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POROUS AND BOUNDARY SETS IN
DARBOUX-LIKE FUNCTION SPACES

Abstract

We show which subspaces of Darboux-like real function spaces are
porous or boundary sets with the metric of uniform convergence.

We are interested in the size of one function subspace inside another func-
tion space. Porosity is one such measure of this. In a metric space (X, d),
B(x, r) denotes the open ball centered at x with radius r > 0. For M ⊂ X,
x ∈ X, and r > 0, we let γ(x, r,M) denote the supremum of the set of all s > 0
for which there exists z ∈ X such that B(z, s) ⊂ B(x, r)\M . M is porous at x

if p(x,M) = lim supr→0+

γ (x, r,M)
r

> 0. M is porous in X if M is porous at

each x ∈M. (Others define porosity for only x ∈M.) For example, in X = R,
M1 =

{
± 1

2n
: n = 1, 2, 3, . . .

}
is porous at 0 because p(0,M1) =

1
4
, but

M2 =
{
± 1
n

: n = 1, 2, 3, . . .
}

is not porous at 0 because p(0,M2) = 0. A

porous set M has to be a boundary set in X; i.e., X \M = X. In this paper,
we determine the porosity of subspaces of Darboux-like function spaces. The
following functions f : R→ R belong to these abbreviated classes of functions.
Historically, for Baire class 1 functions f : R→ R, these classes (except for C,
WCIV P, and PB) become equal.

1. C - the class of continuous functions.

2. PC - f : R → R is a peripherally continuous function if for each x ∈ R
and for all open neighborhoods U of x and V of f(x), there exists an
open neighborhood W of x such that W ⊂ U and f(bd(W )) ⊂ V .
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3. D - f is a Darboux function if f(J) is connected for each connected set
J ⊂ R.

4. Conn - f is a connectivity function if the graph of f restricted to J is a
connected subset of R2 for each connected set J ⊂ R.

5. AC - f : R → R is almost continuous if each open neighborhood in R2

of the graph of f contains the graph of a continuous function g : R→ R.

6. Ext - f is extendable if there is a function F : R2 → R such that
F (x, 0) = f(x) for all x ∈ R and the graph of the restriction F � J is
connected for each connected set J ⊂ R2.

7. PR - f has a perfect road if for each x ∈ R there exists a perfect set P
having x as a bilateral limit point such that f � P is continuous at x.
We refer to P as a perfect road at x.

8. WCIV P - f has the weak Cantor intermediate value property if for each
x < y with f(x) 6= f(y) there is a Cantor set C ⊂ (x, y) such that f(C)
lies between f(x) and f(y).

9. CIV P - f has the Cantor intermediate value property if for each x < y
with f(x) 6= f(y) and for each Cantor set K between f(x) and f(y)
there is a Cantor set C ⊂ (x, y) such that f(C) ⊂ K.

10. SCIV P - f has the strong Cantor intermediate value property if in the
preceding definition C can be chosen so that f � C is also continuous.

11. PB - f has property B if for each pair I, J of open intervals I ∩ f−1 (J)
whenever uncountable contains a nonempty perfect set.

12. Zc - f satisfies Zahorski’s condition if for each a, each set {x : f(x) < a}
and {x : f(x) > a} whenever nonempty is bilaterally c-dense in itself.

13. Zω - f satisfies condition Zω if for each a, each set {x : f(x) < a} and
{x : f(x) > a} whenever nonempty is bilaterally dense in itself.

These definitions could have been given instead for classes of functions f :
[0, 1]→ R. Each function space has on it the metric d of uniform convergence
defined by d(f, g) = min {1, sup {|f(x)− g(x)| : x ∈ R}} , and unless otherwise
specified, the closure of a function space is taken in the class RR of all functions
from R into R.

The following chart, in which→ indicates proper inclusion, was lifted from
[10] and [6]. In [13], we determine which spaces are porous or boundary sets
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for the chain of spaces of functions f : R→ R in the top row of the chart. We
indicate in the rest of the chart which function spaces are determined in this
paper to be porous or boundary sets.

