Christian Richter, Friedrich-Schiller-Universität Jena, Mathematisches Institut, D-07740 Jena, Germany. e-mail: richterc@minet.uni-jena.de

REPRESENTING CLIQUISH FUNCTIONS AS QUASIUNIFORM LIMITS OF QUASICONTINUOUS FUNCTIONS

Abstract

It is shown that every cliquish function f mapping a pseudometrizable space X into a separable metric space Y can be expressed as the quasiuniform limit of a sequence of quasicontinuous functions f_k .

1 Representing Cliquish Functions on Pseudometrizable Spaces

Let X be a topological space and let (Y, d_Y) be a metric space. A function $f : X \to Y$ is called *quasicontinuous at the point* $x_0 \in X$ if, for every neighborhood U of x_0 and every $\varepsilon > 0$, there exists a non-empty open set $G \subseteq U$ such that $d_Y(f(x), f(x_0)) < \varepsilon$ for all $x \in G$ (cf. [10]). The function f is said to be cliquish at x_0 if, under the same conditions as above, $d_Y(f(x), f(y)) < \varepsilon$ for all $x, y \in G$ (cf. [15]). Accordingly, f is called quasicontinuous or cliquish if f is quasicontinuous or cliquish, respectively, at every point $x_0 \in X$.

Quasicontinuous functions in general form a proper subclass of the class of all cliquish functions. However, under reasonable restrictions on X and Y it turns out that cliquish functions can be represented as pointwise or even quasiuniform limits of quasicontinuous functions. We recall that a sequence $(f_k)_{k=1}^{\infty}$ of functions $f_k : X \to Y$ quasiuniformly converges to $f : X \to Y$ if f is the pointwise limit of $(f_k)_{k=1}^{\infty}$ and

$$\forall \varepsilon > 0 \ \forall m \ge 1 \ \exists p \ge 1 \ \forall x \in X : \\ \min\{d_Y(f_{m+1}(x), f(x)), \dots, d_Y(f_{m+p}(x), f(x))\} < \varepsilon$$

Key Words: cliquish function, quasicontinuous function, pointwise limit, quasiuniform limit, pseudometrizable space, separable metric space, Baire space

Mathematical Reviews subject classification: 54C08

Received by the editors March 13, 2001

²⁰⁹

(cf. [13], p. 143)¹. The origin of this concept goes back to Arzelá's theorem concerning the continuity of pointwise limits of continuous functions on compact spaces.

In [6] Grande proved that a function $f : \mathbb{R} \to \mathbb{R}$ is cliquish if and only if it is the pointwise limit of a sequence of quasicontinuous functions, provided that the domain \mathbb{R} is equipped with the usual topology or with the density topology. In [8] the analogous result was obtained for real-valued functions f on the topological space \mathbb{R}^m with the density topology. In his paper [3] Borsík showed that every cliquish function $f : \mathbb{R} \to \mathbb{R}$ can be expressed as the quasiuniform limit of a sequence of quasicontinuous functions f_k . He considered the usual topology on \mathbb{R} . In [7] the last result was sharpened in so far as the functions f_k can be assumed to have the Darboux property.

The main result of the present paper is the following fairly general representation theorem. The proof will be given in a separate section.

Theorem 1.1. Let $f: X \to Y$ be a cliquish function mapping a pseudometrizable space X into a separable metric space (Y, d_Y) . Then f is the quasiuniform limit of a sequence of quasicontinuous functions $f_k: X \to Y$. In particular,

$$\forall m \ge 1 \,\forall x \in X : \min\{d_Y(f_{2m}(x), f(x)), d_Y(f_{2m+1}(x), f(x))\} < \frac{1}{m}.$$
(1)

If f is bounded, then one can require the functions f_k to be bounded, too.²

The separability of (Y, d_Y) is a necessary assumption in Theorem 1.1. In fact, let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(\xi_1, \xi_2) = \begin{cases} \xi_1 & \text{if} \quad \xi_2 = 0, \\ 0 & \text{if} \quad \xi_2 \neq 0, \end{cases}$$

the domain \mathbb{R}^2 being the Euclidean plane, the range \mathbb{R} , however, being equipped with the metric $d_{\mathbb{R}}(\xi,\eta) = 1$ if $\xi \neq \eta$. Then $(\mathbb{R}, d_{\mathbb{R}})$ is non-separable.

¹In the literature different definitions of the concept of a quasiuniform limit appear. In [1], p. 265, a real-valued function f on a topological space X is called the quasiuniform limit of functions f_k , $k \ge 1$, if f is the pointwise limit of $(f_k)_{k=1}^{\infty}$ and if, for all $\varepsilon > 0$ and all $m \ge 1$, there exist an at most countable open cover $\{G_i : i \in I\}$ of X and a corresponding set $\{p_i : i \in I\}$ of natural numbers such that, for all $i \in I$ and all $x \in G_i$, $|f(x) - f_{m+p_i}(x)| < \varepsilon$. This is equivalent to Sikorski's definition if X is compact and all functions f_k are continuous.

²Theorem 1.1 becomes false if one uses Aleksandroff's concept of a quasiuniform limit instead of Sikorski's definition. Indeed, one easily checks that the cliquish function $f : \mathbb{R} \to \mathbb{R}$ with f(0) = 1 and f(x) = 0 for $x \neq 0$ can not be expressed as the quasiuniform limit of a sequence of quasicontinuous functions in the sense of Aleksandroff.

