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Abstract

After surveying several earlier definitions of “chaos”, this paper is
devoted to presenting the recently introduced notion of distributional
chaos to a non-specialist audience. It is shown that the theory of dis-
tributional chaos avoids various shortcomings of the earlier theories and
that it allows one not only to distinguish between chaotic and non-
chaotic behavior, but also to measure the actual extent of any existing
chaotic behavior. The whole is illustrated with numerous examples.

1 Introduction

Since Li and Yorke [27] introduced the term into the vocabulary of mathe-
matics in 1975, several different (rigorous) definitions of “chaos” have been
proposed. Each of these definitions yields a “Yes or No” test for the presence
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of chaos, but none provides a way of measuring the extent of chaos in a given
system, or of comparing the chaotic behavior of two different systems. In ad-
dition, as will be seen in the sequel, each of the definitions has certain other
deficiences: in particular, some are such that the very existence of chaos can
be wiped out by arbitrarily small perturbations.

In a recent paper [38] Schweizer and Smı́tal, the first and the third authors
of this paper, used ideas from the theory of probabilistic metric spaces to
develop a new definition of “chaos” and a corresponding variety of measures
of chaos. There, and in a subsequent paper written jointly with F. Balibrea
and A. Sklar [5], they elaborated the resulting theory in some detail, showing
in particular that, at least for one-dimensional systems, the new definition
avoids the deficiences mentioned above. However, the two papers, addressed
as they are to experts in the field, are unavoidably technical and are provided
with only a few illustrative examples.

Our aim in the present paper is to introduce this new notion of “distribu-
tional chaos” to a wider audience, to illustrate it with an appropriate body of
examples, and to outline the salient features of the resulting theory. Among
these features is one we may note here: when combined with the results of
Schweizer and Sklar [34], the notion of distributional chaos allows us to clearly
distinguish between ergodic behavior on the one hand and genuinely chaotic
behavior on the other. (See also Sklar and Smı́tal [44].)

Our paper is organized as follows: After this introduction, Section 2 presents
some necessary preliminaries and Section 3 reviews, compares and criticizes
some earlier definitions of chaos. In Section 4 we introduce the notion of dis-
tributional chaos, discuss some of its properties and define a measure of chaos
to which it leads. Section 5 is devoted to the familiar “tent map” τ , defined
on the unit interval [0, 1] by τ(x) = 1− |2x− 1|, and to several closely related
functions. Here the fact that we are able to give direct and simple verifications
of our main results allows us to lay bare the central ideas without appealing
to the heavy machinery of the general theory. (Of course, without the general
theory, these examples would not be as meaningful.) Section 6 summarizes
the general theory for continuous functions on compact intervals as developed
by Schweizer and Smı́tal in [38] and augmented by Balibrea et al. in [5]. The
final Section 7 presents extensions of the general theory, in particular to higher
dimensions, and concludes with a discussion of the abovementioned distinction
between ergodicity and chaos and a conjecture about their co-occurrence.
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2 Preliminaries

The composite of two functions f and g is the function f ◦ g whose domain is
the set of all x in the domain of g for which g(x) is in the domain of f , and
whose value for any such x is f(g(x)). In this paper we shall generally (but
not always) be dealing with functions mapping a given set E into itself. The
iterates of any such function f are the functions defined recursively by:

f0 is the identity function on E;

fn+1 = f ◦ fn for all non-negative integers n.

An orbit of f is an equivalence class under the equivalence relation ∼f
defined on E by: x ∼f y if and only if there exist non-negative integers m,n
such that fm(x) = fn(y). Orbits come in two varieties, cyclic and acyclic. A
cyclic orbit is one that contains a (necessarily unique) cycle, i.e., a set that,
for some positive integer n, consists of n distinct points x1, . . . , xn such that,
if n = 1 then f(x1) = x1, while if n > 1 then

f(xm) = xm+1 for m = 1, 2, . . . , n− 1 and f(xn) = x1.

The order of a cycle is the number of points in it. Thus a cycle of order 1 is
simply a fixed point of f ; and generally, any point in a cycle of order n is a
periodic point of f , of (exact) period n. Clearly, a periodic point of f of period
n is a fixed point of fn. An acyclic orbit is one that contains no cycle of any
order.

Given x in E, the sequence whose nth term is fn(x) (n ≥ 0) is the tra-
jectory of x (under f). Note that the sequence, which is infinite, has to be
distinguished from the set {x, f(x), f2(x), . . . }, which may be finite. Some
authors refer to either this set or the sequence as the “orbit” (or “forward or-
bit”) of x, thus applying the term “orbit” to points rather than to functions;
for us, the set of terms of a trajectory is a part, and generally a proper part,
of an orbit. The trajectories of any two points in the same orbit ultimately
merge; in particular, the trajectories of all points in a cyclic orbit end in the
cycle of the orbit.

If f maps a compact space E into itself, then for every x in E, ωf (x) is the
set of limit points of the trajectory of x, i.e., the set of all y in E such that
for each neighborhood V of y there is a positive integer n such that fn(x) is
in V . Any such set is an ω-limit set of f . Note that, since any two points
in the same orbit of f determine the same ω-limit set, an ω-limit set really
belongs to an orbit of f rather than to any individual trajectory. The ω-limit
set of a cyclic orbit is the cycle of the orbit; the ω-limit set of an acyclic orbit
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may be the entire space; and clearly, distinct orbits can have identical ω-limit
sets. Lastly, an ω-limit set is maximal if is not properly contained in any other
ω-limit set.

Two functions f and g are conjugate if there is an invertible function h
whose domain includes the range of f and whose range includes the domain
of g, such that

h ◦ f = g ◦ h. (2.1)

As is well-known, conjugacy is an equivalence relation.
It follows readily from (2.1) that, for any x and y in the domain of f and

any non-negative integers m,n, we have

fm(x) = fn(y) if and only if gm(h(x)) = gn(h(y)), (2.2)

i.e.,
x ∼f y if and only if h(x) ∼g h(y). (2.3)

Thus h is an orbit-isomorphism. The converse is also true, i.e., if there is a
one-one function h such that (2.3) holds, then f and g are conjugate – simply
let m = 1 and n = 0 in (2.2). This yields the important fact that:

Two functions are conjugate if and only if they are orbit-isomorphic.

If f maps a topological space X into itself, and g maps a topological
space Y into itself, then f and g are topologically conjugate if the conjugating
function h is a homeomorphism from X onto Y . Functions on topological
spaces can be conjugate without being topologically conjugate and it will be
important for us to observe the distinction between the two notions. Imposing
conditions on h yields stronger versions of conjugacy. In particular, if X is
a linear topological space and h is a linear function, then we speak of linear
conjugacy (see Rice et al. [32] and Schweizer and Sklar [37]).

The topological entropy of a function f that maps a topological space into
itself is a non-negative number h(f) that, roughly speaking, measures the way
in which the orbits of f are intertwined. The general definition of the notion,
introduced by Adler et al. in [1], is rather complicated, but simple expressions
for the value of the topological entropy are known in some special cases. For
our purposes, we need only the fact that the topological entropy of a piecewise
monotonic map f of an interval into itself is given by

h(f) = lim
n→∞

( 1
n ln cn),

where cn is the number of monotonic pieces (“laps”) of fn. This was shown by
Misiurewicz and Szlenk in [31] extending earlier work of Milnor and Thurston
from 1977 (reprinted in 1988 in [28]). See also [2] and [3].
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3 A survey of some definitions of “chaos”

On page 17 of his popular book “Does God Play Dice?” Ian Stewart, [47],
suggests the following dictionary definition of “chaos”:

Stochastic behaviour occuring in a deterministic system.

Mathematically, speaking about chaos means speaking about the iterative
behavior of functions that map topological or, more commonly, metric spaces
into themselves. In accordance with this, we feel that any reasonable definition
of chaos should enjoy the following properties:

1. Comprehensiveness: The definition should be meaningful for a large class
of functions, including at the very least all functions mapping compact
metric spaces into themselves.

