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Abstract

We examine quasi self-similarity for Cantor measures on Cantor sets.
A characterization is obtained in terms of the ratios of dissection of
the Cantor set. The multifractal theory of Cantor measures is studied,
extending the analysis for quasi self-similar measures.

1 Introduction

The main problem in multifractal theory is to estimate the size, typically the
Hausdorff or packing dimension, of

X(α) ≡ {x ∈ suppµ : lim
r→0

logµ (B(x, r))
log r

= α},

where µ is a probability measure. The sets X(α) can be viewed as a decompo-
sition of suppµ into a family of subfractals, the dimensions of these subfractals
X(α) being known as the multifractal spectrum of µ. The heuristic arguments
developed by physicists and mathematicians (for an extensive bibliographic list
see [4] and [6]) suggest that these dimensions should be equal to the Legendre
transform of a suitable function. Olsen in [6] developed mathematical theo-
ries to put these arguments on a firm foundation and detailed analysis of the
multifractal spectrum has been carried out for particular examples, such as
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self-affine measures (see [5], [7]), self-similar measures ([2], [3]), and measures
on cookie cutters ([9]).

Recently, the multifractal spectrum was determined for quasi self-similar
measures in metric spaces by O’Neil [8]. These are measures for which there
exists a map from small parts of the space to itself and vice versa, which
distorts distances and the measure in a bi-Lipschitz fashion.

In this paper the quasi self-similarity properties of Cantor sets and Cantor
measures are investigated. We introduce a variation of quasi self-similarity for
Cantor sets and characterize this property in terms of the ratios of dissection of
the Cantor set. Sets which have this quasi self-similarity property are seen to
have positive Hausdorff dimension. We also show that this variation coincides
with the more general definition for most Cantor sets.

The fine multifractal structure of Cantor measures is then analyzed. We
extend the work of [8] by showing that the multifractal spectrum of many
Cantor measures is the Legendre transform of a function of the ratios of dis-
section of the Cantor set. The class of measures to which our work applies is
larger than the class of quasi self-similar Cantor measures.

2 Notation and Definitions

2.1 Cantor Sets

By a Cantor set we mean a compact, totally disconnected, perfect subset of
[0, 1] which can be constructed in a similar fashion to the classical middle
third Cantor set. We remove from [0, 1] a non-empty, centered, open interval,
leaving two closed intervals of equal, positive length called the Cantor intervals
of step one. The ratio between the length of the Cantor intervals of step one
and [0, 1] is called the ratio of dissection of step one. A similar operation is
performed on each Cantor interval of step one, producing the (four) closed
equal-length Cantor intervals of step 2 and the ratio of dissection at step two.
Repeating this construction yields a decreasing sequence of closed sets whose
intersection is a Cantor set.

It is convenient to label the elements of the construction of the Cantor set
by W , the set of binary words of finite length,

W = {w = w1w2 · · ·wn : wi ∈ {0, 1}, n ∈ N}
⋃
{e},

where e is the empty word. We let Ie = [0, 1]. More generally, if the length of
the word w ∈W (written |w|) is k, then we denote by Iw0 and Iw1 the left and
right Cantor intervals of step k + 1 obtained after removing the open interval
(or gap) Gw of step k, from Iw, a Cantor interval of step k. We let T denote
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the truncation operator, IT (wi) = Iw, for i = 0, 1. The ratio of dissection at
step k will be denoted rk and is equal to |Iwi| / |Iw| for any word w of length
|w| = k−1, and i = 0, 1. The Cantor set C{rk} is the set

⋂
k∈N

⋃
|w|=k Iw, and

is uniquely determined by the ratios of dissection {rk}. The classical middle
third Cantor set is the case when the ratios of dissection are all equal to 1/3.

We will also write Ik and Gk for Cantor intervals or gaps of step k when
only the step is relevant. Lastly, we note that sometimes it is convenient
to write Iw for the Cantor interval Iw intersected with the Cantor set; the
meaning should be clear from the context.

2.2 Quasi Self-Similar Measures

The measure which arises as the invariant measure from an iterated function
system of similarity transforms is referred to as a self-similar measure; the
attractor is a self-similar set. These sets and measures have been extensively
studied (c.f. [4] and the references cited therein). Generalizing this idea,
O’Neil in [8] defined the notion of a quasi self-similar measure on a compact
metric space X.

Throughout the paper we let B(x, d) denote the closed ball in X with
center x ∈ X and radius d.

Definition 1. ([8]) Let µ be a Borel probability measure supported on X. We
say that µ is m-quasi self-similar by balls from below on the space X
if for all x ∈ X and balls B(x, d) there exist mappings Φ : B(x, d)→ X (called
the quasi self-similarity maps) such that whenever B(y, s) ⊂ B(x, d) we
have

B
(

Φ(y),m−1 s

d

)
⊂ Φ(B(y, s)) ⊂ B

(
Φ(y),m

s

d

)
,

and whenever A ⊂ B(x, d) is a Borel set, then

m−1 µ(A)
µ(B(x, d))

≤ µ(Φ(A)) ≤ m µ(A)
µ(B(x, d))

.

We say that µ is m-quasi self-similar by balls from above on X if for
all x ∈ X and balls B(x, d) there exist mappings Φ : X → B(x, d) such that if
ρ ≤ diameter X, then for all z ∈ X one can find ζ ∈ B(x, d) such that

B(ζ,m−1ρd) ⊂ Φ (B(z, ρ)) ⊂ B(ζ,mρd),

and if A ⊂ X is Borel, then

m−1µ(A) ≤ µ (Φ(A))
µ (B(x, d))

≤ mµ(A).
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The measure µ is quasi self-similar by balls if it is both quasi self-similar
from above and below on X.

