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CONVERGENCE OF METRIC
SPACE-VALUED BV FUNCTIONS

Abstract

Chistyakov has proved “Helly’s selection theorem” - a uniformly BV
sequence has a pointwise convergent subsequence - for Banach-(resp.
continuous, group-) valued functions from a real interval into a compact
subset. We extend, dispensing with continuity, to arbitrary real sub-
sets and lighten compactness of the range to pointwise precompactness
(which answers one of his questions). In addition, we accomplish his
selection more generally for complete metric-set-valued BV maps with
closed graphs which are pointwise compact on dense subsets of their
domains.

1 Introduction

Variation may be defined for a metric space-valued function f of a real variable
just as for real-valued ones as

VE(f) = sup
m∑
i=1

d(f(ti), f(ti−1))

over all finite t0 ≤ ... ≤ ti ≤ ... ≤ tm in E ⊂ R (d is the metric). Where fi-
nite, this may be shown to have the same real-valued properties: non-negative,
additive on contiguous intervals (hence non-decreasing), continuous for con-
tinuous functions, change of variables: VE(g ◦φ) = Vφ(E)(g) for nondecreasing
φ, and “lower semi-continuity”: VE lim(fn) ≤ lim inf VE(fn) ≤ supVE(fn).
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Real-valued functions of bounded variation admit a “Jordan decomposi-
tion” as the sum of a non-decreasing and a non-increasing part which vary
(i.e. which are non-constant) on disjoint subsets of the domain. The bounded
variation function could alternatively be obtained by applying to its (total)
variation, which is the difference of these, the function identity on the in-
crements where the non-decreasing part varies and negative identity on the
increments in the complement. This function is (in Chistyakov’s terminology)
natural (a “curve-isometry” in [M]) in that its variation over every interval
is equal to that interval’s length. Such a function is in particular Lip(1);
conversely the composite of every Lip(1) with a nondecreasing function has
bounded variation.

Our argument is based on the following Federer-Moreau-Chistyakov struc-
ture theorem:

Theorem 1.1. A function f : E → X has bounded variation if and only if it
factors as g ◦ φ where φ : E → R is its total variation and g : φ(E) → X is
natural (or even Lipschitz).

For the proof, observe that the variation factors f ; the quotient g : φ(E)→
X is natural by the change of variables formula. Proved in [F, p. 110] with
g Lip(1), in [M, Prop. 15.1] for Banach space-valued functions and in [Ch,
Theorem. 3.1] for metric space-valued functions.

The authors would like to thank Jack Brown in whose seminar these results
were developed and Strashimir Popvassilev for his excellent notes.

2 Helly’s Theorem

Lemma 2.1. A uniformly bounded sequence of non-decreasing real-valued
functions has a pointwise convergent sub-sequence.

Proof. The proof is identical to [N pp. 221–222] starting with any countable
dense subset.

Lemma 2.2. Let {φn(t)} be a sequence of real-valued functions such that
φn(t) → φ(t) on E. Let {gn(t)} be a sequence of Lip(1) functions from the
reals into a metric space X. Then gn ◦ φn converges pointwise on E if and
only if gn converges pointwise on φ(E).

Proof. Observe that d(gn(φn(t)), gn(φ(t))) ≤ |φn(t)− φ(t)| → 0 as n→∞.

Theorem 2.3. Let F be a sequence of functions of uniform bounded variation
from E to a metric space X (that is, supf∈FVE(f) < ∞) such that F is
pointwise precompact (i.e., {f(t) : f ∈ F} is precompact for every t ∈ E).
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Then there exists a sub-sequence {fn} ⊂ F , pointwise convergent on E to a
function f : E → X, hence of bounded variation with VE(f) ≤ supf1∈FVE(f1).

Proof. Without loss of generality, we can assume X is a Banach space since
every metric space can be embedded isometrically in a Banach space. Repre-
sent each f ∈ F as a composite f = g ◦ φ where φ is the variation of f and
g : φ(E)→ X is a Lipschitz map with constant 1. Since the φ’s are a uniformly
bounded sequence of non-decreasing real-valued functions, they have a sub-
sequence {φn} which converges pointwise to a non-decreasing function φ(x).
We may assume that the corresponding gn’s are defined on all the reals since
Lip(1) functions into Banach spaces extend as such from subsets of the reals
(see [Ch Theorem 5.1, step 3]). Since {fn = gn ◦ φn} is pointwise precompact
on E, {gn} is pointwise precompact on φ(E) by lemma 2.2, so by the Arzela-
Ascoli theorem (see [D]), there exists a sub-sequence gnk

which converges on
φ(E), and again by lemma 2.2 fnk

= gnk
◦ φnk

converges pointwise on E.