Of course, f is cliquish. We assume f to be the pointwise limit of a sequence $(f_k)_{k=1}^{\infty}$ of quasicontinuous functions. Then $\mathbb{R} = \bigcup_{k=1}^{\infty} R_k$ where $R_k = \{\xi \in \mathbb{R} : d_{\mathbb{R}}(f_k(\xi, 0), f(\xi, 0)) < 1\} = \{\xi \in \mathbb{R} : f_k(\xi, 0) = \xi\}$. Hence there exists an uncountable set R_{k_0} . The quasicontinuity of f_{k_0} at a point $(\xi, 0), \xi \in R_{k_0}$, yields that there exists an non-empty open set $G_{\xi} \subseteq \mathbb{R}^2$ such that $d_{\mathbb{R}}(f_{k_0}(\eta_1, \eta_2), \xi) = d_{\mathbb{R}}(f_{k_0}(\eta_1, \eta_2), f_{k_0}(\xi, 0)) < 1$ for all $(\eta_1, \eta_2) \in G_{\xi}$. That is, $f_{k_0}|_{G_{\xi}} = \xi, f_{k_0}|_{G_{\xi}}$ denoting the restriction of f_{k_0} to G_{ξ} . This way we have found uncountably many non-empty open sets $G_{\xi} \subseteq \mathbb{R}^2, \xi \in R_{k_0}$, which are pairwise disjoint. This clearly is impossible, since every set G_{ξ} must contain points from the countable set \mathbb{Q}^2 , where \mathbb{Q} denotes the set of rational numbers.

Theorem 1.1 gives rise to a characterization of cliquish functions on pseudometrizable Baire spaces.

Corollary 1.2. Let $f : X \to Y$ be a function mapping a pseudometrizable Baire space X into a separable metric space Y. Then the following are equivalent.

- (i) f is cliquish.
- (ii) f is the quasiuniform limit of a sequence of quasicontinuous functions $f_k: X \to Y$.
- (iii) f is the pointwise limit of a sequence of quasicontinuous functions $f_k : X \to Y$.

PROOF. The implication (i) \Rightarrow (ii) rests on Theorem 1.1. (ii) \Rightarrow (iii) is trivial.

Let us assume that f is represented as claimed under (iii). In [2] it is shown that then the discontinuity points of f constitute a set of the first category, provided that X is metrizable. However, the same proof applies to a pseudometrizable space X. Hence the continuity points of f are dense in X, since X is a Baire space. This obviously implies that f is cliquish. \Box

In Corollary 1.2 the supposition "Baire" can not be omitted. For instance, every function $f : \mathbb{Q} \to \{0, 1\}$ on the rational numbers $\mathbb{Q} = \{q_1, q_2, q_3, \ldots\}$ equipped with the usual distance $d_{\mathbb{Q}}(q_i, q_j) = |q_i - q_j|$ can be expressed as the quasiuniform limit of a sequence of quasicontinuous functions $f_k : \mathbb{Q} \to \{0, 1\}$. Indeed, if $\left\{r_1^{(m)} < r_2^{(m)} < \ldots < r_{2m}^{(m)}\right\} = \{q_1, q_2, \ldots, q_{2m}\}$ for $m \ge 1$, then the functions

$$f_{2m}(q) = \begin{cases} f(q) & \text{if } q \in \left\{ r_1^{(m)}, r_2^{(m)}, \dots, r_{2m}^{(m)} \right\} = \{q_1, q_2, \dots, q_{2m}\}, \\ 0 & \text{if } q \in \left(r_1^{(m)}, r_2^{(m)} \right) \cup \left(r_3^{(m)}, r_4^{(m)} \right) \cup \dots \cup \left(r_{2m-1}^{(m)}, r_{2m}^{(m)} \right), \\ 1 & \text{if } q \in \left(-\infty, r_1^{(m)} \right) \cup \left(r_2^{(m)}, r_3^{(m)} \right) \cup \dots \cup \left(r_{2m}^{(m)}, +\infty \right) \end{cases}$$

and

$$f_{2m+1}(q) = \begin{cases} f(q) & \text{if } q \in \left\{ r_1^{(m)}, r_2^{(m)}, \dots, r_{2m}^{(m)} \right\} = \{q_1, q_2, \dots, q_{2m}\}, \\ 1 & \text{if } q \in \left(r_1^{(m)}, r_2^{(m)} \right) \cup \left(r_3^{(m)}, r_4^{(m)} \right) \cup \dots \cup \left(r_{2m-1}^{(m)}, r_{2m}^{(m)} \right), \\ 0 & \text{if } q \in \left(-\infty, r_1^{(m)} \right) \cup \left(r_2^{(m)}, r_3^{(m)} \right) \cup \dots \cup \left(r_{2m}^{(m)}, +\infty \right) \end{cases}$$

are quasicontinuous and we obtain $\lim_{k\to\infty} f_k(q) = f(q)$ for all $q \in \mathbb{Q}$, since $f_{2m}|_{\{q_1,q_2,...,q_{2m}\}} = f_{2m+1}|_{\{q_1,q_2,...,q_{2m}\}} = f|_{\{q_1,q_2,...,q_{2m}\}}$. Moreover,

 $\min\{|f_{2m}(q) - f(q)|, |f_{2m+1}(q) - f(q)|\} = 0$

for all $q \in \mathbb{Q}$ and $m \geq 1$. Hence f is the quasiuniform limit of the sequence $(f_k)_{k=2}^{\infty}$.

2 Quasicontinuous and Cliquish Functions on More General Topological Spaces

Obviously, a non-constant cliquish function from a space X into a space Y can not be represented as the limit of a sequence of quasicontinuous functions if all quasicontinuous functions are constant. This section is devoted to spaces X on which all quasicontinuous or cliquish functions, respectively, are constant. We restrict our considerations to the case $Y = \mathbb{R}$, though most of the claims obviously can be proved for more general spaces Y.