Whether or not Ext is porous in SCIVP and what the situation is for the
commutative diagram (∗) are left as open problems.

If A is a subspace ofB and B is porous in C, then A is porous in C. This is
also true if “porous” is replaced by “a boundary set.” For example, according
to the chart, Conn is porous in PC because D is porous in PC.

We will invoke the following construction often. Suppose f : R → R
is continuous at some point x0 ∈ R, and suppose h : [0, 1] → [0, 1] is any
function. Given r > 0 there exists a δ > 0 such that f [x0 − δ, x0 + δ] ⊂
(f(x0)− r

4
, f(x0)+

r

4
). We describe what it means to say that “g is the function

obtained from f by gluing a copy of h at x0.” Let f0 be a scaled-down copy of h

to the rectangle
[
x0 −

δ

2
, x0 +

δ

2

]
×
[
f(x0)− r

4
, f(x0) +

r

4

]
instead of [0, 1]×

[0, 1] . Namely, f0 (x) =
r

2
h
(

1
δ

(
x− x0 + δ

2

))
+f(x0)− r

4
. We obtain a function

g : R→ R by gluing this copy, f0, of h into the rectangle
[
x0 −

δ

2
, x0 +

δ

2

]
×[

f(x0)− r

4
, f(x0) +

r

4

]
and connecting it linearly to the rest of the graph of

f outside the larger rectangle [x0 − δ, x0 + δ]×
[
f(x0)− r

4
, f(x0) +

r

4

]
. That



30 Harvey Rosen

is,

g(x) =



f(x) if x /∈ (x0 − δ, x0 + δ)

l1(x) if x ∈
[
x0 − δ, x0 −

δ

2

]
f0(x) if x ∈

(
x0 −

δ

2
, x0 +

δ

2

)
l2(x) if x ∈

[
x0 +

δ

2
, x0 + δ

]
,

where l1 and l2 are linear functions such that l1(x0−δ) = f(x0−δ), l1(x0−
δ

2
) =

f0(x0 −
δ

2
), l2(x0 +

δ

2
) = f0(x0 +

δ

2
), and l2(x0 + δ) = f(x0 + δ). Notice that

d(f, g) <
r

2
. In the proofs, g will inherit certain properties h has.

Theorem 1. AC ∩ PR is porous in WCIV P .

Proof. Suppose f ∈ AC ∩ PR . (This closure taken in WCIV P is the same
as the closure taken in RR.)

Case 1: f is continuous at some x0 ∈ R.
Let h : [0, 1]→ [0, 1] be the function defined by

h(x) =

{
1 if x = 0, 1∣∣x− 1

2

∣∣ if 0 < x < 1.

Notice h ∈ WCIV P \ PR. For each 0 < r ≤ 1, we can glue in a copy of h at
x0 to obtain from f a function g : R→ R in WCIV P \ PR with d(f, g) <

r

2
.

In the space WCIV P, B(g,
r

8
) ⊂ B(f, r) \ PR. Since γ(f, r, AC ∩ PR) ≥ r

8
,

p(f,AC ∩ PR) ≥ 1
8
> 0 implies AC ∩ PR is porous at f .

Case 2: f is continuous at no point.
Then since f ∈ AC ⊂ D, f ∩ ({x} × R) is a nondegenerate interval for

every x ∈ R. It follows from [12] , [5] that the graph of f is somewhere dense
in R2. Therefore there is an open rectangle U = (a − δ, b + δ) × (c, d) ⊂ f
where a < b and δ > 0. Let 0 < r ≤ 1 and we suppose r ≤ d − c. Pick a
point (a, p) ∈ U such that c +

r

4
< p < d − r

4
. L1 is the line segment joining

the points (a, p) and
(
b, p− r

4

)
, and L2 is the line segment joining the points(

a, p+
r

8

)
and

(
b, p+

r

4

)
. V denotes the trapezoidal region in U that lies
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between L1 and L2. A function g : R→ R can be obtained from f by shifting
all points of f∩V vertically up to L2. Then d(f, g) ≤ r

2
and g /∈ D ⊃ AC∩PR.