For Cantor sets it is natural to to study a variant of quasi self-similarity
where balls (contained in the Cantor set) are replaced in the definition of quasi
self-similarity by Cantor intervals.

Definition 2. We say that a Borel probability measure µ on a Cantor set
C = C{rk} is m-quasi self-similar by Cantor intervals from below on
C if for all Cantor intervals Iw there exist mappings Φ : Iw → C such that for
all Iv ⊂ Iw there exists x ∈ Iv such that

B

(
Φ(x),m−1 |Iv|

|Iw|

)
⊂ Φ(Iv) ⊂ B

(
Φ(x),m

|Iv|
|Iw|

)
,

and for all Borel sets A ⊂ Iw,

m−1 µ(A)
µ(Iw)

≤ µ(Φ(A)) ≤ m µ(A)
µ(Iw)

.

We say that a measure µ on a Cantor set C is m-quasi self-similar by
Cantor intervals from above on C if for all Cantor intervals Iw there exist
mappings Φ : C → Iw such that for all z ∈ C there exists ζ ∈ Iw such that if
z ∈ Iv, then

B(ζ,m−1|Iv||Iw|) ⊂ Φ(Iv) ⊂ B(ζ,m|Iv||Iw|),

and for all Borel sets A ⊂ C,

m−1µ(A) ≤ µ(Φ(A))
µ(Iw)

≤ mµ(A).

A measure on a Cantor set will be said to be quasi self-similar by Cantor
intervals if it is both quasi self-similar by Cantor intervals from below and
above.

There are a natural class of Borel probability measures on Cantor sets to
study.

Definition 3. Let C = C{rk} be a Cantor set and 0 < p < 1. A Borel
probability measure µ = µp, supported on C, is called a p-Cantor measure
on C if for all finite words w we have µ(Iw0) = pµ(Iw) and µ(Iw1) = (1 −
p)µ(Iw).

If the finite word w has j zeros and k ones, then µ(Iw) = pj(1− p)k.
One easy observation, which we will use extensively, is that any ballB(x, d),

with center x ∈ C and d < min{|Gk| : k ≤ n}, cannot intersect two Cantor
intervals of step n + 1 as these are separated by more than d. Hence B(x, d)
must be a subset of the step n+ 1 Cantor interval containing x.
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3 Quasi Self-Similarity by Cantor Intervals

The main result of this section will be a characterization of quasi self-similarity
by Cantor intervals in terms of the ratios of dissection of the Cantor set. Before
stating this we prove a preliminary result which is of independent interest.

Proposition 1. If the p-Cantor measure µ on C{rk} is quasi self-similar by
Cantor intervals, then infk rk > 0.

Proof. Assume µ is m quasi self-similar by Cantor intervals and infk rk = 0.
Pick n such that mmax(p, 1 − p)n < min(p, 1 − p), and choose ε > 0 so that
the gaps of any step j ≤ n − 1 are greater than mε in length. Then for each
z ∈ C the ball B(z,mε) is contained in some Cantor interval Iv (depending
on z) of step n.

Choose k such that rk < ε and let Iw be any Cantor interval of step k.
Since µ is quasi self-similar from below by Cantor intervals there exists a map
Φ : IT (w) → C such that for some z ∈ Iw,

Φ (Iw) ⊆ B

(
Φ(z),

m |Iw|∣∣IT (w)

∣∣
)
⊆ B(Φ(z),mε) ⊆ Iv,

and

m−1 µ(Iw)
µ(IT (w))

≤ µ(Φ (Iw)) ≤ µ(Iv).

This is a contradiction since µ(Iv) ≤ max(p, 1 − p)n and µ(Iw)/µ(IT (w)) ≥
min(p, 1− p).

Theorem 2. Let C = C{rk} be a Cantor set. There is a p-Cantor measure
on C which is quasi self-similar by Cantor intervals if and only if there exists
n such that for all integers i, j,

n−1 ≤ r1 · · · ri
r1+j · · · ri+j

≤ n. (3.1)

Moreover, in this case every p-Cantor measure on C is quasi self-similar by
Cantor intervals.

Proof. First, assume (3.1) fails to be satisfied for any n but that C supports
a p-Cantor measure which is m-quasi self-similar by Cantor intervals. By the
previous proposition we may assume inf rk ≡ a > 0. Choose k, l ∈ N such that
2k ≥ m and 2l−1 > a−4k. The choice of k ensures that |Ik| ≤ m−1, therefore
if x ∈ C

⋂
Ik, then Ik ⊆ B(x,m−1) .
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Case 1. The ratio is unbounded from above: Obtain i, j such that

r1 · · · ri
r1+j · · · ri+j

> 2lm

and consider any word w of length j. There is a quasi self-similarity mapping
Φ : Iw → C such that for all words v of length i, there is some xv ∈ C with

B

(
xv,m

−1 |Iwv|
|Iw|

)
⊆ Φ(Iwv) ⊆ B

(
xv,m

|Iwv|
|Iw|

)
. (3.2)

But m
|Iwv|
|Iw|

= m |Iv|
r1+j . . . ri+j
r1 . . . ri

<
|Iv|
2l
. Thus

⋃
|v|=i

Φ(Iwv) ⊆
⋃
|v|=i

B

(
xv,
|Iv|
2l

)
.