Quasicontinuous and cliquish functions on an arbitrary topological space X can be expressed by the aid of functions from particular basic subclasses, which have been introduced and studied in [12]. We recall some important concepts and claims from this paper. A partition $\mathcal{P} = \{P_t : t \in I\}$ of X into pairwise disjoint subsets P_t is called *semi-open* if all partition sets P_t are semi-open; that is, $P_t \subseteq cl(int(P_t))$ (cf. [11]), $cl(\cdot)$ and $int(\cdot)$ denoting the closure operator and the interior operator, respectively. The partition \mathcal{P} is said to be almost semi-open if $\bigcup_{i \in I} int(P_t)$ is dense in X. A function $\varphi : X \to \mathbb{R}$ is called a

semi-open step function or an almost semi-open step function if it is piecewise constant on the sets of a semi-open or an almost semi-open partition \mathcal{P} of X, respectively. Every semi-open step function is quasicontinuous and every real-valued quasicontinuous function on X is the uniform limit of a sequence of semi-open step functions. Similarly, every almost semi-open step function is cliquish and every real-valued cliquish function can be uniformly approached by almost semi-open step functions. **Proposition 2.1.** A topological space X admits a non-constant quasicontinuous function $f : X \to \mathbb{R}$ if and only if there exist two non-empty disjoint open subsets $G_1, G_2 \subseteq X$.

PROOF. If $G_1, G_2 \subseteq X$ are non-empty, disjoint, and open then $\mathcal{P} = \{ cl(G_1), X \setminus cl(G_1) \}$ is a semi-open partition, since $cl(G_1)$ is semi-open being the closure of an open set and since $X \setminus cl(G_1)$ is open. Hence the characteristic function $\mathbf{I}_{cl(G_1)}$ is quasicontinuous, where $\mathbf{I}_{cl(G_1)}|_{G_1} = 1$ and $\mathbf{I}_{cl(G_1)}|_{G_2} = 0$.

Conversely, if f is a non-constant quasicontinuous function, say $f(x_1) \neq f(x_2)$, then the existence of two non-empty disjoint open sets $G_1, G_2 \subseteq X$ is a direct consequence of the definition of quasicontinuity.

Proposition 2.2. A topological space X admits a non-constant cliquish function $f: X \to \mathbb{R}$ if and only if X is not connected or there exists a non-empty nowhere dense subset $N \subseteq X$.

PROOF. If X is not connected, then X can be decomposed into two non-empty open sets G_1 and G_2 . In this case the characteristic function \mathbf{I}_{G_1} even is an example of a non-constant continuous function on X. If X contains a nonempty nowhere dense subset N, then \mathbf{I}_N is a non-constant cliquish function.

Now we suppose that there is a non-constant cliquish function $f: X \to \mathbb{R}$. Then there must exist a non-constant almost semi-open step function φ , since f is the uniform limit of functions of this type. The function φ is defined on an almost semi-open partition $\mathcal{P} = \{P_\iota : \iota \in I\}$ consisting of at least two sets. We fix an index $\iota_0 \in I$. Then $\mathcal{Q} = \{Q_1, Q_2\}$ with $Q_1 = P_{\iota_0}$ and $Q_2 = \bigcup_{\iota \neq \iota_0} P_\iota$ is an almost semi-open partition, too. Hence $\operatorname{int}(Q_1) \cup \operatorname{int}(Q_2)$ is a dense open subset of X. The complement $N = X \setminus (\operatorname{int}(Q_1) \cup \operatorname{int}(Q_2))$ is nowhere dense. If $N \neq \emptyset$, we have found the required non-empty nowhere dense subset of X. In the case $N = \emptyset$ we note that $\emptyset = N = \operatorname{cl}(Q_1) \cap \operatorname{cl}(Q_2)$ is the boundary of Q_1 as well as of Q_2 . Then Q_1 and Q_2 are open. Hence X is not connected

In [4] Borsík considered the space $X = \mathbb{R}$ with the system of open sets $\{\mathbb{R}, \emptyset\} \cup \{(a, +\infty) : a \in \mathbb{R}\}$. This is a second countable T_4 -space, but does not fulfil T_1 . By Proposition 2.1, all real-valued quasicontinuous functions on X are constant. However, Proposition 2.2 says that there exist non-constant cliquish functions $f : X \to \mathbb{R}$, since a set $A \subseteq \mathbb{R}$ is nowhere dense in X provided that $\sup A < +\infty$. In fact, one easily checks that $f : X \to \mathbb{R}$ is cliquish if and only if $\lim_{x \to +\infty} f(x)$ exists in \mathbb{R} .

being the union of Q_1 and Q_2 .

An example of a T₁-space is given by the cofinite topology on an arbitrary infinite set X. Here a subset $G \subseteq X$ is open if and only if $G = \emptyset$ or $X \setminus G$ is

finite (cf. [14], p. 49). Again Proposition 2.1 yields that there exist constant quasicontinuous functions only. By Proposition 2.2 we obtain non-constant cliquish functions, because every finite subset of X is nowhere dense. However, in the case of an infinite T_1 -space one can show a stronger result.

Proposition 2.3. Every infinite T_1 -space X admits a cliquish function $f : X \to \mathbb{R}$ with infinite range.