To see g ∈ WCIV P , suppose x < y and g(x) 6= g(y). Then since f is dense
in U \ V, there is a Cantor set C ⊂ (x, y) such that f(C) = g(C) lies between
g(x) and g(y). In WCIV P , B(g,

r

16
) ⊂ B(f, r)\ D ⊂ B(f, r) \ (AC ∩ PR).

Since γ (f, r, AC ∩ PR) ≥ r

16
, p(f,AC∩PR) ≥ 1

16
implies AC∩PR is porous

at f .

Theorem 2. AC ∩ PR is porous in PR.

Proof. Suppose f ∈ AC ∩ PR. (This closure taken in PR is the same as the
closure taken in RR.)

Case 1: f has a point of continuity x0.
According to [6], the characteristic function h : [0, 1]→ [0, 1] for C0 belongs

to PR \ D ⊂ PR \ AC, where C0 is the set of nonendpoints of the Cantor
ternary set C. Given 0 < r ≤ 1, let g : R → R be the function obtained
from f by gluing a copy of h at x0. Then g ∈ PR \ AC and d(f, g) <

r

2
.

Suppose φ ∈ PR and d(φ, g) <
r

4
. Since φ misses the horizontal line segment[

x0 −
δ

2
, x0 +

δ

2

]
×{f(x0)} , φ /∈ D and so φ /∈ AC. Therefore B(g,

r

4
) ⊂

B(f, r) \AC.

Case 2: f has no point of continuity.
There is an open rectangle U = (a, b)×(c, d) ⊂ f. Let 0 < r ≤ min {1, d− c} .

V is the open rectangle in U with the same width and center as U but with
height

r

2
. We may suppose f(a), f(b) ∈ U \ V. We obtain a function g : R→ R

by moving all points of f ∩ V vertically to points of the top horizontal side H
of V and letting g = f elsewhere. Then g ∈ PR \ AC because f is dense in U

\ V, f ∈ PR, and g /∈ D. By construction, d(f, g) ≤ r

2
and in the space PR,

B(g,
r

4
) ⊂ B(f, r) \ D ⊂ B(f, r)\ AC.

Both cases show AC ∩ PR is porous at f .

Theorem 3. If the graph of f : R → R is dense in R2 and f ∈ PR, then
f ∈ AC ∩ CIV P .

Proof. We first show f ∈ D. Let U denote the class of all functions f : R→ R
such that for every interval J ⊂ R and every set A of cardinality less than
c, f(J \ A) is dense in [infx∈J f(x), supx∈J f(x)] . According to [8] ,U = D.
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Let J be an interval and suppose infx∈J f(x) < y < supx∈J f(x). Since f

is dense in R2, for each set On = J × (y − 1
n
, y +

1
n

) there exists xn ∈ J

such that (xn, f (xn)) ∈ On. Because f ∈ PR, there exists a perfect set Pn in
J containing xn such that f � Pn ⊂ On. For every set A of cardinality less
than c, y ∈ cl (f (∪∞n=1Pn \A)) ⊂ cl (f (J \A)) . Therefore f ∈ U = D. Then
f ∈ CIV P because CIV P = PR ∩ D [2] . According to [7] , since f ∈ D is
dense in R2, Conn is dense in each open ball in D of radius ≤ 1 centered at
f . Therefore f ∈ Conn. By [13] , since f ∈ Conn is dense in R2, AC is dense
in each open ball in Conn of radius ≤ 1 with center f . So f ∈ AC.

Theorem 4. Ext is a boundary set in SCIV P .

Proof. Suppose f ∈ Ext. (This closure is taken in SCIV P .)

Case 1: f is continuous at some point x0.
According to [11] ,the following type example h : [0, 1] → [0, 1] belongs to

Conn \AC, and the graph of each function within a vertical distance .05 from
h is not in AC. That is, B (h, .05)∩AC = ∅. Let C be the Cantor ternary set
in [0, 1] , {(an, bn) : n = 1, 2, 3, . . . } the set of components of [0, 1] \C, and

h(x) =


x− an
bn − an

if x ∈ [an, bn]
1
2

otherwise.