For each v ∈W chose the word s(v) of minimal length such thatB
(
xv,
|Iv|
2l

)
⊇

Is(v). As s(v) is minimal in length, B
(
xv,
|Iv|
2l

)
will intersect at most four in-

tervals of step |s(v)|. We will write I∗s(v) for the union of these (at most) four

intervals. The fact that B
(
xv,
|Iv|
2l

)
⊇ Is(v) means that

r1 · · · ri
2l

=
|Iv|
2l
≥
∣∣Is(v)∣∣

2
=
r1 · · · r|s(v)|

2
,

and this implies 2−l+1 ≥ ri+1 . . . r|s(v)| ≥ a|s(v)|−i. As 2l−1 > a−4k this can
only be true if |s(v)| > 4k + i.

Taking v to be the empty word e and Iu the step k interval containing xe,
it follows from the choice of k and (3.2) that Iu ⊆ B(xe,m−1) ⊆ Φ(Iw). Since
Iw =

⋃
|v|=i Iwv this gives the inclusions

Iu ⊆
⋃
|v|=i

Φ(Iwv) ⊆
⋃
|v|=i

B

(
xv,
|Iv|
2l

)
⊆
⋃
|v|=i

I∗s(v).

But the set on the right is a union of at most 2i+2 intervals of step |s(v)| ,
while Iu is the union of 2|s(v)|−k such intervals. Since s(v) > 4k + i this is a
contradiction.

Case 2. The ratio is unbounded from below: The argument is similar to

the first case. Select i, j such that
r1 · · · ri

r1+j · · · ri+j
<

1
m2l

.
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Let w be a word of length j and let Φ : C → Iw be an m-quasi self-similarity
map. For all words v of length i we have

Φ(Iv) ⊆ B (xv,m |Iv| |Iw|) ⊆ B
(
xv,
|Iwv|

2l

)
.

The fact that 2k ≥ m also ensures that for some u ∈ W of length k ≥ 1,
the Cantor interval Iwu is contained in B(xe,m−1 |Iw|). Thus the quasi
self-similarity property of Φ also implies that B(xe,m−1 |Iw|) ⊆ Φ(Ie) ⊆⋃
|v|=i Φ(Iv), and therefore Iwu ⊆

⋃
|v|=iB

(
xv,

|Iwv|
2l

)
.

Choose s(v) of minimal length such that B

(
xv,
|Iwv|

2l

)
⊇ Is(v); then

|Iwv|
2l−1

≥
∣∣Is(v)∣∣ and B

(
xv,
|Iwv|

2l

)
⊆ I∗s(v) where I∗s(v) is a union of at most

four step s(v) intervals. Similar arguments to those used in the first case show
that |s(v)| > i + j + 4k, which leads to the contradiction Iwu ⊆

⋃
|v|=i I

∗
s(v).

This proves inequality (3.1) holds when C supports a p-Cantor measure quasi
self-similar by Cantor intervals.

Now we will show that if (3.1) holds, then every p-Cantor measure is quasi
self-similar by Cantor intervals from below. The proof for quasi self-similar
from above is similar. Given a Cantor interval Iw we define a map Φ : Iw → C
by the rule Φ(Iwv) = Iv and extend this to elements of Iw in the natural way.
First, we will show that there exists m such that for all v ∈ W there is some
x ∈ Iwv with

B

(
Φ(x),m−1 |Iwv|

|Iw|

)
⊆ Φ(Iwv) ⊆ B

(
Φ(x),m

|Iwv|
|Iw|

)
.

If one takes x such that Φ(x) is an endpoint of Gv, then these inclusions will

be satisfied if there exists some m (independent of v) with |Iv| ≤ m
|Iwv|
|Iw|

and

|Iv0| ≥ m−1 |Iwv|
|Iw|

. Upon simplifying, these inequalities reduce to

(r|v|+1m)−1 ≤
r1 · · · r|v|

r1+|w| · · · r|v|+|w|
≤ m.

Thus if there exists m ≥ n such that (r|v|+1m)−1 ≤ n−1 for all v ∈ W , then
we are done. However, if one takes i = 1, and j = |v| in (3.1), the inequality
n/r|v|+1 ≤ n2/r1 is derived. Thus if m ≥ n2/r1, we have the desired inclusions.
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If µ is any p-Cantor measure, then since µ(Iwv)/µ(Iw) = µ(Iv), the inequal-

ities
m−1µ(A)
µ(Iw)

≤ µ(Φ(A)) ≤ mµ(A)
µ(Iw)

hold for all Cantor intervals A ⊆ Iw and

any m ≥ 1. As these sets generate the Borel sets in C the same relationship
holds for all Borel sets A. This completes the proof that µ is quasi self-similar
from below.

Corollary 3. If C supports a p-Cantor measure which is quasi self-similar by
Cantor intervals, then every p-Cantor measure is quasi self-similar by Cantor
intervals.

The Hausdorff dimension of the Cantor set C{rk} is known ([1]) to equal

lim inf
k→∞

log 2
1
k |log r1 · · · rk|

,

hence it is of interest to know how condition (3.1) compares to convergence
properties of the geometric means of the ratios of dissection. We have the
following relationships.

Proposition 4. (i) If condition (3.1) is satisfied, i.e. there exists n such that
for all integers i, j n−1 ≤ r1 . . . ri

r1+j · · · ri+j
≤ n, then (r1 · · · rk)1/k converges (to a

non-zero limit). The converse is not true.
(ii) Condition (3.1) will be satisfied for some n if there exist 0 < a, b, λ <∞

such that a ≤ r1 . . . rk
λk

≤ b for all k.