PROOF. Let $(x_i)_{i=1}^{\infty}$ be a sequence of mutually distinct points in X and let $(\lambda_i)_{i=0}^{\infty}$ be a sequence of reals such that $\lim_{i\to\infty} \lambda_i = 0$. We shall see that the function $f = \lambda_0 + \sum_{i=1}^{\infty} \lambda_i \mathbf{I}_{\{x_i\}} : X \to \mathbb{R}$ is cliquish. This yields the above claim

function $f = \lambda_0 + \sum_{i=1} \lambda_i \mathbf{I}_{\{x_i\}} : X \to \mathbb{K}$ is cliquisn. This yields the above claim if the values $\lambda_i, i \ge 1$, are mutually different.

Every partition $\mathcal{P} = \{X \setminus \{x_0\}, \{x_0\}\}$ of X with arbitrary $x_0 \in X$ is almost semi-open. Indeed, if x_0 is an isolated point; i.e., $\{x_0\}$ is open, then $\operatorname{int}(X \setminus \{x_0\}) \cup \operatorname{int}(\{x_0\}) = (X \setminus \{x_0\}) \cup \{x_0\}$ is dense in X. If x_0 is not isolated, then $\operatorname{int}(X \setminus \{x_0\}) \cup \operatorname{int}(\{x_0\}) = (X \setminus \{x_0\}) \cup \emptyset$ is dense as well. Consequently, every function $\mathbf{I}_{\{x_0\}}$ is an almost semi-open step function. Hence the functions $f_k = \lambda_0 + \sum_{i=1}^k \lambda_i \mathbf{I}_{\{x_i\}}, \ k \ge 1$, are cliquish, since they are sums of cliquish functions. Then the uniform limit $f = \lim_{k \to \infty} f_k$ is cliquish, too.

Passing from T_1 -spaces to Hausdorff spaces we obtain a similar result concerning quasicontinuous functions.

Proposition 2.4. Every infinite Hausdorff space X admits a quasicontinuous function $f: X \to \mathbb{R}$ with infinite range.

PROOF. First we show that every semi-open set $A \subseteq X$ containing at least two points can be decomposed into two non-empty semi-open subsets A_1 and A_2 ; that is, $A = A_1 \cup A_2$, $A_1 \cap A_2 = \emptyset$. Since $A \subseteq \operatorname{cl}(\operatorname{int}(A))$, we can find two distinct points $x_1, x_2 \in \operatorname{int}(A)$. These two points can be separated by two open sets $G_1, G_2 \subseteq \operatorname{int}(A)$. Now let $A_1 = \operatorname{cl}(G_1) \cap A$ and $A_2 = A \setminus \operatorname{cl}(G_1)$. The first set is semi-open, because $A_1 \subseteq \operatorname{cl}(G_1) \subseteq \operatorname{cl}(\operatorname{int}(A_1))$. The set A_2 is semi-open, since $A_2 = A \cap (X \setminus \operatorname{cl}(G_1))$ is the intersection of a semi-open set and an open set. Moreover, A_1 and A_2 are non-empty, for $G_1 \subseteq A_1$ and $G_2 \subseteq A_2$.

Let $(\lambda_i)_{i=1}^{\infty}$ be a sequence of reals such that $\lim_{i\to\infty} \lambda_i = \lambda$ exists in \mathbb{R} . We want to construct a function $f: X \to \mathbb{R}$ with $(\lambda_i)_{i=1}^{\infty} \subseteq f(X)$. Therefore we inductively define a sequence of semi-open partitions of the form $\mathcal{P}_k = \{P_1, P_2, \ldots, P_{k-1}, Q_k\}, k \geq 1$, where the sets Q_k are infinite. We start with

 $\mathcal{P}_1 = \{Q_1\} = \{X\}$. Given \mathcal{P}_k , the above argument shows that Q_k can be decomposed into two non-empty semi-open subsets P_k and Q_{k+1} . We can assume that Q_{k+1} is infinite, since Q_k is an infinite set. This way we obtain the desired partition \mathcal{P}_{k+1} . Every partition \mathcal{P}_k allows the definition of a semi-open step function $\varphi_k = \lambda \mathbf{I}_{Q_k} + \sum_{i=1}^{k-1} \lambda_i \mathbf{I}_{P_i}$. By $\lim_{i \to \infty} \lambda_i = \lambda$, the sequence $(\varphi_k)_{k=1}^{\infty}$ converges uniformly to a function $f: X \to \mathbb{R}$. Thus f is quasicontinuous and $(\lambda_i)_{i=1}^{\infty} \subseteq f(X)$, for $f|_{P_i} = \lambda_i$.

Proposition 2.4 illustrates that every Hausdorff space gives rise to a large variety of quasicontinuous functions. This is remarkable in so far as there exist infinite regular Hausdorff spaces on which all real-valued continuous functions are constant (cf. [14], pp. 111-113). We do not know if Theorem 1.1 can be generalized in so far as the assumption on X to be pseudometrizable can be weakened.

3 Proof of Theorem 1.1

We use the following notation. Given a function f mapping a topological space X into a metric space (Y, d_Y) , the oscillation of f on a set $A \subseteq X$ is given by $\omega_f(A) = \sup\{d_Y(f(x_1), f(x_2)) : x_1, x_2 \in A\}$. The oscillation of f at a point $x_0 \in X$ is defined by $\omega_f(x_0) = \inf\{\omega_f(U) : U$ is a neighborhood of $x_0\}$. If the space X is equipped with a pseudometric d_X , we denote the open ball of radius r > 0 centered at the point $x_0 \in X$ by $B_X(x_0, r) = \{x \in X : d_X(x, x_0) < r\}$. For a subset $A \subseteq X$ and a radius r > 0, we define a corresponding neighborhood of A by $B_X(A, r) = \bigcup_{x \in A} B_X(x, r)$. The proof of

Theorem 1.1 is based on two technical lemmas.