2. Stability: If a function is chaotic, then any sufficiently small perturbation
of the function should also be chaotic.

3. Invariance: Any function on a metric space topologically conjugate to
a chaotic function on a (possibly different) metric space should also be
chaotic.

4. Familiarity: Any function universally and unequivocally regarded as ei-
ther chaotic or non-chaotic should be so classified by the definition.

One of the most familiar chaotic functions is the logistic function L4, de-
fined on the unit interval [0, 1] by

L4(x) = 4x(1− x);

L4 is topologically conjugate to the tent map τ defined on [0, 1] by τ(x) =
1−|2x−1| and is linearly conjugate to the restriction to the interval [−1, 1] of
the standard quadratic Čebyšev polynomial 2x2 − 1. Indeed, the restrictions
to [−1, 1] of the standard Čebyšev polynomials of degree at least 2 are classic
examples of chaotic functions.

In what follows we shall, for illustrative purposes, be using the functions
ft defined, for t > 0 on the interval [0, t] by

ft(x) = x(4xt−1 − 3)2.

It follows that for any t > 0, ft(0) = 0, ft(t) = t, and f ′t(0) = f ′t(t) = 9.
Moreover, each ft is linearly conjugate to the restriction to [−1, 1] of the cubic
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Čebyšev polynomial 4x3 − 3x. We now proceed to examine some commonly
accepted definitions of chaos.

A function f that maps a metric space M with distance function d into
itself is chaotic in the sense of Li and Yorke if it admits a scrambled set (this
is an extension of an inessentially modified version of the original definition
by Li and Yorke [27], cf. Kuchta and Smı́tal [25] or Fedorenko et al. [19]).
Here, a scrambled set for a function f is a subset S of M containing at least
two points, such that, for any two distinct points x, y in S,

lim inf
n→∞

d(fn(x), fn(y)) = 0 and lim sup
n→∞

d(fn(x), fn(y)) > 0.

At first, and even at second glance, this definition seems to capture precisely
our intuitive notion of the meaning of chaotic behavior, e.g., sensitivity to
initial conditions. However, as shown by Fedorenko et al. [19], the real func-
tions of topological entropy 0 that are chaotic in the sense of Li and Yorke
(and there are very many of them, see Smı́tal [45]) form a set of the first cat-
egory in the set of all real functions of topological entropy 0. This means that
arbitrarily small perturbations of chaotic zero-entropy functions can destroy
Li-Yorke chaos. Thus chaos in this sense is not stable.

An ad hoc way out of this predicament is to restrict the definition of Li-
Yorke chaos to functions of positive topological entropy and, since all the
familiar non-chaotic functions have topological entropy 0, to simply define a
function to be chaotic if and only if it has positive topological entropy. This
definition of chaos certainly appears to satisfy all the criteria listed above. In-
deed, for continuous functions on intervals, where positive topological entropy
is equivalent to the existence of cycles whose order is not a power of 2, see
Misiurewicz [29], it is in common use, see Block and Coppel [11].

There is, however, a drawback. Topological entropy, as the name indicates,
is a topological, not a metric notion. Consequently, the numerical value of the
topological entropy can be a quite misleading indicator of the actual extent of
chaotic behavior. For example, using the functions ft defined above, consider
the functions f∗m defined, for positive integers m, on the unit interval by:

f∗m(x) =

{
f1/m(x), x ∈ [0, 1

m ],
x, x ∈ [ 1

m , 1].

Each f∗m is continuous and piecewise monotonic, with the number of monotonic
pieces of f∗nm being 3n, independent of m. Hence all the functions f∗m have
the same topological entropy, namely ln 3. Yet the chaotic behavior of f∗m is
confined to the interval [0, 1

m ], which can be made arbitrarily small by taking
m large enough.
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By combining m copies of the function f1/m, we can construct a continu-
ously differentiable function gm on [0, 1] via:

gm(x) = f1/m(x− k/m) + k/m, x in [k/m, (k + 1)/m], k = 0, 1, . . . ,m− 1.

It is not difficult to see that for each non-negative integer n, the nth iterate
gnm of gm has m3n −m+ 1 monotonic pieces, so that the topological entropy
of gm is again ln 3, and again independent of m. Each gm is chaotic and
the chaotic behavior now extends throughout the unit interval. Yet under
gm, every trajectory is confined to an interval of length 1/m. Thus for m ≥
2, and especially for m large, the function gm, of topological entropy ln 3,
must definitely be considered less chaotic than the function L4, of topological
entropy ln 2, which has trajectories that are dense in the whole unit interval.

R. L. Devaney [15] and [16] has used a condition equivalent to the existence
of trajectories that are dense in the domain of a function as part of his defini-
tion of chaos. According to Devaney, a function f that maps a metric space
M with distance function d into itself is chaotic if it satisfies the following
conditions:

1. The function f has “sensitive dependence on initial conditions”, i.e.,
there is a δ > 0 such that for any x in M and any neighborhood
N of x, there is a y in N and a non-negative integer n such that
d(fn(x), fn(y)) > δ.

2. The function f is topologically transitive, i.e., for any pair (U, V ) of non-
empty open subsets ofM , there is a positive integer k such that fk(U)∩V
is non-empty. When M is compact, this condition is equivalent to the
existence of trajectories that are dense in M .

3. The set of periodic points is dense in M .

In [7], Banks et al. showed that Conditions 2 and 3 together imply Condi-
tion 1. Nevertheless, Devaney’s definition has remained popular in unaltered
form, probably precisely because it includes the redundant Condition 1. In
particular, the unaltered definition is used in the well-known book by Barnsley
[9].

In [10], Berglund and Vellekoop extended the theorem of Banks et al. by
showing that, for continuous functions on (not necessarily compact) intervals,
Condition 2 by itself implies both Conditions 1 and 3. Since it had earlier
been pointed out by Assaf and Gadbois [4] that Conditions 1 and 3 together
generally do not imply Condition 2, it can be said that the key element in
Devaney’s definition is transitivity or the existence of dense trajectories. But
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as the example of gm for m ≥ 2 shows, this dense trajectory condition is
certainly not necessary for the existence of chaos. Nor is it, by itself, sufficient,
as is shown by the example of the rotation of a circle through an irrational
multiple of π, where every trajectory is dense in the circle, yet the rotation is
clearly non-chaotic. Furthermore, as will be shown in Section 5, the property
of topological transitivity can be destroyed by arbitrarily small perturbations,
from which it follows that chaos in the sense of Devaney is also not stable.

Another possible definition of chaos is suggested by the fact that many
of the familiar chaotic functions are strongly mixing with respect to well-
behaved measures. But this possibility is ruled out if, once again, all the
functions gm are to be considered chaotic. This is so because for m ≥ 2, each
of the subintervals [k/m, (k+ 1)/m], k = 0, 1, . . . ,m− 1, of the unit interval is
invariant under gm, whence gm cannot even be ergodic, let alone mixing, with
respect to any measure that assigns positive measure to each non-empty open
subset of the unit interval.

Thus, of the various definitions (and parts of definitions) of chaos surveyed
in this section, only positive topological entropy satisfies the criteria given at
the beginning of the section. But, as we have seen, while positive topological
entropy can be taken as an indicator of the presence of chaos, in no way can
its numerical value be considered a measure of the extent of this chaos.

4 Distributional chaos

To introduce the notion of distributional chaos, we begin with a metric space
(M,d) and a function f that maps M into itself. For any pair (x, y) of points
of M , we define the sequence δxy by:

δxy(m) = d(fm(x), fm(y)), m = 0, 1, . . . .