Proof. (i) Let Hk = r1 · · · rk and Sk = log(Hk). Condition (3.1) implies that

for all i, j we have n−1 ≤ HiHj

Hi+j
≤ n. Thus if we let δ = log n and rearrange

terms we obtain
−δ + Si + Sj ≤ Si+j ≤ δ + Si + Sj . (3.3)

It suffices to prove that {Sj/j} forms a Cauchy sequence. First note that an
induction argument (on i) using (3.3) shows that −iδ + iSj ≤ Sij ≤ iδ + iSj .
Manipulating this inequality gives −(i + j)δ + iSj ≤ jSi ≤ (i + j)δ + iSj ,

and thus
∣∣∣Si

i −
Sj

j

∣∣∣ ≤ ( 1
i + 1

j

)
δ. Clearly this implies that {Sj/j} is a Cauchy

sequence.
To see that the converse is not true note that (r1 · · · rk)1/k can converge,

and yet inf rk = 0. From Proposition 1 we know that condition (3.1) cannot
be satisfied in this case.

(ii) One can easily check that (3.1) is satisfied with n = max(b2/a, b/a2).
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Corollary 5. (i) If C supports a p-Cantor measure which is quasi self-similar
by Cantor intervals, then C has positive Hausdorff dimension.

(ii) There are Cantor sets of positive Hausdorff dimension which do not
support any quasi self-similar p-Cantor measures.

Corollary 6. Every p-Cantor measure on C{rk} is quasi self-similar by Cantor

intervals if there exist 0 < a, b, λ <∞ such that a ≤ r1 . . . rk
λk

≤ b for all k.

4 Equivalence of Quasi Self-Similarity by Balls and Can-
tor Intervals

In this section we will show that for p-Cantor measures supported on Cantor
sets with ratios of dissection bounded away from 1/2, quasi self-similarity by
balls or Cantor intervals coincide, but that they need not coincide in general.
The assumption on the ratios of dissection is important because it ensures
that balls and appropriate Cantor intervals are comparable. (It effectively
replaces the strong separation condition.) One formulation of this is given in
the lemma below.

Lemma 7. Suppose C = C{rk} is a Cantor set with sup rk < 1/2. There
exists an integer N such that if x ∈ Iw, then Iw ⊆ B(x, |Iw|) ⊆ ITN (w).
Similarly, if x ∈ C and d > 0, then there is some w ∈ W such that x ∈ Iw ⊆
B(x, d) ⊆ ITN (w).

Proof. The assumption that sup rk < 1/2 is equivalent to the statement that
there exists δ > 0 (namely, δ = sup(1 − 2rk)) such that |Gv| ≥ δ |Iv| for all
v ∈ W . Choose N such that 2−N+1 < δ. As

∣∣ITN (w)

∣∣ ≥ 2N |Iw|, this ensures
that |Iw| < |Gv| for any v such that |v| ≤ |w| −N . Thus B(x, |Iw|) must be
contained in ITN (w).

To prove the second statement, choose k such that r1 · · · rk ≤ d < r1 · · · rk−1,
let Iw be the Cantor interval of step k containing x, and argue as in the first
paragraph.

Theorem 8. Suppose C = C{rk} is a Cantor set with sup rk < 1/2. Any
p-Cantor measure on C is quasi self-similar by balls if and only if it is quasi
self-similar by Cantor intervals.

Proof. Throughout the proof we fix δ with 0 < δ < sup(1 − 2rk). First,
assume µ is m-quasi self-similar by balls on C. We will begin by establishing
that µ is quasi self-similar by Cantor intervals from below, so let Iw be a
Cantor interval and denote by x an endpoint of Iw. Let Φ : B(x, |Iw|) → C
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be a quasi self-similarity map from below, suppose Iv ⊆ Iw and assume z is
the endpoint of Iv closest to x. Because δ |Iv| is less than the size of any gap
of step j ≤ |v|, B(z, δ |Iv|) ⊆ Iv. The choice of z ensures that

Iv ⊆ B(z, |Iv|) ⊆ B(x, |Iw|);

so the definition of an m-quasi self-similar map yields the inclusions

B

(
Φ(z),

m−1δ |Iv|
|Iw|

)
⊆ Φ (B(z, δ |Iv|)) ⊆ Φ(Iv)

⊆ Φ (B(z, |Iv|)) ⊆ B
(

Φ(z),
m |Iv|
|Iw|

)
.

Moreover, for all Borel sets A ⊆ B(x, |Iw|) we have

m−1µ(A)
µ (B(x, |Iw|))

≤ µ(Φ(A)) ≤ mµ(A)
µ (B(x, |Iw|))

.

By the lemma there is a constant N (independent of x and w) such that
Iw ⊆ B(x, |Iw|) ⊆ ITN (w). Thus µ (B(x, |Iw|)) is comparable to µ(Iw). These
observations show that for a suitable constant m1 and all Borel sets A ⊆ Iw,
we have

B

(
Φ(z),

m−1
1 |Iv|
|Iw|

)
⊆ Φ(Iv) ⊆ B

(
Φ(z),

m1 |Iv|
|Iw|

)
,

and
m−1

1 µ(A)
µ(Iw)

≤ µ(Φ(A)) ≤ m1µ(A)
µ(Iw)

.

Thus Φ restricted to Iw is a suitable map and therefore µ is quasi self-similar
by Cantor intervals from below.

To see that µ is quasi self-similar by Cantor intervals from above we again
start with a Cantor interval Iw. Choose x in the Cantor set belonging to Iw
and let Φ : C → B(x, δ |Iw|) ⊆ Iw be a m-quasi self-similarity map from above.
If z ∈ C

⋂
Iv, then choosing ζ as in the definition of quasi self-similarity by

balls we obtain the inclusions

B(ζ,m−1δ |Iv| δ |Iw|) ⊆ Φ(B(z, δ |Iv|)) ⊆ Φ(Iv)
⊆ Φ(B(z, |Iv|)) ⊆ B(ζ,m |Iv| δ |Iw|).