It turns out h ∈ SCIV P. For each 0 < r ≤ 1, the function g : R→ R obtained
from f by gluing a copy of h at x0 belongs to SCIV P \AC ⊂ SCIV P \Ext,
d(f, g) <

r

2
, and B (g, .025r) ⊂ B (f, r) \Ext. It follows that Ext is porous at

f .

Case 2: f is discontinuous at every point.
Since the graph of f is somewhere dense in R2, f contains some upright

open rectangleU of height t. We may suppose 0 < r ≤ t, and pick a < b so that
b − a < r and the horizontal lines Ha = R ×{a} and Hb = R × {b} meet U .
Move all points of f lying on Ha ∩U vertically to points on Hb ∩U and leave
the remaining points of f alone in order to obtain a function g : R→ R such
that g /∈ D (because g∩Ha∩U = ∅ ) and d(f, g) < r. Also g ∈ SCIV P, really.
For, suppose x < y, g(x) 6= g(y), and K is a Cantor set between g(x) and g(y).
Let K0 be a Cantor set in K \ {a} . Since f is dense in U and f ∈ SCIV P,
there is a Cantor set C ⊂ (x, y) such that f (C) ⊂ K0, f � C is continuous,
and g � C = f � C, which implies g ∈ SCIV P. Therefore g ∈ SCIV P \ Ext.

Both cases show that Ext is a boundary set in SCIV P .
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The next theorem follows immediately from a result in [4] that both SCIV P
and CIV P \ SCIV P are dense in CIV P .

Theorem 5. SCIV P is not porous in CIV P , but SCIV P is a boundary set
in CIV P .

Theorem 6. CIV P is porous in WCIV P .

Proof. Let f ∈ CIV P .
Case 1: Some x0 is a point of continuity of f.

The same function h and argument given for Case 1 of Theorem 1 can be
used here to show that CIV P is porous at f because h ∈ WCIV P \ PR ⊂
WCIV P \ CIV P.
Case 2: f has only points of discontinuity.

Since CIV P = WCIV P ∩ D [2] , f ∈ D and so by [12] there is an open
rectangle U = (a− δ, b+ δ)× (c, d) ⊂ f where a < b and δ > 0. If 0 < r ≤ 1,

r ≤ d − c, and V = [a, b] ×
(
c+ d

2
− r

4
,
c+ d

2
+
r

4

]
⊂ U, then g : R → R is

obtained from the graph of f by shifting all the points of f ∩V vertically up to

the horizontal segment H = [a, b]×
{
c+ d

2
+

3r
8

}
and letting g = f elsewhere.

H lies in U but above V . Then g ∈ WCIV P \ CIV P, d(f, g) ≤ 5r
8
,and

B
(
g,
r

5

)
⊂ B (f, r) \ CIV P. It follows that CIV P is porous at f .

Theorem 7. If f ∈ WCIV P and the graph of f is dense in R2,then f ∈
CIV P.

Proof. We show f ∈WCIV P and f ∈ D and then use the fact that CIV P
= WCIV P ∩D according to [2] . Since f ∈ WCIV P , f is the uniform limit
of a sequence of functions fn ∈WCIV P. Suppose x < y and we may suppose
f(x) < f(y). Because f is dense in R2, if w ∈ (f (x) , f (y)) and V is an open
neighborhood of w in (f (x) , f (y)) , there exist numbers x1 < y1 in (x, y) such

that w ∈ (f (x1) , f (y1)) ⊂ V. For ε =
1
2

min {f (x1)− f (x) , f (y)− f (y1)} ,
there exists a positive integer n such that for all z ∈ R, |f (z) − fn (z) | < ε.
There is a Cantor set C1 ⊂ (x1, y1) such that fn (C1) ⊂ (fn (x1) , fn (y1)) .
Then C1 ⊂ (x, y) and f (C1) ⊂ (f (x) , f (y)) . Therefore f ∈ WCIV P. There
is a Cantor set C2 ⊂ (x1, y1) such that f (C2) ⊂ (f (x1) , f (y1)) . Therefore
since c-many points of [x, y] map into V , f ∈ U = D.