3 Set-Valued Maps

Let A,B ⊂ X be two nonempty closed bounded subsets of a metric space
(X,d). The Hausdorff distance between A and B is defined by

dH(A,B) = max{e(A,B), e(B,A)},

where
e(A,B) = sup

x∈A
dist(x,B) = sup

x∈A
inf
y∈B

d(x, y) ∈ [0,∞)

This defines a metric on the set C of all nonempty closed bounded subsets of
X.

A set-valued map from E ⊂ R to a metric space X is (for us) a map
F : E → C. Such an F has bounded variation on E ⊂ R if

VE(F ) = sup
m∑
i=1

dH(F (ti), F (ti−1)) <∞

over all finite t0 ≤ ... ≤ ti ≤ ... ≤ tm in E; is compact-valued on a dense set if
F (t) is a compact subset of X for every t in some dense subset of E; has closed
(compact) graph if its graph {(t, x) ∈ E ×X : x ∈ F (t)} is closed (compact)
in the product space E ×X. The function f : E → X is said to be a selection
of the set-valued map F : E → C if f(t) ∈ F (t) for all t ∈ E.

Lemma 3.1. Let {fn(x)} be a sequence of metric space-valued functions de-
fined “finally” (i.e. at each point all but finitely many are defined) on E. If
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the sequence is pointwise precompact on a countable subset D ⊂ E, then there
is a sub-sequence which is defined finally and converges at every point of D.

Proof. Diagonalize the sub-sequences converging on increasing finite subsets
of D.

Lemma 3.2. A bounded variation function to a complete metric space extends
to the closure of its domain via one-sided limits (hence without increase of its
variation).

Proof. This holds for both the monotone non-decreasing and the natural
factors (see [F, 2.5.16, p. 109]).

Chistyakov [Ch] obtains the following conclusion only for a map with com-
pact graph from an interval to a Banach space.

Theorem 3.3. A BV set-valued map with closed graph to a complete metric
space X, pointwise compact on a dense subset D of E , has a selection f which
goes through a given pair in the graph and whose variation is at most that of
F .

Proof. Let D = ∪Dn where each Dn is finite and Dn ⊂ Dn+1. Define a
function fn on Dn = {r1 < ... < rm} for given fn(r1) ∈ F (r1) by fn(rk+1) ∈
F (rk+1) such that

d(fn(rk), fn(rk+1)) = d(fn(rk), F (rk+1)) ≤ dH(F (rk), F (rk+1))

(Remember that F (rk+1) is compact.) Note that the variations of {fn} are
bounded by the variation of F . By lemma 3.1, there is a subsequence which
converges pointwise to a function f ; hence also VD(f) ≤ VE(F ). By lemma
3.2 extend f to a bounded variation function with VE(f) ≤ VE(F ). Since the
graph of F is closed f(t) ∈ F (t). 1

1Added 2001: The above was submitted for publication in May 2000. In the interim,
a paper by S. A. Belov and V. V. Chistyakov appeared in J. Math. Anal. Appl. vol.
249, pp. 351-366 which also extends Chistyakov’s (there called) Theorem B by replacing
compactness of the range with pointwise precompactness – but not as far as the above
Theorem 2.3, since it is restricted to intervals whereas ours is valid for arbitrary subsets.
The respective selection theorems for set-valued maps appear to be incomparable: Our
Theorem 3.3 is not contained in their Theorem 2 as can be verified by the map into an
infinite discrete metric space (all distances apart 1) which is a constant singleton except at
one real at which it is the whole space. On the other hand, by using our Theorem 2.3 it is
possible to extend their set-valued theorem from intervals to arbitrary subsets (like ours).
We have determined that their proof of Theorem 1, the Helly selection principle is wrong.
The error occurs in the last paragraph on p.359 where they unjustifiedly assume that the
countable set of discontinuities of all the variation functions is closed.
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