Lemma 3.1. Let $f : X \to Y$ be a cliquish function mapping a pseudometrizable space X into a metric space (Y, d_Y) . Then there exist functions $g_m : X \to Y, m \ge 1$, and an increasing sequence of nowhere dense closed subsets $F_1 \subseteq F_2 \subseteq F_3 \subseteq \ldots \subseteq X$ such that

- (i) $d_Y(g_m(x), f(x)) < \frac{1}{m} \text{ for all } m \ge 1, x \in X,$
- (ii) $g_m|_{F_m} = f|_{F_m}$ for all $m \ge 1$,
- (iii) $g_m|_{X \setminus F_m}$ is quasicontinuous for all $m \ge 1$,
- (iv) $\omega_f(x) < \frac{1}{m}$ for all $m \ge 1, x \in X \setminus F_m$.

PROOF. Let $m \geq 1$ be fixed. We define $F_m = \left\{ x \in X : \omega_f(x) \geq \frac{1}{m} \right\}$. Then F_m is closed and nowhere dense, because f is cliquish. Now we consider a point $x \in X \setminus F_m$. Since $\omega_f(x) < \frac{1}{m}$, there exists an open neighborhood $U_x \subseteq X \setminus F_m$ of x such that $\omega_f(U_x) < \frac{1}{m}$. We can choose another open neighborhood V_x of x such that $\operatorname{cl}(V_x) \subseteq U_x$, for X is a normal space (see [9], p. 120). Then $\mathcal{V} = \{V_x : x \in X \setminus F_m\}$ is an open cover of $X \setminus F_m$ such that $\operatorname{cl}(V_x) \subseteq X \setminus F_m$ for all $x \in X \setminus F_m$. The open subset $X \setminus F_m$ of X is a pseudometrizable space itself and hence paracompact (see [9], p. 160). Thus there exists a locally finite open cover $\mathcal{W} = \{W_\iota : \iota \in I\}$ of the space $X \setminus F_m$ which is a refinement of \mathcal{V} . Let the index set I be well-ordered. Then we define a locally finite partition $\mathcal{P} = \{P_\iota : \iota \in I\} \setminus \{\emptyset\}$ of $X \setminus F_m$ by $P_\iota = \operatorname{cl}(W_\iota) \setminus \bigcup_{k < \iota} \operatorname{cl}(W_\kappa)$. We fix a point $x_\iota \in P_\iota$ for every $P_\iota \in \mathcal{P}$. Now we define $g_m : X \to Y$ by

$$g_m(x) = \begin{cases} f(x) & \text{if } x \in F_m, \\ f(x_\iota) & \text{if } x \in P_\iota. \end{cases}$$

We have $F_1 \subseteq F_2 \subseteq F_3 \subseteq \ldots$, (ii), and (iv) as immediate consequences of the definitions of F_m and g_m . In order to prove (i), let $x_0 \in X \setminus F_m$ be fixed. Then there exist an index $\iota \in I$ and a set $V_x \in \mathcal{V}$ such that $x_0, x_\iota \in P_\iota \subseteq$ $\operatorname{cl}(W_\iota) \subseteq \operatorname{cl}(V_x) \subseteq U_x$. Hence

$$d_Y(g_m(x_0), f(x_0)) = d_Y(f(x_\iota), f(x_0)) \le \omega_f(U_x) < \frac{1}{m},$$

which shows (i). Finally, every set $P_{\iota} = \operatorname{cl}(W_{\iota}) \cap \left(X \setminus \bigcup_{\kappa < \iota} \operatorname{cl}(W_{\kappa})\right)$ is semiopen, since $\operatorname{cl}(W_{\iota})$ is semi-open being the closure of the open set W_{ι} and since $X \setminus \bigcup_{\kappa < \iota} \operatorname{cl}(W_{\kappa})$ is open, because \mathcal{W} is locally finite. Thus $g_m|_{X \setminus F_m}$ is piecewise constant on the semi-open partition \mathcal{P} of $X \setminus F_m$. Obviously, a function of this type is quasicontinuous. This proves (iii). \Box

The following claim is taken from Borsík's paper [5].

Lemma 3.2. Let X be a pseudometrizable space, $F \subseteq X$ a nowhere dense closed subset of X, and $G \subseteq X$ an open set such that $F \subseteq cl(G)$. Then there exist pairwise disjoint classes \mathcal{K}_n of non-empty open sets, $n \ge 1$, such that the sets K belonging to the family $\mathcal{K} = \bigcup_{n=1}^{\infty} \mathcal{K}_n$ are subject to the following conditions.

(i) $\operatorname{cl}(K) \subseteq G \setminus F$ for all $K \in \mathcal{K}$,

- (ii) for every $x \in X \setminus F$, there exists a neighborhood V of x such that the set $\{K \in \mathcal{K} : V \cap \operatorname{cl}(K) \neq \emptyset\}$ has at most one element,
- (iii) for every $x \in F$ and for every neighborhood U of x, there is a number $n_0 \geq 1$ such that, for all $n \geq n_0$, there exists $K \in \mathcal{K}_n$ with $\operatorname{cl}(K) \subseteq U$.

PROOF OF THEOREM 1.1 1. Preliminaries. We assume that f is represented as the limit of functions g_m according to Lemma 3.1. For technical reasons we add the set $F_0 = \emptyset$ to the sequence $(F_m)_{m=1}^{\infty}$.