Remark 1. If the graph of f : R → R is dense in R2, then f ∈ WCIV P if
and only if f ∈ PR.
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Theorem 8. CIV P is porous in PR.

Proof. Suppose f ∈ CIV P.

Case 1: There is a point of continuity x0 of f.
The characteristic function for the set of nonendpoints of the Cantor ternary

set, which is the same function h ∈ PR \ D given for Case l of Theorem 2,
can be used again here because h /∈ CIV P. If 0 < r ≤ 1 and g : R→ R is the
function obtained from f by gluing a copy of h at x0, then g ∈ PR \ CIV P,
d (f, g) <

r

2
,and B

(
g,
r

5

)
⊂ B (f, r) \ CIV P.

Case 2: f is discontinuous everywhere.
Let U = (a, b) × (c, d) ⊂ f. We can use the same construction given in

Theorem 2 to obtain a function g ∈ PR \ CIV P such that d (f, g) ≤ r

2
.

Namely, if 0 < r ≤ 1, r ≤ d − c, V = (a, b) ×
(
c+ d

2
− r

4
,
c+ d

2
+
r

4

)
⊂ U,

and f (a) , f (b) ∈ U \V , then g is obtained from the graph of f by shifting all
points of f∩V vertically up to the top horizontal side H of V and letting g = f

elsewhere. This time, in the space PR, B
(
g,
r

8

)
⊂ B (f, r)\CIV P because if

φ ∈ B
(
g,
r

8

)
, then there exist points x < y in (a, b) such that φ (x) <

c+ d

2
−

r

8
<

c+ d

2
+
r

8
< φ (y) . If K is a Cantor set in

(
c+ d

2
− r

8
,
c+ d

2
+
r

8

)
,

then there is no Cantor set C ⊂ (x, y) such that φ (C) ⊂ K since (a, b) ∩

φ−1

(
c+ d

2
− r

8
,
c+ d

2
+
r

8

)
= ∅.

Both cases show CIV P is porous in PR.

Theorem 9. (a) PC is porous in Zω and (b) PR is porous in Zc.

Proof. For part (a) , let f ∈ PC = PC [1] , and for part (b) , let f ∈ PR =
PR [1] .

Case 1: f has some point of continuity x0.
The function h : [0, 1]→ [0, 1] defined by

h(x) =


χ
Co(x) if x ∈ [0, 1] \

{
1
4

}
1
2

if x =
1
4
,

where C0 is the set of nonendpoints of the Cantor ternary set, belongs to
Zc \ PC ⊂ (Zω \ PC) ∩ (Zc \ PR) [6] . For each 0 < r ≤ 1, the function
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g : R→ R obtained from f by gluing a copy of h at x0 belongs to Zω \PC for
part (a) and belongs to Zc\PR for part (b) and d (f, g) <

r

2
. By construction,

(a) PC will be porous at f in Zω and (b) PR will be porous at f in Zc.

Case 2: f has only discontinuity points.

Since f might not belong to D, we cannot conclude in general that the
graph of f is somewhere dense in R2, but we can in the following first subcase.

Subcase (i): Suppose for every x ∈ R, f ∩({x} × R) contains a nondegenerate
interval.

For each integer k and positive integer n, let Qnk = {x ∈ R : some com-

ponent of f ∩ ({x} × R) meets both R ×
{
k

n

}
and R ×

{
k + 1
n

}
}. Each

Qnk is closed and R = ∪n,kQnk. By the Baire Category Theorem, some
Qnk is somewhere dense in R and therefore contains an interval (a, b) . This

shows U = (a, b) ×
(
k

n
,
k + 1
n

)
⊂ f . Let 0 < r ≤ 1

n
. Choose a point

(c, f (c)) ∈ U such that the distance from f (c) to each of
k

n
and

k + 1
n

is >
r

4
,

and let V = (a, b) ×
(
f (c)− r

4
, f (c) +

r

4

)
. A function g : R → R for which

d (f, g) ≤ r

2
can be obtained from f by moving all points of f ∩ V except for

(c, f (c)) vertically to (a, b) ×
{
f (c) +

r

4

}
. Then for part (a) , g ∈ Zω \ PC

(because f is dense in U), B
(
g,
r

8

)
⊂ B (f, r) \ PC, and so PC is porous at

f in Zω. For part (b), g ∈ Zc \ PC, B
(
g,
r

8

)
⊂ B (f, r) \ PR, and so PR is

porous at f in Zc.

