| = cσ|k+1 > α for all k,

lim sup
r→0

µt′(Br(x))
rt′

≥ αt
′

ht′(σ)
=∞.

Since µt′(
⋃
t≤sEt) ≤ µt′(F ) = 1, Ht′(

⋃
t≤sEt) = 0. So dimH(

⋃
t≤sEt) ≤

t′.

Corollary 4. Let sτ be the solution of csττ,1 + csττ,2 = 1. If for any t < s,
µt({σ ∈ {1, 2}N : lim infk→∞ sσ|k ≥ s}) > 0, then

dimH({σ ∈ {1, 2}N : lim inf
k→∞

sσ|k ≥ s}) ≥ s.

Hence if lim infk→∞ sσ|k ≥ s for all except countably many σ in F , then
dimH(F ) ≥ s.

Proof. Let σ ∈ {σ ∈ {1, 2}N : lim infk→∞ sσ|k ≥ s}. Then for a given
natural number m, sσ|k > s− 1

m for all but finite k. Thus

hs−
2
m (σ)

= lim inf
k→∞

(cs−
2
m

1 + c
s− 2

m
2 )(cs−

2
m

σ|1,1 + c
s− 2

m

σ|1,2 )(cs−
2
m

σ|2,1 + c
s− 2

m

σ|2,2 ) · · · (cs−
2
m

σ|k,1 + c
s− 2

m

σ|k,2)

=∞.

Since µt({σ ∈ {1, 2}N : lim infk→∞ sσ|k ≥ s}) > 0 for any t < s, following the
density theorem argument used in the proof of Theorem 1, we get Hs− 2

m ({σ ∈
{1, 2}N : lim infk→∞ sσ|k ≥ s}) = ∞ for each m. Thus dimH({σ ∈ {1, 2}N :
lim infk→∞ sσ|k ≥ s}) ≥ s.

Now assume that lim infk→∞ sσ|k ≥ s for all except countably many σ in
F . Noting that every countable subset of F has µt-measure 0 and µt(F ) = 1
for each t, we easily see that dimH(F ) ≥ s.

In packing dimension cases, we get similar results. We list them as follows.

Theorem 5. If µs(
⋃
t>sGt) > 0, then dimp(

⋃
t>sGt) ≥ s.

Corollary 6. dimp(F ) ≥ sup{s > 0 : µs(
⋃
t>sGt) > 0}.

Corollary 7. dimp(
⋃
t≤sGt) ≤ s.
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Corollary 8. Let sτ be the solution of the equation csττ,1 + csττ,2 = 1. Then
dimp({σ ∈ {1, 2}N : lim supk→∞ sσ|k ≤ s}) ≤ s. Hence dimp(F ) ≤ s if
lim supk→∞ sσ|k ≤ s for all except countably many σ in F .

Proof. Let σ ∈ {σ ∈ {1, 2}N : lim supk→∞ sσ|k ≤ s}. Then for a given
natural number m, sσ|k < s+ 1

m for all but finite k. Then

qs+
2
m (σ)

= lim sup
k→∞

(cs+
2
m

1 + c
s+ 2

m
2 )(cs+

2
m

σ|1,1 + c
s+ 2

m

σ|1,2 )(cs+
2
m

σ|2,1 + c
s+ 2

m

σ|2,2 ) · · · (cs+
2
m

σ|k,1 + c
s+ 2

m

σ|k,2)

= 0.

Following the dual density theorem argument related to packing measure used
in the proof of Corollary 3, we get ps+

2
m ({σ ∈ {1, 2}N : lim supk→∞ sσ|k ≤

s}) = 0 for each m. Thus dimp({σ ∈ {1, 2}N : lim supk→∞ sσ|k ≤ s}) ≤ s.
Now assume that lim supk→∞ sσ|k ≤ s for all except countably many σ in

F . Noting that every countable subset of F has µt-measure 0 and µt(F ) = 1
for each t, we easily see that dimp(F ) ≤ s.
Corollary 9([3]). Let sτ be the solution of csττ,1 +csττ,2 = 1. If limk→∞ sσ|k = s

for all σ ∈ {1, 2}N , then dimH(F ) = dimp(F ) = s.

3 Application to Random Cantor Sets

Consider a probability space (Ω,F , P ) (cf.[4]) such that the sample space

Ω = {(c1, c2, c1,1, c1,2, c2,1, c2,2, c1,1,1, . . . , cτ , . . . ) : 0 < a ≤ cτ ≤ b <
1
2
},

and F = σ(F1,F2, . . . ,Fn, · · · ), where

Fn = σ({(α1, β1]× · · · × (α2+···+2n , β2+···+2n ]
× [a, b]× [a, b]× · · · : a ≤ αi < βi ≤ b}).

We define Cτ (ω) = cτ where ω = (c1, c2, c1,1, c1,2, c2,1, c2,2, c1,1,1, . . . , cτ , . . . ).
We note that if ω ∈ Ω is given, there corresponds a deranged Cantor set
F (ω), where F (ω) is determined by the sequence of contraction ratios ω =
(c1, c2, c1,1, c1,2, c2,1, c2,2, c1,1,1, . . . , cτ , . . . ). We assume that P is a probability
measure on (Ω,F) such that Cj,1 and Cj,2 have the same distribution as Ci,1
and Ci,2 respectively where j ∈ {1, 2}n and i ∈ {1}n, n = 0, 1, 2, . . . .

In particular, we note that Falconer([4]) assumed that Cj,1, Cj,2 have the
same distribution as C1, C2 respectively for all j and Cj are independent ran-
dom variables, except Cj,1 and Cj,2 for each j. Unlike Falconer, we now assume
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that Cj are independent random variables except Ck and Cl for k, l of the same
length.

In this case we get some result about the packing dimension for the random
Cantor set using the upper weak local dimensions.
Theorem 10. Let Ci,1 = Ln and Ci,2 = Rn for each n = 0, 1, 2, . . . and
i ∈ {1}n−1. If we assume that for each n, Cj,1 = Ln and Cj,2 = Rn for all
j ∈ {1, 2}n−1 and E(Lsn +Rsn) = 1 for all n for some s, then dimp(F (ω)) ≤ s
P -almost surely ω. Further ps(F (ω)) <∞ P -almost surely ω.

Proof. If the above condition is satisfied, the sequence of random variables
Xn(=

∑
I∈En |I|

s) forms an L1-bounded martingale and hence converges to
X for P -almost all F . Since E(X) ≤ lim inf E(Xn) = 1 by Fatou lemma,
X < ∞, P -almost surely. By Corollary 7, it has packing dimension equal or
less than s, where E(Lsn + Rsn) = 1 for all n for some s P -almost surely. In
fact, we easily see that ps(F ) <∞ P -almost surely using the same arguments
in the proof of the Corollary 7.
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