Given $m \ge 1$, we apply Lemma 3.2 to the nowhere dense closed set $F = F_m$ and the open set G = X in order to obtain a corresponding family $\mathcal{K}^{(m)} = \bigcup_{n=1}^{\infty} \mathcal{K}_n^{(m)}$. In every set $K \in \mathcal{K}^{(m)}$ we fix a point $x_K \in K$. In addition to the claims of Lemma 3.2 we can assume that

$$\omega_f(\mathrm{cl}(K)) < \frac{1}{m} \text{ for all } K \in \mathcal{K}^{(m)}.$$
(2)

Indeed, if $\omega_f(\operatorname{cl}(K)) \geq \frac{1}{m}$, then we choose an open neighborhood $K' \subseteq K$ of x_K with $\omega_f(K') < \frac{1}{m}$. This is possible by Lemma 3.1 (iv), because $x_K \in K \subseteq X \setminus F_m$. Now we can fix an open neighborhood K'' of x_K such that $\operatorname{cl}(K'') \subseteq K'$, since X is normal. Then $x_K \in K'' \subseteq K$ and $\omega_f(\operatorname{cl}(K'')) < \frac{1}{m}$. Hence we can replace K by K'' without affecting the claims of Lemma 3.2, which justifies (2).

Let $(y_l)_{l=0}^{\infty}$ be dense in Y. We put $(z_l)_{l=0}^{\infty} = (y_0, y_0, y_1, y_0, y_1, y_2, y_0, y_1, y_2, y_3, \dots)$. Then the sequence $(z_l)_{l=l_0}^{\infty}$ is dense in Y for every $l_0 \ge 0$.

We assume that X is equipped with a pseudometric d_X .

2. Definition of the functions f_{2m+p} , $m \ge 1$, $p \in \{0, 1\}$.

$$f_{2m+p}(x_0) = \begin{cases} z_l & \text{if there exist } l \ge 0, \ i \in \{1, 2, \dots, m\}, \\ & \text{and } K \in \mathcal{K}_{2(lm+i)+p}^{(m)} \text{ such that} \\ & x_0 \in \operatorname{cl}(K), \ \operatorname{cl}(K) \subseteq B_X\left(F_i, \frac{1}{m}\right), \text{ and} \\ & d_Y(z_l, f(x_K)) < \frac{1}{m} + \sup_{x \in X \setminus F_{i-1}} \omega_f(x), \\ g_m(x_0) & \text{otherwise.} \end{cases}$$
(3)

This definition is correct, since the sets cl(K), $K \in \mathcal{K}^{(m)}$, are pairwise disjoint

according to Lemma 3.2 (ii). We have $f_{2m+p}|_{X \setminus L_{m,p}} = g_m|_{X \setminus L_{m,p}}$ where

$$L_{m,p} = \bigcup \left\{ \operatorname{cl}(K) : \text{there exist } l \ge 0, \ i \in \{1, 2, \dots, m\}, \text{ and} \\ K \in \mathcal{K}_{2(lm+i)+p}^{(m)} \text{ such that } \operatorname{cl}(K) \subseteq B_X\left(F_i, \frac{1}{m}\right) \\ \text{and } d_Y(z_l, f(x_K)) < \frac{1}{m} + \sup_{x \in X \setminus F_{i-1}} \omega_f(x) \right\}.$$

3. Quasicontinuity of f_{2m+p} . Let $x_0 \in X$ be fixed. In case $x_0 \in L_{m,p}$, we find a set $K \in \mathcal{K}^{(m)}$ and a number $l \geq 0$ such that $x_0 \in \operatorname{cl}(K)$ and $f_{2m+p}|_{\operatorname{cl}(K)} = z_l$. Hence every open neighborhood U of x_0 has a non-empty open intersection $G = U \cap K$ with K such that $f_{2m+p}|_G = z_l = f_{2m+p}(x_0)$. Thus f_{2m+p} is quasicontinuous at x_0 .

Now let $x_0 \in X \setminus L_{m,p}$. If $x_0 \in X \setminus F_m$, then, by Lemma 3.2 (ii), there exists an open neighborhood $U \subseteq X \setminus F_m$ of x_0 such that $U \cap L_{m,p} = \emptyset$. Hence $f_{2m+p}|_U = g_m|_U$ and $g_m|_U$ is quasicontinuous by Lemma 3.1 (iii). Accordingly, f_{2m+p} is quasicontinuous at x_0 .

It remains to show that f_{2m+p} is quasicontinuous at an arbitrary point $x_0 \in F_m$. Let a neighborhood U of x_0 and a bound $\varepsilon > 0$ be fixed. We have $F_m \subseteq X \setminus L_{m,p}$, since $L_{m,p} \subseteq \bigcup \{ \operatorname{cl}(K) : K \in \mathcal{K}^{(m)} \}$ and since $F_m \subseteq X \setminus \bigcup \{ \operatorname{cl}(K) : K \in \mathcal{K}^{(m)} \}$ by Lemma 3.2 (i). Hence $f_{2m+p}|_{F_m} = g_m|_{F_m}$ and, by Lemma 3.1 (ii),

$$f_{2m+p}|_{F_m} = f|_{F_m}.$$
 (4)