If N is chosen such that 2−N ≤ δ, then B(x, δ |Iw|) will contain the step |w|+N
Cantor subinterval of I|w| which contains x. This ensures that µ(B(x, δ |Iw|))
is comparable to µ(Iw), and similar arguments to those used in the earlier part
of the proof imply that µ is quasi self-similar by Cantor intervals from above.
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Now assume µ is quasi self-similar by Cantor intervals on C. We will show
quasi self-similarity by balls from below; the proof for quasi self-similarity
from above is similar. Consider a ball B(x, d) with center x ∈ C and, as in
the lemma, choose the Cantor interval Iw and integer N independent of x
and d such that |Iw| ≤ d <

∣∣IT (w)

∣∣ and x ∈ Iw ⊆ B(x, d) ⊆ ITN (w). Let
Φ : IT 2N (w) → C be a quasi self-similarity map from below and suppose
B(y, s) ⊆ B(x, d). Choose v such that Iv ⊆ B(y, s) ⊆ ITN (v). Since Iv ⊆
ITN (w), we have ITN (v) ⊆ IT 2N (w), thus the quasi self-similarity properties of
Φ imply that

B

(
Φ(x),

m−1 |Iv|∣∣IT 2N (w)

∣∣
)
⊆ Φ(Iv) ⊆ Φ (B(y, s))

⊆ Φ(ITN (v)) ⊆ B

(
Φ(x),

m
∣∣ITN (v)

∣∣∣∣IT 2N (w)

∣∣
)
.

The assumption of quasi self-similarity by Cantor intervals ensures that the
ratios of dissection of C are bounded away from zero, hence

∣∣IT 2N (w)

∣∣ is com-
parable to d, and the lengths of Iv and ITN (v) are comparable to s. Also,
µ(IT 2N (w)) and µ(B(x, d)) are comparable, hence there is a constant m1 such
that

B

(
Φ(x),

m−1
1 s

d

)
⊆ Φ (B(y, s)) ⊆ B

(
Φ(x),

m1s

d

)
,

and for all Borel sets A ⊆ B(x, d),

m−1
1 µ(A)

µ(B(x, d))
≤ m−1µ(A)
µ(IT 2N (w))

≤ µ(Φ(A)) ≤ mµ(A)
µ(IT 2N (w))

≤ m1µ(A)
µ(B(x, d))

.

Thus Φ restricted to the ball B(x, d) is a suitable quasi self-similarity function.

Corollary 9. Suppose supk rk < 1/2. Then a p-Cantor measure on C{rk} is
quasi self-similar by balls if and only if there exists n such that (3.1) holds
for all i, j. If C{rk} supports a p-Cantor measure which is quasi self-similar
by Cantor intervals (or, equivalently, balls), then every p-Cantor measure is
quasi self-similar by Cantor intervals and balls.

However, the two quasi self-similarity properties are not the same. To show
this we will prove one additional property of quasi self-similarity by balls.

Proposition 10. Suppose C is a Cantor set whose gaps decrease in length
as the step increases. If there is a p-Cantor measure on C which is quasi
self-similar by balls, then supk rk < 1/2.
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Proof. Suppose µ is m-quasi self-similar and choose n such that

mmax(p, 1− p)n < min(p, 1− p).

Assume to the contrary that supk rk = 1/2. Then we can choose k > n such

that
m |Gk−1|
|Ik|+ |Gk−1|

=
m(1− 2rk)

1− rk
< |Gn| . Set s = |Gk−1|, d = |Ik| and let

x ∈ Ik be an endpoint of Gk−1. Clearly, Ik ⊆ B(x, d) ⊆ Ik−1. Since µ is quasi
self-similar by balls, there exists a quasi self-similarity map Φ : B(x, d+s)→ C
which has the property that for any z ∈ B(x, d),

Φ(B(z, s)) ⊆ B
(

Φ(z),
ms

r + s

)
.

The assumption of decreasing gap lengths ensures that any gap of the Can-
tor set, contained in B(x, d), has length at most s. This means we can
choose elements of the Cantor set, z1, ..., zm in B(x, d), such that the balls
B(zi, s) cover B(x, d) and for each i, B(zi, s)

⋂
B(zi+1, s) is non-empty. But

because ms/(d + s) is less than the length of any gap of step at most n,

B

(
Φ(z),

ms

d+ s

)
must be contained in a Cantor interval of step n+ 1. Conse-

quently, Φ (B(zi, s)) ⊆ Ivi
for some vi ∈W of length n+ 1. Since Φ(B(zi, s))

and Φ(B(zi+1, s)) intersect non-trivially, the intervals Ivi
intersect, and there-

fore coincide. Thus Φ (B(x, d)) ⊆ Iv for some |v| = n + 1. The quasi self-
similarity property also implies that

m−1µ(B(x, d))
µ (B(x, d+ s))

≤ µ (Φ(B(x, d)) ≤ µ(Iv).

Finally, we note that B(x, d+ s) ⊆ Ik−1, thus

m−1µ(B(x, d))
µ (B(x, d+ s))

≥ m−1µ(Ik)
µ (Ik−1)

≥ m−1 min(p, 1− p).

But n was chosen so that µ(Iv) < m−1 min(p, 1− p) which is a contradiction.

An immediate corollary of this Proposition and Theorem 8 is the following.

Corollary 11. If C is a Cantor set with decreasing gaps, then any p-Cantor
measure which is quasi self-similar by balls is quasi self-similar by Cantor
intervals.
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Corollary 12. A Cantor set with ratios of dissection increasing to 1/2 does
not support any p-Cantor measure quasi self-similar by balls.

Proof. Since the ratios are increasing, the gaps must be decreasing in size,
and hence the proposition directly applies.