Next, for any pair (x, y) and any positive integer n, we define the functions
F

(n)
xy on the real line by

F (n)
xy (t) =

1
n

#{m; 0 ≤ m ≤ n− 1 and δxy(m) < t}, (4.1)

where #S is the number of elements in the set S. Clearly, each function F (n)
xy

is non-decreasing, has minimum value 0 (since F (n)
xy (t) = 0 for all t ≤ 0), has

maximum value 1 (since F (n)
xy (t) = 1 for all t greater than the maximum of

the numbers δxy(m), m = 0, 1, . . . , n− 1), and is left-continuous (by virtue of
the strict inequality δxy(m) < t in (4.1)). Thus each F

(n)
xy is a left-continuous

distribution function whose value at t may be interpreted as the probability
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that the distance between the initial segments (of length n) of the trajectories
of x and y is less than t.

For any real number a, let εa be the distribution function given by

εa(t) =

{
0, t ≤ a,
1, t > a.

Then, for any point x we have F (n)
xx = ε0 for all n; for any pair of points x

and y forming a 2-cycle of f , we have F (n)
xy = εd(x,y) for all n; and in general,

for any x and y, F (n)
xy is a step-function that can be expressed as a convex

combination of a finite number of εa’s.
We are interested in the asymptotic behavior of the functions F (n)

xy as n
gets large. Accordingly, we consider the functions Fxy and F ∗xy defined by:

Fxy(t) = lim inf
n→∞

F (n)
xy (t) and F ∗xy(t) = lim sup

n→∞
F (n)
xy (t).

For any pair (x, y), the functions Fxy and F ∗xy are distribution functions with
Fxy(t) ≤ F ∗xy(t) for all real t. They are not necessarily left-continuous but
may, without loss of generality, be normalized to be left-continuous. We can
then, without inconsistency, adopt the further convention that Fxy < F ∗xy
means that Fxy(t) < F ∗xy(t) for some, and hence for all, t in some interval of
positive length. We shall refer to Fxy as the lower distribution, and to F ∗xy as
the upper distribution of x and y. It follows that F ∗xy is an asymptotic measure
of how close x and y can come together while Fxy is an asymptotic measure
of their maximum separation. Note also that if limn→∞ d(fn(x), fn(y)) = a,
then Fxy = F ∗xy = εa. We now make the following:

Definition 4.1. A function f that maps a metric space M into itself is dis-
tributionally chaotic (briefly, d-chaotic) if there is a pair of points (x, y) in M
such that Fxy < F ∗xy.

The principal aim of the paper is to illustrate and disseminate the import
and some of the consequences of this definition. We begin with a discussion
of several basic results due to Schweizer and Smı́tal [38] (more details will be
given in Section 6).

Let C(I, I) be the set of continuous functions that map a compact interval
I into itself. Then, first of all, the set of d-chaotic functions in C(I, I) is non-
empty. Next, f in C(I, I) is d-chaotic if and only if h(f) > 0. Specifically, if
h(f) = 0, which is the case if and only if the order of any cycle of f is a power
of 2, see Misiurewicz [29], then Fxy = F ∗xy for all x, y in I, whence f is not
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d-chaotic. On the other hand, if h(f) > 0, then there exist points x, y in I
and a positive number c such that

F ∗xy = ε0 and Fxy ≤ εc,

whence for any t in the open interval (0, c), we have

0 = Fxy(t) < F ∗xy(t) = 1,

whence f is d-chaotic. It follows that the pair {x, y} is a scrambled set, whence
any function f in C(I, I) that is d-chaotic is chaotic in the sense of Li and
Yorke. The converse is false since there exist functions that are chaotic in the
sense of Li and Yorke but have topological entropy 0, see Smı́tal [45], so are
not d-chaotic.

For functions in C(I, I), the properties “positive topological entropy” and
“distributionally chaotic” are equivalent. But since the family of upper and
lower distribution functions contains much more information than the single
number h(f), we can go further.

If the metric space (M,d) has a finite diameter dM (in particular, if the
space is compact) then, using the notion of distributional chaos, we can intro-
duce a measure of the amount of chaos exhibited by a function f from M into
M as follows: We first note that for any pair of points x and y in M we have
the inequalities,

εdM
≤ Fxy ≤ F ∗xy ≤ ε0,

whence for all real t,

0 ≤ F ∗xy(t)− Fxy(t) ≤ ε0(t)− εdM
(t).

Therefore,

0 ≤ 1
dM

∫ ∞
0

(F ∗xy(t)− Fxy(t))dt ≤ 1
dM

∫ ∞
0

(ε0(t)− εdM
(t))dt = 1;

and this leads us to the following:

Definition 4.2. Given a function f mapping a metric space (M,d) with finite
diameter dM into itself, the (principal) measure of chaos of f is the number
µp(f) in the unit interval [0, 1] given by:

µp(f) = sup
x,y∈M

1
dM

∫ ∞
0

(F ∗xy(t)− Fxy(t))dt.

It follows at once that µp(f) 6= 0 if and only if f is d-chaotic.
In some instances, e.g., for the tent map (see Section 5), the principal

measure of chaos can be determined explicitly. There are also other measures
of chaos which we shall define and discuss in Sections 6 and 7.
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5 The tent map

Our aim in this section is to illustrate the subject matter of the preceding
section with several closely related examples. We begin with the well-known
tent map τ which is defined on the unit interval [0, 1] by τ(x) = 1− |2x− 1|,
i.e.,

τ(x) =

{
2x, x ∈ [0, 1

2 ],
2(1− x), x ∈ [ 12 , 1].

An easy induction yields that τn is given by

τn(x) =

{
2n(x− k

2n−1 ), x ∈ [ k
2n−1 ,

2k+1
2n ],

2n( k+1
2n−1 − x), x ∈ [ 2k+1

2n , k+1
2n−1 ],

for k = 0, 1, . . . , 2n−1 − 1.
The graph of τn consists of 2n−1 compressed copies of the graph of τ ,

placed side-by-side over the interval [0, 1]. It follows that τn has 2n fixed
points. The largest of these is 2n/(2n + 1) and it belongs to the n-cycle of τ
consisting of the points

2k/(2n + 1), k = 1, 2, . . . , n.

For n > 2, there are other n-cycles, but it is this one, which we call the
principal n-cycle of τ , that will concern us here. Since τ has the principal
3-cycle {2/9, 4/9, 8/9}, it is immediate that τ is chaotic in the sense of Li
and Yorke (cf. Section 3). Moreover, since τn has 2n monotonic pieces, the
topological entropy of τ is ln 2 > 0, whence τ is d-chaotic.

The function τ has the fixed points 0 and 2/3; and it is not difficult to
show that every binary rational (i.e., number of the form m/2n) in [0,1], but
no other number, is mapped onto 0 by some iterate of τ . In other words, the
τ -orbit of 0 is precisely the set of binary rationals in [0,1]. As regards other
τ -orbits, it is easy to see that x is in a cyclic τ -orbit if and only if x is rational
and that x is actually in the cycle of a cyclic τ -orbit if and only if x is of the
form “ even

odd .”
To proceed further, it is useful to work with the binary representation of

numbers in [0,1]. In view of the above, we need only do this for numbers that
are not binary rationals. Each such number has a unique representation as a
sequence of 0’s and 1’s that contains an infinite number of 0’s and an infinite
number of 1’s. If s is such a sequence, we let s̄ be the sequence obtained from
s by interchanging 0 and 1 at each place. From the definition of τ , we see that
if x has the binary representation .0s (a sequence beginning with 0 followed
by the sequence s), then τ(x) = .s, while if x = .1s then τ(x) = .s̄.
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Many things follow from this. For one, let s be a sequence that contains
all possible finite sequences of 0’s and 1’s, each such finite sequence being
preceded in s by a 0, and let x be the number represented by s. Then since
any sequence beginning with 0 and followed by a finite sequence of 0’s and 1’s
is the initial sequence of τn(x) for some n, it follows that the ω-limit set of
x is the whole interval [0, 1], i.e., the trajectory of x is dense in [0,1] (whence
τ is transitive and [0,1] is the unique maximal ω-limit set of τ). Clearly,
there are non-denumerably many such numbers x. Now recall that .0000 . . .
is a binary representation of the fixed point 0 and .10101010 . . . the binary
representation of the fixed point 2/3 and consider a sequence s constructed
as follows: s begins with a long string of 0’s, followed by a much longer, say
ten times as long, string of 10’s. This is followed by a string of 0’s a hundred
times as long as the entire preceding initial string of s, followed in turn by a
string of 10’s a thousand times as long as its preceding initial string of s, and
so on, alternating exponentially longer strings of 0’s and 10’s. It follows that
if p1 is the number represented by s, then as n increases the sequence {F (n)

p10
}

alternates between coming closer and closer to ε0 and closer and closer to ε2/3.
Thus Fp10 = ε2/3 and F ∗p10 = ε0, which shows directly that τ is d-chaotic and
that µp(τ) ≥ 2/3.