There exists a uniquely determined $i \in \{1, 2, ..., m\}$ such that $x_0 \in F_i \setminus F_{i-1}$, for $\emptyset = F_0 \subseteq F_1 \subseteq ... \subseteq F_m$. We choose a neighborhood U' of x_0 such that $\omega_f(U') < \omega_f(x_0) + \frac{1}{2m}$. Now we define an additional neighborhood U'' of x_0 by $U'' = U \cap U' \cap B_X(F_i, \frac{1}{m})$. By Lemma 3.2 (iii), there exists $l_0 \geq 0$ such that, for all $l \geq l_0$, there is a set $K \in \mathcal{K}_{2(lm+i)+p}^{(m)}$ with $\mathrm{cl}(K) \subseteq U''$. We can pick $l_1 \geq l_0$ such that $d_Y(z_{l_1}, f(x_0)) < \min\{\frac{1}{2m}, \varepsilon\}$, because $(z_l)_{l=l_0}^{\infty}$ is dense in Y. Then we find a corresponding set $K_1 \in \mathcal{K}_{2(l_1m+i)+p}^{(m)}$ with $\mathrm{cl}(K_1) \subseteq U''$. Hence in particular

$$cl(K_1) \subseteq B_X\left(F_i, \frac{1}{m}\right). \tag{5}$$

The inclusions $x_0 \in U'$ and $x_{K_1} \in K_1 \subseteq U'' \subseteq U'$ yield $d_Y(f(x_0), f(x_{K_1})) \leq \omega_f(U') < \omega_f(x_0) + \frac{1}{2m}$. Hence $d_Y(f(x_0), f(x_{K_1})) < \sup_{x \in X \setminus F_{i-1}} \omega_f(x) + \frac{1}{2m}$, since

 $x_0 \in X \setminus F_{i-1}$. This gives rise to

$$d_Y(z_{l_1}, f(x_{K_1})) \le d_Y(z_{l_1}, f(x_0)) + d_Y(f(x_0), f(x_{K_1})) < \frac{1}{2m} + \sup_{x \in X \setminus F_{i-1}} \omega_f(x) + \frac{1}{2m} = \frac{1}{m} + \sup_{x \in X \setminus F_{i-1}} \omega_f(x).$$
⁽⁶⁾

Properties (5) and (6) together with definition (3) show that $f_{2m+p}|_{cl(K_1)} =$ z_{l_1} . Thus we have found a non-empty open set K_1 such that $K_1 \subseteq U$, since $cl(K_1) \subseteq U''$, and, by applying (4) to $x_0 \in F_m$,

$$d_Y(f_{2m+p}(x), f_{2m+p}(x_0)) = d_Y(z_{l_1}, f(x_0)) < \varepsilon$$

for all $x \in K_1$. Hence f_{2m+p} is quasicontinuous at x_0 .

4. Pointwise convergence of $(f_k)_{k=2}^{\infty}$ to f. Let $x_0 \in X$. If $x_0 \in \bigcup_{k=1}^{\infty} F_m$, say $x_0 \in F_{m_0}$, then $x_0 \in F_m$ for all $m \ge m_0$. Hence, by (4), $f_{2m+p}(x_0) = f(x_0)$ whenever $m \ge m_0, p \in \{0, 1\}$, so that trivially $\lim_{k \to \infty} f_k(x_0) = f(x_0)$.

Now let $x_0 \notin \bigcup_{m=1}^{\infty} F_m$ and let $\varepsilon > 0$ be fixed. We choose $m_0 \ge 1$ with $\frac{3}{m_0} \leq \varepsilon$. Since $x_0 \notin F_{m_0}$, we find $m_1 \geq m_0$ such that $x_0 \notin B_X\left(F_{m_0}, \frac{1}{m_1}\right)$. We shall show that

$$d_Y(f_{2m+p}(x_0), f(x_0)) < \varepsilon \text{ for all } m \ge m_1, \ p \in \{0, 1\}.$$
(7)

In the case $x_0 \in X \setminus L_{m,p}$ we have $f_{2m+p}(x_0) = g_m(x_0)$. Then claim (7) is a consequence of Lemma 3.1 (i), namely $d_Y(f_{2m+p}(x_0), f(x_0)) = d_Y(g_m(x_0))$,

a consequence of Lemma 3.1 (7), $f(x_0)) < \frac{1}{m} < \frac{3}{m_0} \le \varepsilon.$ Next we assume that $x_0 \in L_{m,p}$. Then there exist $l \ge 0$, $i \in \{1, 2, ..., m\}$, and $K \in \mathcal{K}_{2(lm+i)+p}^{(m)}$ such that $x_0 \in \operatorname{cl}(K)$, $\operatorname{cl}(K) \subseteq B_X(F_i, \frac{1}{m})$, and also $d_Y(z_l, f(x_K)) < \frac{1}{m} + \sup_{x \in X \setminus F_{i-1}} \omega_f(x)$. Definition (3) yields $f_{2m+p}(x_0) = z_l$. Hence

$$d_Y(f_{2m+p}(x_0), f(x_0)) \le d_Y(z_l, f(x_K)) + d_Y(f(x_K), f(x_0)).$$
(8)

We obtain $i > m_0$, because $i \le m_0$ would yield $x_0 \in cl(K) \subseteq B_X(F_i, \frac{1}{m}) \subseteq$ $B_X\left(F_i, \frac{1}{m_1}\right) \subseteq B_X\left(F_{m_0}, \frac{1}{m_1}\right) \text{ contrary to } x_0 \notin B_X\left(F_{m_0}, \frac{1}{m_1}\right). \text{ Thus by}$ Lemma 3.1 (iv) $\sup_{x \in X \setminus F_{i-1}} \omega_f(x) \leq \sup_{x \in X \setminus F_{m_0}} \omega_f(x) \leq \frac{1}{m_0} \text{ and}$

$$d_Y(z_l, f(x_K)) < \frac{1}{m} + \sup_{x \in X \setminus F_{i-1}} \omega_f(x) \le \frac{1}{m} + \frac{1}{m_0} \le \frac{2}{m_0}.$$
 (9)

On the other hand,

$$d_Y(f(x_K), f(x_0)) < \frac{1}{m} \le \frac{1}{m_0},$$
(10)

since $x_K, x_0 \in \operatorname{cl}(K)$ and $\omega_f(\operatorname{cl}(K)) < \frac{1}{m}$ by (2). Inequalities (8), (9), and (10) amount to $d_Y(f_{2m+p}(x_0), f(x_0)) < \frac{3}{m_0} \leq \varepsilon$. This proves (7).