We can now give an example of a p-Cantor measure which is quasi self-
similar by Cantor intervals but not balls. We do not know if there are p-Cantor
measures which are quasi self-similar by balls but not by intervals.

Corollary 13. If rk = 2−1−1/k2
, then every p-Cantor measure on the Cantor

set C{rk} is quasi self-similar by Cantor intervals but not by balls.

Proof. One can easily check that {rk} satisfies (3.1). However, the ratios
increase to 1/2 and thus the no p-Cantor measure is quasi self-similar by
balls.

5 Multifractal Analysis of p-Cantor Measures

In [8] O’Neil showed that the multifractal formalism developed by Olsen [6]
could be applied to quasi self-similar measures. In this section we obtain
similar results for a broad class of p-Cantor measures, including those which
are not necessarily quasi self-similar, but are supported on Cantor sets where
the geometric means of the ratios of dissection converge.

Throughout the section we will assume that sup rk < 1/2, and µ will
denote a p-Cantor measure where, without loss of generality, we will assume
p = max (p, 1− p).

We begin our study of the multifractal structure of Cantor sets by recalling
the definition of the pointwise local upper and lower dimensions of µ at x ∈ C:

dimlocµ(x) = lim sup
d→0

logµ(B(x, d))
log d

;

dimlocµ(x) = lim inf
d→0

logµ(B(x, d))
log d

.

The pointwise local dimension of µ is dimloc µ(x) = limd→0
logµ(B(x, d))

log d
if

this limit exists.
To analyze these local dimensions we will make significant use of the fact

that balls centered in C and appropriate Cantor intervals have comparable
measure. For instance, if k is chosen such that r1 · · · rk ≤ d < r1 · · · rk−1

and Iw is the step k Cantor interval containing x ∈ C, then we know from
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Lemma 7 that Iw ⊆ B(x, d) ⊆ ITN (w), and hence pw1 · · · pwk
≤ µ(B(x, d)) ≤

pw1 · · · pwk−N
. Thus

log pw1 · · · pwk−N

log r1 · · · rk
≤ logµ(B(x, d))

log d
≤ log pw1 · · · pwk

log r1 · · · rk−1
.

Since N can be chosen independently of x and d, the limiting behavior (as

k → ∞) of
log pw1 . . . pwk−N

log r1 . . . rk
and

log pw1 · · · pwk

log r1 · · · rk−1
are the same, and coincide

with the limits of
logµ(Iw)
log |Iw|

=
log pw1 . . . pwk

log r1 . . . rk
. This means that in the definition

of pointwise local dimension we may replace balls by Cantor intervals, in other

words, dimloc µ(x) = limx∈Iw;|Iw|→0
logµ(Iw)
log |Iw|

.

Motivated by the fact that box dimensions are often easier to calculate
than Hausdorff dimension, Olsen ([6] Sec 2.7) introduced the multifractal box
dimensions. To define these we need the following terminology. A countable
family of closed balls (B(xi, d))i is called a centered packing of C if xi ∈ C
and the balls are pairwise disjoint. For q ∈ R, and d > 0 set

Sqd = sup{
∑
i

µ(B(xi, d))q : (B(xi, d))i is a centred packing of C}.

The upper and lower multifractal q-box dimensions, Cq and Cq, are given by

Cq = lim sup
d→0

logSqd
|log d|

and Cq = lim inf
d→0

logSqd
|log d|

.

The comparison between measures of balls and Cantor intervals enables us to
easily calculate these as we demonstrate below.

Proposition 14. There are constants a = a(q), b = b(q) such that if r1 · · · rk ≤
d < r1 · · · rk−1, then a(pq + (1− p)q)k ≤ Sqd ≤ b(pq + (1− p)q)k.

Proof. Let (B(xi, d))i be a centered packing of C. Let Iw(xi) be the Cantor
interval of step k containing xi, so Iw(xi) ⊆ B(xi, d) ⊆ ITN (w)(xi). The balls
B(xi, d) are disjoint by definition, thus the intervals Iw(xi) are distinct. Since
each step k−N interval contains 2N step k subintervals, a step k−N interval
can be the interval ITN (w)(xi) for at most 2N choices of xi. Hence∑

i

µ(B(xi, d))q ≤ 2N
∑

|w|=k−N

(
pw1 . . . pwk−N

)q
= 2N (pq + (1− p)q)k−N ≡ b(pq + (1− p)q)k.
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To obtain the reverse inequality choose N such that
∣∣GT j(w)

∣∣ ≥ ∣∣IT (w)

∣∣
for all j ≥ N and for all w ∈ W . Let x1, ..., x2k−N denote the left hand
endpoints of the step k−N Cantor intervals. Since these step k−N intervals
are separated by gaps of at least d, the balls B(xi, d), i = 1, ..., 2k−N , must
be disjoint and hence form a centered packing of C. Because d ≥ r1 · · · rk,
B(xi, d) contains the step k interval having xi as its left endpoint. Thus∑

µ(B(xi, d))q ≥
∑

|w|=k−N

pNq
(
pw1 · · · pwk−N

)q
= pNq(pq + (1− p)q)k−N = a(pq + (1− p)q)k.

Corollary 15. The upper and lower multifractal q-box dimensions have the
values

Cq = lim inf
k→∞

log(pq + (1− p)q)∣∣ 1
k log r1 · · · rk

∣∣ ; Cq = lim sup
k→∞

log(pq + (1− p)q)∣∣ 1
k log r1 · · · rk

∣∣ .

Proof. This is a routine consequence of the proposition and the definition of
the multifractal dimensions.