We can improve this estimate by bringing the principal (and only) 2-cycle
{2/5, 4/5} of τ into play. We do this by constructing a sequence that alter-
nates long strings of 0’s, longer strings of 10’s, still longer strings of 1100’s
(.110011001100 · · · = 4/5), back to exponentially longer strings of 0’s, and so
ad infinitum. If p2 is the number represented by this sequence, then the dis-
tribution functions F (n)

p20
alternately approach the three functions ε0, ε2/3 and

1
2 (ε2/5 + ε4/5). It follows that F ∗p20 is the pointwise maximum of these three
functions, which is ε0, while Fp20 is the corresponding pointwise minimum,
which is 1

2 (ε2/3 + ε4/5). Using Fp20 and F ∗p20 in place of Fp10 and F ∗p10 adds
an amount 1

2 ( 4
5 −

2
3 ) = 1

15 to the previous lower bound for µp(τ), yielding
µp(τ) ≥ 11

15 .
We can continue the process as follows: For any positive integer r, let 0r

denote a string of r zeros; and for any positive integer n, let nr denote the
string of r repetitions of the string 1 . . . 10 . . . 0 consisting of n ones followed by
n zeros (note that the infinite string n1n1n1 . . . is the binary representation
of the number 2n/(2n + 1)); next let {km} be a strictly increasing sequence
of positive integers that grows so fast that the sequence whose m’th term is
(k1 + k2 + · · · + km)/km+1 decreases monotonically to 0 (e.g., take km+1 =
(m+ 1)(k1 + k2 + · · ·+ km); and lastly form the infinite binary sequence

0k10k21k30k41k52k60k71k82k93k100k111k122k133k144k150k16 . . .
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where the rule of formation should be clear (in particular, a string of type nkm

makes its first appearance in the sequence when m = (n+ 1)(n+ 2)/2). This
binary sequence represents a number p in (0, 1), and it readily follows that
F ∗p0 = ε0 while, for any t in [0, 1],

Fp0(t) = inf{Fc(n)0(t);n = 1, 2, . . . }

=

{
0, 0 ≤ t ≤ c(1),
1− 1

n , c(n− 1) < t ≤ c(n), for n ≥ 2,

where c(n) = 2n/(2n + 1). Consequently,

µp(τ) ≥
∫ ∞

0

(F ∗p0(t)− Fp0(t))dt

=
2
3

+
∞∑
n=2

1
n

2n−1

(2n + 1)(2n−1 + 1)
≈ 0.7861937 . . . .

We now proceed to show that the distribution function Fp0 is minimal in the
set of all distribution functions Fuv for u, v in [0,1], whence the sum of the
above infinite series is in fact equal to µp(τ). For n ≥ 2, t > c(n − 1), and
arbitrary u, v in [0,1], consider those non-negative integers m (if any) for which
δuv(m) ≥ t. This can happen only if one of fm(u), fm(v) is in the interval
[0, 1/(2n−1 + 1)) and the other is in the interval (c(n− 1), 1]. It follows from
the definition of τ that each of the numbers

fm+1(u), fm+2(u), . . . , fm+n−1(u), fm+1(v), fm+2(v), . . . , fm+n−1(v)

is in the interval [0, c(n− 1)), whence each of the n− 1 numbers δuv(m+ 1),
δuv(m + 2), . . . , δuv(m + n − 1) is less than c(n − 1). This means that any
2 distinct m’s for which δuv(m) ≥ t must differ by at least n, which in turn
means that for any positive integer l, the number of such m’s that are less
than l cannot exceed [ ln ] + 1, where for any real number s, [s] is the greatest
integer not exceeding s. Therefore, the number of non-negative integers m
that are less than l and are such that δuv(m) < t is at least

l − 1−
[ l
n

]
− 1,

whence
F luv(t) ≥ 1− 1

l

[ l
n

]
− 2
l
≥ 1− 1

n
− 2
l
.

Letting l→∞, we obtain

Fuv(t) ≥ 1− 1
n
, for n ≥ 2 and t > c(n− 1).
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Thus Fuv ≥ Fp0 for all u, v in [0, 1], whence Fp0 is the unique minimal lower
distribution function for the tent map τ .

Note that we can insert any finite sequence whatever of 0’s and 1’s at the
beginning of the binary expansion of p without affecting the upper and lower
distributions F ∗p0 and Fp0. This means that the set of numbers q such that
Fq0 = Fp0 is dense in [0,1]. Similarly, given any such q, we can insert any finite
sequence whatever of 0’s and 1’s at the beginning of the binary expansion of
0 without affecting the distributions F ∗q0 and Fq0. Consequently, the set of
pairs (x, y) such that Fxy = Fp0 and F ∗xy = F ∗p0, and a fortiori, the set of all
d-chaotic pairs is dense in [0, 1]2.

Next, we briefly consider the logistic function L4. Recall that for x in [0,1],
L4(x) = 4x(1− x). As mentioned before, L4 is topologically conjugate to the
tent map τ ; specifically, L4 = λ−1 ◦ τ ◦ λ where, for x in [0, 1],

λ(x) =
1
π

arccos(1− 2x) =
2
π

arcsin(
√
x),

and
λ−1(x) =

1
2

(1− cosπx) = (sin(
π

2
x))2.

Hence the qualitative behavior of τ (transitivity, existence of cycles of all
orders, existence of d-chaos, etc.) carries over to L4. In particular, since λ is
strictly increasing and an orbit isomorphism, it follows that for any positive
integer n, the largest fixed point of Ln4 lies to the right of the corresponding
fixed point of τn, so it is immediate that µp(L4) > µp(τ).

We now turn to the trapezoid functions. For r in (0,1), the (symmetric)
trapezoid function τr (so-called from the shape of its graph) is defined on [0,1]
by:

τr(x) =


2

1−rx, x in [0, 1−r
2 ],

1, x in [ 1−r2 , 1+r
2 ],

2
1−r (1− x), x in [ 1+r2 , 1].