5. Quasiuniform convergence of $(f_k)_{k=2}^{\infty}$ to f in the sense of (1). Let $m \ge 1$ be fixed. Lemma 3.2 (ii) shows that $\operatorname{cl}(K_1) \cap \operatorname{cl}(K_2) = \emptyset$ for all $K_1, K_2 \in \mathcal{K}^{(m)}, K_1 \neq K_2$. Hence

$$L_{m,0} \cap L_{m,1} \subseteq \bigcup \left\{ \operatorname{cl}(K) : K \in \bigcup_{j=1}^{\infty} \mathcal{K}_{2j}^{(m)} \right\} \cap \bigcup \left\{ \operatorname{cl}(K) : K \in \bigcup_{j=1}^{\infty} \mathcal{K}_{2j+1}^{(m)} \right\} = \emptyset$$

and thus $(X \setminus L_{m,0}) \cup (X \setminus L_{m,1}) = X$. Now $f_{2m+p}|_{X \setminus L_{m,p}} = g_m|_{X \setminus L_{m,p}}$ implies that, for every $x \in X$, $f_{2m}(x) = g_m(x)$ or $f_{2m+1}(x) = g_m(x)$. In this situation Lemma 3.1 (i) yields (1): namely, $\min\{d_Y(f_{2m}(x), f(x)), d_Y(f_{2m+1}(x), f(x))\} \le d_Y(g_m(x), f(x)) < \frac{1}{m}$.

6. Boundedness of f_{2m+p} . We assume that f(X) is bounded. It will turn out that $f_{2m+p}(X) \subseteq B_Y(f(X), 1 + \omega_f(X))$, which obviously implies that f_{2m+p} is bounded, too.

Let $x_0 \in X$. If $x_0 \in X \setminus L_{m,p}$, then, by Lemma 3.1 (i),

$$f_{2m+p}(x_0) = g_m(x_0) \in B_Y\left(f(x_0), \frac{1}{m}\right) \subseteq B_Y\left(f(X), 1 + \omega_f(X)\right).$$

In the case $x_0 \in L_{m,p}$ definition (3) says that $f_{2m+p}(x_0) = z_l$, where in particular $d_Y(z_l, f(x_K)) < \frac{1}{m} + \sup_{x \in X \setminus F_{i-1}} \omega_f(x)$ for certain $l \ge 0, i \in \{1, 2, ..., m\}$, and $K \in \mathcal{K}^{(m)}$. Then

$$f_{2m+p}(x_0) = z_l \in B_Y\left(f(x_K), \frac{1}{m} + \sup_{x \in X \setminus F_{i-1}} \omega_f(x)\right) \subseteq B_Y(f(X), 1 + \omega_f(X)).$$

Acknowledgment

The ideas of the present paper have essentially been developed during the author's visit to the *Equipe d'analyse de l'Université Paris* 6 in October 2000. The author thanks this group for kind hospitality.

References

- P. S. Alexandroff, Einführung in die Mengenlehre und die Theorie der reellen Funktionen, Hochschulbücher für Mathematik, Band 23, Deutscher Verlag der Wissenschaften, Berlin, 1967.
- [2] W. W. Bledsoe, Neighborly functions, Proc. Amer. Math. Soc. 3 (1952), 114–115.
- [3] J. Borsík, Quasiuniform limits of quasicontinuous functions, Math. Slovaca 42 (1992), 269–274.
- [4] J. Borsík, Sums of quasicontinuous functions, Math. Bohem. 118 (1993), 313–319.
- [5] J. Borsík, Sums of quasicontinuous functions defined on pseudometrizable spaces, Real Anal. Exchange 22 (1996-97), 328–337.
- [6] Z. Grande, Sur la quasi-continuité et la quasi-continuité approximative, Fund. Math. 129 (1988), 167–172.
- [7] Z. Grande, On Borsík's problem concerning quasiuniform limits of Darboux quasicontinuous functions, Math. Slovaca 44 (1994), 297–301.
- [8] Z. Grande, T. Natkaniec, E. Strońska, Algebraic structures generaded by d-quasi continuous functions, Bull. Pol. Acad. Sci. Math. 35 (1987), 717– 723.
- [9] J. L. Kelley, General topology, D. Van Nostrand, Princeton, 1957.
- [10] S. Kempisty, Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184–197.
- [11] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36–41.
- [12] C. Richter, I. Stephani, Local and global properties of quasi-continuous and cliquish functions, Preprint, Jena, 2000.
- [13] R. Sikorski, Real functions I, PWN, Warszawa, 1958 (in Polish).
- [14] L. A. Steen, J. A. Seebach, Jr., Counterexamples in topology, Springer-Verlag, New York, Heidelberg, Berlin, 1978.
- [15] H. P. Thielmann, Types of functions, Amer. Math. Monthly 60 (1953), 156–161.

CHRISTIAN RICHTER