Subcase (ii): Suppose there exists an x0 ∈ R such that the closed set f ∩
({x0} × R) is totally disconnected.

Let 0 < r ≤ 1, and choose a point (x0, a) /∈ f ∩ ({x0} × R) such that
r

4
< a− f (x0) <

r

2
. For part (a), since f ∈ PC, the graph of f is bilaterally

dense in itself, and so there exist disjoint countable dense subsets A1 and A2

of the graph of f. Then A1 and A2 are each bilaterally dense in itself and
bilaterally dense in the graph of f. For part (b), since f ∈ PR, there exist
disjoint bilaterally c-dense subsets A1 and A2 of the graph of f. For both parts

(a) and (b), define g : R→ R for which d (f, g) ≤ 3r
4

by
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g (x) =


a+

r

4
if (x, f(x)) ∈ A1 ∩

(
R×

(
a− r

2
, a+

r

2

))
and x 6= x0

a− r

4
if (x, f (x)) ∈ (f \A1) ∩

(
R×

(
a− r

4
, a+

r

4

))
a if x = x0

f(x) otherwise.

Then in part (a), g ∈ Zω \PC because each Ai is dense in the graph of f and
(x0, a) is an isolated point of the graph of g. Since B

(
g,
r

8

)
⊂ B (f, r) \ PC,

PC is porous at f in Zω. In part (b ), g ∈ Zc \ PR and since B
(
g,
r

8

)
⊂

B (f, r) \ PR, PR is porous at f in Zc.

Theorem 10. PR is porous in PC.

Proof. Suppose f ∈ PR = PR [1] .

Case 1: f is continuous at some x0.
If h : [0, 1]→ [0, 1] is the characteristic function of the irrationals in [0, 1] ,

then h ∈ PC \PR [6] . For every 0 < r ≤ 1, glue a copy of h at x0 in order to
obtain from f a function g ∈ PC \ PR such that d (f, g) <

r

2
and to see that

PR is porous at f.

Case 2: f is continuous nowhere.

Subcase (i): For every x ∈ R, f ∩ ({x} × R) contains a nondegenerate interval.
Since the graph of f is somewhere dense in R2, there is an open rectan-

gle U = (a, b) × (c, d) ⊂ f . Let 0 < r ≤ 1, r ≤ d − c, and pick a point
(p, f(p)) ∈ U such that the rectangle V = (a, b) ×

(
f (p)− r

4
, f (p) +

r

4

)
⊂

(a, b) ×
[
f (p)− r

4
, f (p) +

r

4

]
⊂ U. Let A be a countable dense subset of

f ∩ V. A function g : R → R can be obtained from f by moving all points
of f ∩ V except for {(p, f (p))} ∪ A vertically to (a, b) ×

{
f (p) +

r

4

}
. Then

g ∈ PC \ PR (since A is dense in f ∩ V and f is dense in U), d (f, g) ≤ r

2
,

and B
(
g,
r

8

)
⊂ B (f, r) \ PR. So PR is porous at f.

Subcase (ii): There is an x0 ∈ R such that f ∩ ({x0} × R) is totally discon-
nected.

For each 0 < r ≤ 1, there is a point (x0, a) /∈ f such that
r

4
< a− f (x0) <

r

2
. Let B1 and B2 be disjoint countable subsets of f. Then B1 and B2 are
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each bilaterally dense in itself and bilaterally dense in the graph of f. Define
g : R→ R by

g(x) =


a+

r

4
if (x, f (x)) ∈ (f \B1) ∩

(
R×

(
a− r

4
, a+

r

4

))
a if x = x0 or

(x, f (x)) ∈ B2 ∩
[
R×

((
a− r

2
, a− r

4

)
∪
(
a+

r

4
, a+

r

2

))]
f(x) elsewhere.