A striking difference between the trapezoid functions and the tent map
(r = 0) is the fact that, for any r > 0, the τr-orbit of the fixed point 0 consists
of the points 0, 1, and a countable collection of disjoint closed intervals whose
interiors form the complement of a Cantor set Cr of Lebesgue measure 0.
From this observation it follows at once (see Section 2) that no τr is conjugate
– and, a fortiori, topologically conjugate – to the tent map τ . However, any two
trapezoid functions are topologically conjugate and the conjugating function
can be taken to be piecewise linear and strictly increasing on the complement
of the appropriate Cantor set, see Schweizer and Sklar [36]. In particular, for
any r, τr is conjugate to τ1/3.
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Now for τ1/3, the set C1/3 is the classical middle-third Cantor set, the
endpoints of whose complementary intervals are those ternary rationals (i.e.,
those numbers of the form m/3n) whose trajectories under τ1/3 include ei-
ther 1

3 or 2
3 . Let C ′1/3 denote the subset of C1/3 consisting of all points in

C1/3 except the ternary rationals whose trajectories include 1
3 . Thus C ′1/3

contains the points 2
3 ,

2
9 ,

7
9 ,

2
27 ,

25
27 ,

7
27 ,

20
27 , . . . , but does not contain the points

1
3 ,

1
9 ,

8
9 ,

1
27 ,

26
27 ,

8
27 ,

19
27 , . . . . Now define a function σ from [0, 1] onto C ′1/3 as fol-

lows: If x in [0, 1] is not a binary rational, replace all the 1’s in the binary
expansion of x by 2’s and take the result as the ternary expansion of σ(x).
If x is a binary rational in (0, 1) of the form (4m + 1)/2n, again replace all
the (finitely many) 1’s in the binary expansion of x by 2’s to get the ternary
expansion of σ(x). If x in (0, 1) has the form (4m+ 3)/2n, replace all except
the last 1 in the binary expansion of x by 2’s and keep the last 1 as it is to
get the ternary expansion of σ(x). Finally, set σ(0) = 0 and σ(1) = 1. It can
be shown that σ conjugates the tent map with τ1/3 restricted to the set C ′1/3,
and so maps the orbit structure of τ one-to-one onto this restriction of τ1/3.
A number of consequences flow from these observations.

First of all, no τr is transitive on [0, 1]. Thus, no τr is chaotic in the sense
of Devaney; and since the trapezoids τr, for r → 0, converge uniformly to the
tent map τ (which is transitive on [0,1]), it follows that chaos in the sense of
Devaney is not stable. Note also that for τ the maximal ω-limit set is the unit
interval [0,1] whereas for τr it is Cr, a nowhere-dense perfect set of measure 0.

Next, for any r, the restriction of τr to Cr has the same structure of
periodic points as τ . Thus each τr has cycles of all orders, hence has positive
topological entropy (viz., ln 2) and is therefore d-chaotic. This latter fact can
also be established directly by counting the number of monotonic pieces of τr.

Lastly, the largest point in any n-cycle of τr is

2n/[2n + (1− r)n].

This point varies continuously with r and converges to c(n), the largest point
in the n-cycle of τ , as r → 0. Furthermore, using the abovementioned binary
to ternary expansion replacement, the topological conjugacy of any two trape-
zoids, and the argument leading to the series representing µp(τ), it is readily
seen that

µp(τr) =
2

3− r
+
∞∑
n=2

1
n

2n−1(1− r)n−1(1 + r)
(2n + (1− r)n)(2n−1 + (1− r)n−1)

.

Thus µp(τr) is a strictly increasing, continuous function of r with

lim
r→1−

µp(τr) = 1 and lim
r→0+

µp(τr) = µp(τ).
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Other functions related to the tent map are the truncated tents τ̄λ defined,
for λ in (0, 1) by

τ̄λ(x) = min(τ(x), λ) for all x in [0, 1].

The first thing to notice is that, since no trajectory can be dense in [λ, 1],
no τ̄λ is transitive; and since the transitive tent map can be transformed into
a non-transitive truncated tent by an arbitrarily small perturbation on an
arbitrarily small interval, this observation provides another illustration of the
fact that transitivity is unstable.

It is easy to verify that for λ in the interval (0, 2
3 ], λ is a fixed point of τ̄λ;

that for λ in ( 2
3 ,

4
5 ], λ is a periodic point of period 2; and that for λ in ( 4

5 ,
14
17 ],

λ is a periodic point of period 4. This pattern extends. There is an increasing
sequence {λn} of rational numbers such that if λ is in the interval (λm−1, λm],
then:

(i) λ is a periodic point of period 2m;

(ii) τ̄λ has cycles of order 1, 2, 22, . . . , 2m but no cycles of any other order;

(iii) τ̄λ is neither Li-Yorke chaotic nor d-chaotic.

On the other hand, for λ ≥ 52
63 , the 6-tuple ( 52

63 ,
22
63 ,

44
63 ,

38
63 ,

50
63 ,

26
63 ) is a cycle

of order 6 of τ̄λ, so that each such τ̄λ is both Li-Yorke chaotic and d-chaotic.
It follows that the sequence {λn} has a limit λ∞ which is between 14

17 =
.8235294 . . . and 52

63 = .8253968 . . . . Indeed, Misiurewicz and Smı́tal [30] have
shown that λ∞ = .8249080 . . . , that h(τ̄λ) > 0 for λ > λ∞, and that h(τ̄λ∞) =
0. Therefore τ̄λ is d-chaotic for λ > λ∞, but τ̄λ∞ is not d-chaotic. On the
other hand, as Misiurewicz and Smı́tal [30] have also shown, τ̄λ∞ is chaotic
in the sense of Li and Yorke; and since an arbitrarily small perturbation can
transform τ̄λ∞ into a τ̄λ with λ < λ∞, this example shows that chaos in the
sense of Li and Yorke is unstable.

6 Functions in C(I, I) in general; proximal trajectories

In this section we present, in outline and without proof, but with further
illustrative examples, the principal results of Schweizer and Smı́tal [38] and
Balibrea et al. [5], concerning distributional chaos for arbitrary functions in
C(I, I). These results rely heavily on the characterization of various types of
maximal ω-limit sets that goes back to the 1966 work of A. N. Sharkovsky,
[39, 40, 41], where such sets were partitioned into

(a) those sets that are finite;
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(b) those sets that are infinite but contain no cycles; and

(c) those sets that are infinite and contain a cycle.

He referred to the sets of type (a) and (b) as “maximal ω-limit sets of the first
kind”and to those of type (c) as “maximal ω-limit sets of the second kind”.
The latter are now generally called basic sets, see [12].

By a theorem of B. Barna [8], greatly extended and with a simple proof
by M. Kuczma [26], a finite ω-limit set must be a cycle. Thus, if for some
f in C(I, I) and x, y in I, ωf (x) and ωf (y) are both finite, then (trivially)
Fxy = F ∗xy, and this common distribution function is a step function.

Definition 6.1. Let f be in C(I, I). Then the points x, y in I have proximal
f -trajectories if lim infn→∞ d(fn(x), fn(y)) = 0. The set of all such pairs of
points is denoted by Prox(f).

Note that if (x, y) ∈ Prox(f), then x and y belong either to the same
maximal ω-limit set or to adjacent maximal ω-limit sets, where two maximal
ω-limit sets are adjacent if they have a nonempty intersection. (It is well-
known that the intersection of any two different maximal ω-limit sets is always
finite.) Note also that if (x, y) is not in Prox(f), then there is a t > 0 such that
d(fn(x), fn(y)) ≥ t for all sufficiently large n, whence limn→∞ F

(n)
xy (t) = 0.

Thus, if F ∗xy = ε0 then (x, y) is in Prox(f). The converse is false, as the
following example shows:

Example 6.2. Let y be a point whose trajectory with respect to the tent map
τ is close to the fixed point 2/3 most of the time and such that 0 belongs to
ωτ (y). Then the pair (0, y) is in Prox(τ) while F0y = F ∗0y = ε2/3.

The next result is a restatement of Schweizer and Smı́tal’s Theorem 2.1 of
[38].

Theorem 6.3. Let f be in C(I, I) and suppose that x, y in I are such that
each of the sets ωf (x), ωf (y) is contained in a maximal ω-limit set of type (a)
or type (b). Then

(i) Fxy = F ∗xy.

(ii) If, in addition, (x, y) is in Prox(f), then Fxy = F ∗xy = ε0.