For α ∈ R set

Xα ={x ∈ C : dimlocµ(x) = α},
Xα ={x ∈ C : dimlocµ(x) = α},

X(α) ={x ∈ C : dimloc µ(x) = α} = Xα

⋂
Xα.

These sets can be viewed as giving a multifractal decomposition of the Cantor
set C relative to the measure µ, and the aim of the fine approach to multifractal
analysis is to determine their dimensions. We will follow the method of [4],
Sec. 11.2 by showing the existence of probability measures concentrated on
these sets.

For this, define βi = βi(q) by (pq+(1−p)q)rβi

i = 1 and define a set function
υ = υq on the Cantor intervals by the rule υ(Iw) = (pw1 · · · pwk

)qrβ1
1 · · · r

βk

k if
|w| = k. Notice that υ(Iw0)+υ(Iw1) = υ(Iw) and consequently υ extends to a
probability measure supported on C. Since log

∏k
i=1 r

βi

i = −k log(pq+(1−p)q),
the reader can readily use the definition of βi to verify that when |w| = k,

log υ(Iw)
log |Iw|

= q
logµ(Iw)
log |Iw|

+
log(pq + (1− p)q)∣∣ 1

k log r1...rk
∣∣ .
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As with µ, the local behavior of υ is the same whether one considers balls or
Cantor intervals, thus we obtain

dimlocυ(x) = lim inf
x∈Iw;|Iw|→0

log υ(Iw)
log |Iw|

= lim inf

(
q

logµ(Iw)
log |Iw|

+
log(pq + (1− p)q)∣∣ 1

k log r1...rk
∣∣
)

≥ lim inf q
logµ(Iw)
log |Iw|

+ Cq.

Notice the inequality is an equality if limx∈Iw;|Iw|→0
logµ(Iw)
log |Iw|

exists, and in

this case we have dimlocυ(x) = q limx∈Iw;|Iw|→0
logµ(Iw)
log |Iw|

+ Cq. Similarly,

dimlocυ(x) ≤ lim sup q
logµ(Iw)
log |Iw|

+ Cq, again with equality if lim
logµ(Iw)
log |Iw|

exists. Set

α∗ ≡ α∗(q) =
− (pq log p+ (1− p)q log(1− p))

(pq + (1− p)q) lim supk
∣∣ 1
k log r1 · · · rk

∣∣
and

α∗ ≡ α∗(q) =
− (pq log p+ (1− p)q log(1− p))

(pq + (1− p)q) lim infk
∣∣ 1
k log r1 · · · rk

∣∣ .
We are now ready to state the technical result from which we can determine

bounds on the Hausdorff and packing dimensions of Xα∗
⋂
Xα∗ .

Theorem 16. There exists a probability measure υ concentrated on Xα∗
⋂
Xα∗

which has the property that for υ a.e. x in Xα∗
⋂
Xα∗ :

(i) If q ≥ 0, then dimlocυ(x) ≥ qα∗ + Cq and dimlocυ(x) ≤ qα∗ + Cq;

(ii) If q ≤ 0, then dimlocυ(x) ≥ qα∗ + Cq and dimlocυ(x) ≤ qα∗ + Cq.

The proof of the theorem can be obtained in a similar fashion to [4], Prop.
11.4 once we have established the following lemma.

Lemma 17. Let ε > 0, s ∈ R and let δ > 0 be small. Let

αs ≡ αs(q) =
− (pq log p+ (1− p)q log(1− p))

(pq + (1− p)q) s
,
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and for k ∈ N set Φ±(αs) = log
∏k
i=1

(
pq±δ + (1− p)q±δ

)
r
βi+(ε∓αs)δ
i . Then

Φ±(αs) ≤ k

(
∓αssδ +O(δ2)− εδ log 2± αs

k
δ

k∑
i=1

|log ri|

)
.

If t = lim sup 1
k

∑k
i=1 |log ri|, then there is a constant c such that Φ+(αt) ≤

−kδcε for all but finitely many k, and Φ−(αt) ≤ −kδcε for infinitely many k.
If t = lim inf 1

k

∑k
i=1 |log ri|, then there is a constant c such that Φ+(αt) ≤

−kδcε for infinitely many k, and Φ−(αt) ≤ −kδcε for all but finitely many k.

Proof. This is essentially a calculus exercise. Using the first order Taylor
expansion of (px + (1− p)x) at x = q and the fact that − log (pq + (1− p)q) =
βi log ri, we readily obtain

Φ±(αs) =
k∑
1

(
log
(
pq±δ + (1− p)q±δ

)
− log (pq + (1− p)q)

)
+ δ(ε∓ αs)

k∑
i=1

log ri

=± δk
(
pq log p+ (1− p)q log(1− p)

pq + (1− p)q

)
+ kO(δ2)

− δ
k∑
i=1

(ε∓ αs) |log ri| .

Upon recalling the definition of αs and noting that 1
k

∑k
i=1 |log ri| ≥ log 2, the

first claim is proved.
If t = lim sup 1

k

∑k
i=1 |log ri| , then given any ε1 > 0, for all but finitely

many k we have 1
k

∑k
i=1 |log ri| ≤ t+ε1, and for infinitely many k, 1

k

∑k
i=1 |log ri|

≥ t− ε1. Because t ≥ 0 we have αt ≥ 0, and thus for suitably small ε1 and δ,

Φ±(αt) ≤ k
(
∓αttδ +O(δ2)− εδ log 2± αtδ(t± ε1)

)
≤ −kδcε

for all but finitely many k in the case of Φ+ and for infinitely many k for Φ−.
The argument is similar if t = lim inf 1

k

∑k
i=1 |log ri|.