Then g ∈ PC \PR, d (f, g) ≤ r

2
, and B

(
g,
r

8

)
⊂ B (f, r) \PR. Therefore PR

is porous at f.

Theorem 11. PR is porous in PB.

Proof. Let f ∈ PR = PR and let x0 ∈ R. Since f has a perfect road at x0,
there exists a perfect set P0 having x0 as a bilateral limit point such that f � P0

is continuous at x0. Let 0 < r ≤ 1 and S = R ×
(
f (x0)− r

4
, f (x0) +

r

4

)
.

Define g (x) = f (x0) +
r

4
whenever

(1) (x, f (x)) ∈ S and x 6= x0 or
(2) (x, f (x)) ∈ R ×

{
f (x0)− r

4

}
and there exists a perfect road P at x

such that either of f � (P ∩ (−∞, x)) or f � (P ∩ (x,∞)) is contained in S,
and (x, f(x)) is not a limit point of f \ S.

Both P ∩ (−∞, x] and P ∩ [x,∞) are perfect sets containing x. Define
g(x) = f(x) for all other x. Suppose I and J are open intervals with I ∩
g−1 (J) uncountable. We may suppose J contains f (x0) − r

4
or f (x0) +

r

4
.

Let w ∈ I ∩ g−1 (J) . Therefore g (w) ∈ J. If g (w) = f (w) , then there exists
a perfect set P1 containing w such that g � P1 is continuous at w, and so
I ∩ g−1 (J) contains a perfect subset of P1. If g (w) 6= f (w) , then g (w) =
f (x0) +

r

4
and either by (1), (w, f (w)) ∈ S (in which case f has a perfect

road P2 at w) or by (2), f (w) = f (x0) − r

4
and there exists a perfect set P3

containing w such that f � (P3 \ {w}) ⊂ S. So I ∩ g−1(J) contains a perfect
subset of either P2 or P3. Therefore g ∈ PB \ PR and d (f, g) ≤ r

2
. In PB,

the open ball B
(
g,
r

8

)
⊂ B (f, r) \ PR. Since p (f, PR) ≥ 1

8
, PR is porous at

f.

Theorem 12. PB = PB.
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Proof. Suppose f ∈ PB and I and J are open intervals such that I ∩
f−1 (J) is uncountable. Then f is the uniform limit of a sequence of functions
fn ∈ PB. There exist a positive number ε ≤ 1, a positive integer N , and
an interval (c, d) ⊂ (c− ε, d+ ε) ⊂ J such that I ∩ f−1 (c, d) is uncountable
and |f (x) − fn (x) | < ε

2
for all n ≥ N and for all x ∈ R. Therefore for

all n ≥ N, I ∩ f−1 (c, d) ⊂ I ∩ f−1
n

(
c− ε

2
, d+

ε

2

)
, which since uncountable

contains a perfect set Pn. Because f (Pn) ⊂ f
(
I ∩ f−1

n

(
c− ε

2
, d+

ε

2

))
⊂ J,

Pn ⊂ I ∩ f−1 (J) . Therefore f ∈ PB.

The following result is different from all the others.

Theorem 13. Zc is not a boundary set in Zω.

Proof. We must show that Zc contains an open ball of Zω. Let Q denote
the set of rational numbers and {Fq : q ∈ Q} denote a collection of pairwise
disjoint c-dense subsets of R. Like in [9] , define f =

∑
q∈Q q

χ
Fq . Then f ∈

Zc. Let 0 < ε ≤ 1 and suppose g ∈ Zω with d (f, g) < ε. Let a ∈ R and
choose a rational number q > a + ε. If x ∈ Fq, then f (x) = q,and since
|q − g (x) | = |f (x) − g (x) | ≤ d (f, g) < ε ≤ 1, then g (x) > a. Therefore
Fq ⊂ {x : g (x) > a} , which implies {x : g (x) > a} is c-dense in R and hence
bilaterally c-dense in itself. Similarly, {x : g (x) < a} is bilaterally c-dense in
itself. Then g ∈ Zc. This shows B (f, ε) ⊂ Zc. So Zc is not a boundary set
in Zω (and consequently not porous in Zω).
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