It follows that if f in C(I, I) is such that none of its maximal ω-limit sets
is a basic set, then f is not d-chaotic. Regarding the converse, Sharkovsky,
in [40], showed that the presence of a basic set is equivalent to the existence
of an f -cycle whose order is not a power of 2 (see Janková and Smı́tal [22]
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for a shorter proof); later Misiurewicz, in [29], showed that either of these
conditions is equivalent to h(f) > 0; and Schweizer and Smı́tal used these
results in [38] to establish the fact, already mentioned in Section 4, that f
is d-chaotic if and only if h(f) > 0. Thus the study of distributional chaos
becomes interesting only when basic sets are in the picture. To present the
central results in this case, we begin with:

Definition 6.4. Let f be in C(I, I) and x, y in I. Then the pair (x, y) is
isotectic (with respect to f) if, for every positive integer n, the ω-limit sets
ωfn(x) and ωfn(y) are subsets of the same maximal ω-limit set of fn.

Note that (x, x) is isotectic for every x in I; note further that if x and y are
distinct points of a maximal ω-limit set of type (a), then there is an integer k
such that ωfk(x) = {x} and ωfk(y) = {y} and, since each of these singleton
sets is a maximal ω-limit set of fk, x and y are not isotectic. Finally note that
if f is transitive, then I is the unique maximal ω-limit set, whence all pairs
(x, y) are are isotectic with respect to f .

Equivalently, the pair (x, y) is isotectic if both ωf (x) and ωf (y) are con-
tained in the same maximal ω-limit set and if, for any periodic interval J such
that ω is a subset of the set J ∪ f(J) ∪ f2(J) ∪ · · · ∪ fn−1(J), where n is the
period of J , there is a j ≥ 0 such that both f j(x) and f j(y) belong to J .

In the earlier papers of Schweizer and Smı́tal [38], and Balibrea et al.
[5], the word “synchronous” was used to describe the property specified in
Definition 6.4. However, we now feel that this term has connotations that are
somewhat misleading, since what we wish to describe is more a property of
being “under the same roof” than a property of “keeping the same time”.

Now let

(i) Iso(f) = {(x, y) in I × I; (x, y) is isotectic}, and

(ii) D(f) = {Fxy; (x, y) in Iso(f)}.
Then the spectrum of f , denoted by

∑
(f), is the set of minimal elements of

D(f).
To illustrate, for the tent map τ , the unit interval [0, 1] is the unique

maximal ω-limit set, whence all pairs (x, y) in [0, 1] × [0, 1] are isotectic and,
as shown in Section 5,

∑
(τ) = {Fp0}.

We can now state the central result of Schweizer and Smı́tal from [38].

Theorem 6.5. For any f in C(I, I), the spectrum
∑

(f) is non-empty and
finite, and:

(i) If ε0 belongs to
∑

(f) - in which case
∑

(f) = {ε0} and Fxy = F ∗xy = ε0
for all (x, y) in Iso(f) - then f is not d-chaotic; and conversely, if f is
not d-chaotic, then

∑
(f) = {ε0}.



Distributional Chaos 513

(ii) If ε0 does not belong to
∑

(f), then f is d-chaotic. In this case, for each
distribution function F in

∑
(f) there is a non-empty perfect set PF ,

and a positive number t(F ) such that any pair (x, y) of distinct points of
PF belongs to Prox(f) and

Fxy = F ≤ εt(F ) < ε0 = F ∗xy.

Example 6.6. For 0 < a < b < 1, let fab be a piecewise linear map in C(I, I)
determined via fab(0) = fab(b) = 0, fab(a/2) = b, fab(a) = a and fab(1) = 1.
The restriction of fab to the interval [0, b] is topologically conjugate to the tent
map τ . Exploiting this, it follows that fab has two maximal ω-limit sets - the
singleton set {1} and the interval [0, b] - and that

∑
(fab) = {Φab}, where

Φab(x) = 0 if x ∈ [0, a], Φab(x) = 1 if x ∈ [b, 1], and 0 < Φab(x) < 1 if
x ∈ (a, b).

Now, if a < a′ < b′ < b, then Fab and Fa′b′ are incomparable. Using this
fact, for any positive integer n, it is easy to construct a function f such that∑

(f) has exactly n elements. Indeed, for 1 ≤ i ≤ n, let Ii be the interval
[ i−1
n , in ], let 0 < a1 < a2 < · · · < an < bn < bn−1 < · · · < b1 < 1 be given, let

fi ∈ C(Ii, Ii) be the affine copy of faibi and define f on [0, 1] via f(x) = fi(x)
for x ∈ Ii. Then

∑
(f) = {F1, . . . , Fn} where Fi(x) = Φaibi(nx).

On the other hand, if f has exactly one basic set, in particular if f is
transitive on I, then

∑
(f) is a singleton set; and if the endpoints of this basic

set, say c and d, are fixed points of f , then
∑

(f) = {εd−c}.

Definition 6.7. For any f in C(I, I), the spectral measure of chaos of f is
the number µs(f) in the interval [0, 1] given by

µs(f) = max
{ 1
|I|

∫ |I|
0

(1− F (t))dt;F ∈
∑

(f)
}
,

where |I| denotes the length of the interval I.

Theorem 6.8. Let f be in C(I, I) and let F be a distribution function in∑
(f). Then there are sequences {pn}∞n=1 and {qn}∞n=1 of periodic points such

that
F = lim inf

n→∞
Fpnqn

.

In other words, any distribution function in the spectrum of f can be
approximated by distribution functions generated by periodic points. This
means, in effect, that the spectrum of f is determined by the cycle structure
of f .

The spectrum exhibits the following stability property found by Balibrea
et al. in [5].
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Theorem 6.9. Let f in C(I, I) and ε > 0 be given. Then there is a δ > 0 such
that for every g ∈ C(I, I) satisfying the condition supx∈I |f(x) − g(x)| < δ,
the following property holds:

For any F in
∑

(f) there is a G in
∑

(g) such that∫ |I|
0

max{0, G(t)− F (t)}dt < ε.

Corollary 6.10. The spectral measure of chaos is lower semi-continuous, i.e.,
for any f in C(I, I) and any ε > 0, there is a δ > 0 such that

µs(f)− ε < µs(g),

for any g in C(I, I) satisfying supx∈I |f(x)− g(x)| < δ.

As in the case of length in the Calculus of Variations, the stability described
above is definitely one-sided. Chaos cannot disappear when the original func-
tion is replaced by a slightly perturbed function; however, small perturbations
can significantly increase, even “explode”, the spectral measure of chaos, as
the following example shows:

Example 6.11. Let f be the identity function on [0, 1], i.e., f(x) = x for any
x in [0, 1], and let g be a topologically transitive map that is arbitrarily close
to f and has 0 and 1 as fixed points. (Such functions always exist; a piecewise
linear example is given by Smı́tal and Smı́talová in Theorem 1 of [46].) Then∑

(g) = {ε1}, whence µs(g) = 1 while µs(f) = 0.

Example 6.12. The conclusion of Theorem 6.9 cannot be strengthened to
obtain G(t) < F (t) + ε for all t in I. To see this, consider the tent map τ
and, for δ in (0, 1), let g be its dilation to [0, 1− δ], extended to [0, 1] by letting
g(x) = 0 on [1 − δ, 1]. Then

∑
(g) = {G}, where G is the dilation of Fτ to

[0, 1− δ]. We then have G(t)− Fτ (t) ≥ 1
2 for 2

3 (1− δ) < t ≤ 2
3 .

The two measures of chaos, µs and µp are related as follows:

Theorem 6.13. For any f in C(I, I),

µs(f) ≤ µp(f) ≤ 2µs(f).

The inequality µs(f) ≤ µp(f) is immediate, as is the fact that µs(f) =
µp(f) whenever all pairs (x, y) in I × I are isotectic with respect to f . The
following example shows that we may also have µp(f) = 2µs(f) > 0.
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Example 6.14. Let T be the piecewise-linear function defined on [0, 1] by

T (x) =


2x+ 1

2 , x ∈ [0, 1
4 ],

3
2 − 2x, x ∈ [ 14 ,

3
4 ],

2x− 3
2 , x ∈ [ 34 , 1].