Proof of Theorem 16. Let α ∈ R, fix ε > 0 and let δ > 0 be small.
Temporarily fix k and let Iw(x) denote the interval of step k containing x.
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Then

υ{x : µ(Iw(x)) ≥ |Iw(x)|α−ε} ≤
∫
µ(Iw(x))δ |Iw(x)|−(α−ε)δ

dυ(x)

=
∑
|w|=k

µ(Iw)δ |Iw|−(α−ε)δ
υ(Iw)

=
k∏
i=1

(
pq+δ + (1− p)q+δ

)
r
βi+(ε−α)δ
i = exp Φ+(α).

Similarly, υ{x : µ(Iw(x)) ≤ |Iw(x)|α+ε} ≤ exp Φ−(α).
First, let t = lim sup 1

k

∑k
i=1 |log ri|. Then αt = α∗ and hence from the

lemma υ{x : µ(Iw(x)) ≥ |Iw(x)|α
∗−ε} ≤ exp(−kδcε) for all but finitely many

k, say for k ≥ k1. This means that∑
k≥k1

υ{x : µ(Iw(x)) ≥ |Iw(x)|α
∗−ε} ≤

∑
k≥k1

exp(−kδcε) <∞,

and therefore the probability that µ(Iw(x)) ≥ |Iw(x)|α
∗−ε infinitely often is

zero. In other words, for υ a.e. x, µ(Iw(x)) ≤ |Iw(x)|α
∗−εeventually. Since

ε > 0 was arbitrary lim inf
logµ(Iw(x))
log |Iw(x)|

≥ α∗ for υ a.e. x.

Similarly, for infinitely many k, say k ∈ {kn}, the lemma shows that

υ{x : µ(Iw(x)) ≤ |Iw(x)|α
∗+ε} ≤ exp(−kδcε) .

Thus ∑
kn

υ{x : µ(Iw(x)) ≤ |Iw(x)|α
∗+ε} ≤

∑
kn

exp(−knδcε) <∞,

and so for infinitely many k and υ a.e. x we have µ(Iw(x)) ≥ |Iw(x)|α
∗+ε.

Consequently,

dimlocµ(x) = lim inf
logµ(Iw(x))
log |Iw(x)|

= α∗ for υ a.e. x.

As Xα∗ = {x : dimlocµ(x) = α∗} it follows that υ(Xα∗) = 1.
Using t = lim inf 1

k

∑k
i=1 |log ri| and αt = α∗, we similarly obtain that

lim sup
logµ(Iw(x))
log |Iw(x)|

= α∗ for υ a.e. x.
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Thus we also have υ(Xα∗) = 1 and hence υ(Xα∗
⋂
Xα∗) = 1.

Recall that

dimlocυ(x) ≥ lim inf q
logµ(Iw(x))
log |Iw(x)|

+ Cq

and

dimlocυ(x) ≤ lim sup q
logµ(Iw(x))
log |Iw(x)|

+ Cq.

Thus if q > 0,, then dimlocυ(x) ≥ qα+ +Cq and dimlocυ(x) ≤ qα− +Cq for υ
a.e. x ∈ Xα∗

⋂
Xα∗ . If q < 0 the roles of α∗ and α∗ are interchanged.

Corollary 18. If q ≥ 0, then

dimH

(
Xα∗

⋂
Xα∗

)
≥ qα∗ + Cq,

dimP

(
Xα∗

⋂
Xα∗

)
≤ qα∗ + Cq.

If q < 0, then

dimH

(
Xα∗

⋂
Xα∗

)
≥ qα∗ + Cq

dimP

(
Xα∗

⋂
Xα∗

)
≤ qα∗ + Cq.

Proof. This is immediate from Theorem 16 upon applying the mass distri-
bution principle (see [4], 2.3).

If, in addition, limk

∣∣ 1
k log r1 · · · rk

∣∣ = τ , then τ = log 2/ dimH C,

Cq = Cq = log (pq + (1− p)q) /τ

and

α∗ = α∗ =
− (pq log p+ (1− p)q log(1− p))

(pq + (1− p)q) τ
≡ α(q).

Consequently, for all x ∈ X(α(q)) = {dimloc µ(x) = α(q)},

dimloc υ(x) = qα+
log (pq + (1− p)q)

τ
.

This gives the formulas

Corollary 19. If limk

∣∣ 1
k log r1 · · · rk

∣∣ exists, then

dimH X(α(q)) = dimP X(α(q)) = qα+
log (pq + (1− p)q) dimH C

log 2
.
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Finally, consider the Legendre transform of the function Cq (under the
assumption that limk

∣∣ 1
k log r1 · · · rk

∣∣ exists):

f(α) = inf
q

(qα+ Cq) = inf
q

(
qα+

log (pq + (1− p)q)
τ

)
.

A simple calculus argument shows that the infimum is attained when q is such
that α = α(q). Thus dimH X(α(q)) = f(α(q)). Furthermore, observe that
every value in the interval [− log p/τ , − log(1 − p)/τ ] is of the form α(q) for
some q ∈ R. Thus the multifractal spectrum of µ (i.e., the dimension of X(α))
is given by the Legendre transform of the multifractal q-box dimensions.

Corollary 20. Let C be a Cantor set and suppose µ is the p-Cantor measure.
Assume τ = limk

∣∣ 1
k log r1 · · · rk

∣∣ exists. Then for every

α ∈
[
− log p
τ

,
− log(1− p)

τ

]
,

we have
dimH X(α) = dimP X(α) = f(α)

where f is the Legendre transform of the function which gives the multifractal
q-box dimensions: q 7−→ log (pq + (1− p)q) /τ .

Remark 1. This improves upon results in [8] since we have seen in Prop. 4
that such Cantor measures need not be quasi self-similar.
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