It is worth noting that T has no cycles of odd order greater than 1, but
has cycles of all other orders, including 20 cycles of order 6.

The unit interval [0, 1] is the single maximal ω-limit set for T , but each
even-numbered iterate of T , i.e., T 2, T 4, . . . , has two maximal ω-limit sets,
namely [0, 1

2 ] and [ 12 , 1]. It follows that (x, y) is an isotectic pair for T if and
only if either (x, y) ∈ [0, 1

2 ]× [0, 1
2 ] or (x, y) ∈ [ 12 , 1]× [ 12 , 1]. Next, we have that∑

(T ) = {FT } where FT is related to Fτ via FT (t) = Fτ (2t) for all t. Thus FT
is the minimal distribution derived from isotectic pairs, and µs(T ) = 1

2µp(τ).
On the other hand, it can be shown that there are non-isotectic pairs (x, y)
such that

Fxy = Fτ < FT < ε0 = F ∗xy,

and that Fτ is the unique minimal lower distribution of T , whence µp(T ) =
µp(τ) and this yields µp(T ) = 2µs(T )

This and other examples, in particular those involving adjacent basic sets
with a common fixed point, indicate that, when dealing with arbitrary func-
tions in C(I, I), it is convenient to supplement the notion of spectrum. In [38]
Schweizer and Smı́tal do this as follows: For f in C(I, I), let

Dw(f) = {Fuv; (u, v) in Prox(f)}.

Then the weak spectrum of f , denoted by
∑
w(f) is the set of all minimal

elements of Dw(f). Thus, for instance, in Example 6.14 we have
∑
w(T ) =

{Fτ} (since F ∗xy = ε0 implies that (x, y) is in Prox(T )).

Theorem 6.15. For any f in C(I, I), the weak spectrum
∑
w(f) is non-empty

and finite. Moreover, for any F in
∑
w(f),

(i) there is at least one pair (u, v) in Prox(f) such that

F = Fuv < F ∗uv = ε0, and

(ii) there are sequences {pn}∞n=1 and {qn}∞n=1 of periodic points such that
F = lim infn→∞ Fpnqn , whence

∑
w(f) is also determined by the cycle

structure of f .
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A distribution function F in
∑
w(f) need not be in

∑
(f) and, if it is not,

then in contrast to the case of functions in
∑

(f), not only is there no perfect
set associated with F , there is not even a triple of distinct points such that
any two of them determine F .

In general, there is no simple relation between the number of functions in∑
(f) and

∑
w(f). In fact, one can modify Example 6.6 to show that each of

the sets ∑
(f) \

∑
w

(f),
∑
w

(f) \
∑

(f),
∑

(f) ∩
∑
w

(f)

can simultaneously have any finite number, 0 included, of elements, subject
only to the following restrictions: (1) at least one of the three sets is non-
empty; (2) if

∑
(f) \

∑
w(f) is non-empty, then so is

∑
w(f) \

∑
(f), i.e.,∑

w(f) cannot be a proper subset of
∑

(f).
If the set

∑
w(f) \

∑
(f) is non-empty, then it does not enjoy the stability

properties of
∑

(f) that are stated in Theorem 6.9 and Corollary 6.10; for there
will be functions g in C(I, I), arbitrarily close to f such that

∑
w(g) \

∑
(g) is

empty (see Remark 2 in Section 4 of [5]). On the other hand, if in Theorem 6.9
we replace the phrase “for every g in C(I, I)”by “there exists a g in C(I, I)”,
then replacing “

∑
(f)”and “

∑
w(f)”by “

∑
w(f)\

∑
(f)”and “

∑
(g)\

∑
w(f)”,

respectively, does yield a valid statement (see Remark 3 in Section 4 of [5]).
As we have seen, for some functions in C(I, I), e.g., the tent map τ , the

principal measure of chaos is determined by the spectrum; for others, e.g., the
function in Example 6.14, it is determined by the weak spectrum. However,
as the next example shows, there are functions in C(I, I) for which the prin-
cipal measure of chaos is determined by neither the spectrum nor the weak
spectrum.

Example 6.16. Using the functions ft defined in Section 2, let ϕ be the
function defined on [0, 1] by:

ϕ(x) =


f2/5(x), x ∈ [0, 2

5 ],
f1/5(x− 2

5 ) + 2
5 , x ∈ [ 25 ,

3
5 ],

f2/5(x− 3
5 ) + 3

5 , x ∈ [ 35 , 1].

It is easy to verify that ϕ is continuously differentiable, has topological
entropy log 3, and satisfies the functional equation ϕ(x) + ϕ(1 − x) = 1.
There are 3 maximal ω-limit sets: [0, 2

5 ], [ 25 ,
3
5 ], [ 35 , 1], and it can be shown that∑

(ϕ) = {ε2/5}, that
∑
w(ϕ) = {ε3/5}, and that there are pairs (x, y) with x

in [0, 2
5 ] and y in [ 35 , 1] such that Fxy = ε1 and F ∗xy = ε1/5. Hence µp(ϕ) ≥ 4

5 ,
which is larger than the number obtained from the spectrum (µs(ϕ) = 2

5), and
the number obtained from the weak spectrum ( 3

5).
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Examples such as this indicate that the theory developed by Schweizer and
Smı́tal in [38] should be extended as follows:

Let Tc be the translation through c defined by Tc(t) = t + c for all t. For
any function f mapping a metric space into itself, define the set Dp(f) of
distribution functions by

Dp(f) = {Fxy ◦ Tc : F ∗xy = εc for some c ≥ 0},

Note that in view of Theorems 6.5 and 6.15, for any f in C(I, I), both D(f)
and Dw(f) are subsets, generally proper, of Dp(f). Now define

∑
p(f), the

principal spectrum of f , to be the set of minimal elements of Dp(f). Thus,
for the function ϕ in Example 6.16, we have

∑
p(ϕ) = {ε4/5} – which shows,

incidentally, that no one of the three sets
∑

(f),
∑
w(f) and

∑
p(f) need be

a subset of either of the other two.
Lastly, there is the following result, whose proof will appear elsewhere:

Theorem 6.17. For any f in C(I, I), the principal spectrum
∑
p(f) is non-

empty and finite. Moreover:

(i) f is d-chaotic if and only if
∑
p(f) does not contain ε0.

(ii)
∑
p(f) (like

∑
w(f)) does not share the stability properties of

∑
(f).

(iii) For any F in
∑
p(f), there is at least one pair of points (u, v) such that,

for some c > 0,

F = Fuv ◦ Tc < F ∗uv = εc.

(iv) For any F in
∑
p(f), there are sequences {pn}∞n=1 and {qn}∞n=1 of peri-

odic points such that

F = lim inf
n→∞

Fpnqn
.

(v) The principal measure of chaos, µp(f), is given by

µp(f) = max
{ 1
|I|

∫ |I|
0

(1− F (t))dt;F ∈
∑

p
(f)

}
.

Proof. (i) is clear, (ii) is proved in [5], and (iii) - (v) have recently been
proved by K. Janková.
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7 Concluding remarks

1. In the preceding sections we have concentrated our attention on the
numerical measures µp and µs. Clearly, however, no single number can ade-
quately describe a phenomenon as complex as chaos. For distributional chaos,
a detailed description is given by the finite collection of pairs of lower and up-
per distributions that are determined by the various spectra. The information
supplied by these pairs can be condensed by means of the associated numerical
measures given by the (suitably normalized) integrals

∫
(F ∗(t)− F (t))dt; and

then, as we have done, further condensed to the measures µp, µs, etc.. In
addition, for pairs of the form (F, εc) one could – and should – also consider
the means, medians, etc., of the translated lower distributions.

2. Recently people have begun to investigate d-chaos for continuous func-
tions defined on spaces other than intervals. One significant result of these
investigations is the fact that the equivalence between d-chaos and positive
topological entropy does not extend to higher dimensions. Specifically, con-
sider the family of functions G defined on the closed unit square by

G(x, y) = (λx, g(x, y)),

where λ is in (0, 1) and g is a continuous function with g(0, y) = y for all y in
[0, 1]. Each such function is a special triangular map of the square (see Kolyada
[24]). Because of the contraction in the first coordinate, all the functions in
this family have topological entropy 0. Furthermore, as shown by Forti et al.
[21], there is a particular function in this family that has topological sequence
entropy 0 for all sequences; and, as shown by Forti and Paganoni in [20], this
function is d-chaotic.

3. The second and third authors have recently shown in [44] that any
continuous function on a compact metric space that has either the specifica-
tion property (see Sigmund [43], or Denker et al. [14, §21]) or the generalized
specification property ( see Balibrea et al. [5]) is d-chaotic. In particular, for
any n ≥ 2, every hyperbolic automorphism of the n-torus is d-chaotic. Inci-
dentally, functions with the specification property are known to have positive
topological entropy, Denker et al. [14, §21] and it is reasonable to conjecture
that the same holds for functions with the generalized specification property.

4. To date, hardly a beginning has been made in the investigation of
d-chaos for discontinuous functions or for functions on non-compact metric
spaces. There are, of course, examples. Perhaps the simplest is the discontin-
uous analog of the tent map, namely the sawtooth function β defined on the
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half-open interval [0, 1) by

β(t) =

{
2t, for 0 ≤ t < 1

2 ,
2t− 1, for 1

2 ≤ t < 1.

Using the binary representation of real numbers, one readily constructs a num-
ber x in (0, 1) such that F0x = ε1 and F ∗0x = ε0, whence β is d-chaotic with
µp(β) = 1. However, as a somewhat isolated example, β offers few clues as to
further directions of inquiry.

It should be noted that β must be carefully distinguished from the cor-
responding function β0 on the topological circle obtained by identifying the
endpoints of the closed interval [0, 1]. The functions β and β0 are conjugate
but not topologically conjugate, since their respective domains are not home-
omorphic; and while β0 is also d-chaotic, we have µp(β0) < 1 = µp(β).

5. The tent map τ and the function β defined above are both strongly
mixing with respect to Lebesgue measure. Similarly, the logistic map L4 and
the hyperbolic automorphisms of the torus are strongly mixing with respect
to well-behaved measures on their domains. These facts lead to a seemingly
paradoxical state of affairs. To describe it, we need a few results from the
theory of probabilistic metric spaces.

Let (M,d) be a metric space and f a function that maps M into itself.
Let = be the mapping from M ×M into the space of probability distribution
functions defined via

=(x, y) = Fxy, for any x, y ∈M,

where Fxy is the lower distribution of x and y. Then the pair (S,=) is a
transformation-generated probabilistic pseudo-metric space (see Schweizer and
Sklar [35, §11.1]). Such spaces were introduced by Erber et al. [18] and by
Schweizer and Sklar in [34] and studied from the point of view of ergodic theory.
(For a discussion of how these studies later led to the notion of distributional
chaos, see Schweizer [33].) In these papers it was shown that if M is a separable
metric space endowed with a probability measure P defined on a σ-algebra
that contains the Borel sets of M , and if the function f from M into M is
measure-preserving with respect to P , then

Fxy = F ∗xy

for almost all pairs (x, y) in M ×M (endowed with the product measure P 2).
Thus if f is measure-preserving, then almost all pairs of points in M ×M are
non-chaotic.



520 B. Schweizer, A. Sklar, and J. Sḿıtal

If, in addition to being measure-preserving, f is strongly mixing with re-
spect to P , then there is a unique distribution function Gf such that

Fxy = F ∗xy = Gf ,

for almost all pairs (x, y). Furthermore, the Birkhoff Ergodic Theorem yields
that, for any t ≥ 0,

Gf (t) = P 2{(x, y) ∈M ×M ; d(x, y) < t},

so that almost all pairs are not only non-chaotic, but are non-chaotic in exactly
the same way. In a statistical sense, this is extremely orderly behavior. Note
further that if f is mixing and if every open set has positive measure, then f
is transitive.

Now if such a mixing transformation f is d-chaotic, then the chaos, which
is a highly significant feature of its overall behavior, is generated by a set of
measure zero – a set that is deliberately disregarded in ergodic theory! If, in
particular, f is in C(I, I), then both the d-chaotic behavior and the topological
entropy of f are determined by the points in the cycles (see Theorems 6.8 and
6.15, and Block and Coppell [11, p. 217]). In many cases of interest these
points form a countable set which is dense in I, so that both the chaotic and
the non-chaotic pairs are dense in I × I.

To illustrate, the tent map τ is mixing with respect to Lebesgue measure
on [0, 1]. Thus, for any t in [0, 1], it follows that Gτ (t) is the Lebesgue measure
of the set {(x, y) ∈ [0, 1]2 : |x− y| < t}. Specifically,

Gτ (t) =


0, t ≤ 0,
2t− t2, 0 ≤ t ≤ 1,
1, 1 ≤ t.

Comparing Gτ with the lower and upper distributions Fp0 and F ∗p0 determined
in Section 5, we see that, for all t in (0, 1),

Fp0 < Gτ (t) < F ∗p0.

Furthermore, as shown at the end of Section 5, the set of pairs of points (x, y)
for which Fxy = Fp0 and F ∗xy = F ∗p0 is dense in [0, 1]2.

Similarly, the logistic map L4 is mixing with respect to an absolutely con-
tinuous probability measure. The interval [0, 1] is the unique maximal ω-limit
set forL4 and the unique minimal distribution in

∑
(L4) is smaller then the

corresponding distribution in
∑

(τ) (see Section 5). The “ergodic” limiting
distribution GL4 is considerably more complicated. It was first determined
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explicitly by Johnson and Sklar in [23] for the conjugate quadratic Čebyšev
polynomial x2 − 2 on the interval [−2, 2]; and an appropriate Möbius trans-
formation of the integrand by Schweizer and Sklar in [35, 11.3.8] yields:

GL(t) =


0, t < 0,
8
π2

∫ 1
1−t
1+t

K(v)
1+v dv, 0 ≤ t ≤ 1,

1, t > 1,

where K is the complete elliptic integral of the first kind.
The function β defined in Remark 4 above is, like τ , mixing with respect to

Lebesgue measure (on [0, 1)), whence Gβ = Gτ . Furthermore, ε1 < Gβ < ε0.
Note that neither the topological entropy nor the limiting distribution deter-
mined by the mixing behavior distinguish between τ and β, whereas µp(τ) <
µp(β); note also that both “ergodic”limiting distributions differ markedly from
the corresponding “chaotic”lower and upper distributions.

The existence of examples such as the above (which we conjecture to be
the rule rather than the exception) invites speculation: Distribution functions
that arise in “real world”situations are in principle observable. Suppose now
that an actual physical system is modeled by a function that is both strongly
mixing and d-chaotic. Will the observed distributions more often approximate
the “ergodic”ones, the “d-chaotic”ones, or neither? This question is distinct
from questions relating to computer simulations. Actual computers are finite
objects, whence any simulation must terminate in a cycle after a finite number
of steps, and this finite number can often be surprisingly small (see, e.g.,
Darsow et al. [13] and Dyson and Falk [17]).

Returning to the more solid ground of mathematics, the existence of func-
tions with, simultaneously, dense sets of pairs of periodic points, dense sets
of “ergodic”pairs, and dense sets of d-chaotic pairs means that, although one
must carefully distinguish between “order”(in both the usual and statistical
sense) and “chaos”, one often cannot have one without the other.
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[22] K. Janková and J. Smı́tal, A theorem of Sharkovsky characterizing con-
tinuous maps of the interval with zero topological entropy, Math. Slovaca
39 (1989), 261 - 265.

[23] P. Johnson and A. Sklar, Recurrence and dispersion under iteration of
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